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Abstract In recent years, multielectrode arrays and large silicon probes have been developed to

record simultaneously between hundreds and thousands of electrodes packed with a high density.

However, they require novel methods to extract the spiking activity of large ensembles of neurons.

Here, we developed a new toolbox to sort spikes from these large-scale extracellular data. To

validate our method, we performed simultaneous extracellular and loose patch recordings in

rodents to obtain ‘ground truth’ data, where the solution to this sorting problem is known for one

cell. The performance of our algorithm was always close to the best expected performance, over a

broad range of signal-to-noise ratios, in vitro and in vivo. The algorithm is entirely parallelized and

has been successfully tested on recordings with up to 4225 electrodes. Our toolbox thus offers a

generic solution to sort accurately spikes for up to thousands of electrodes.

DOI: https://doi.org/10.7554/eLife.34518.001

Introduction
As local circuits represent information using large populations of neurons throughout the brain (Buz-

sáki, 2010), technologies to record hundreds or thousands of them are therefore essential. One of

the most powerful and widespread techniques for neuronal population recording is extracellular

electrophysiology. Recently, newly developed microelectrode arrays (MEA) have allowed recording

of local voltage from hundreds to thousands of extracellular sites separated only by tens of microns

(Berdondini et al., 2005; Fiscella et al., 2012; Lambacher et al., 2004), giving indirect access to

large neural ensembles with a high spatial resolution. Thanks to this resolution, the spikes from a sin-

gle neuron will be detected on several electrodes and produce extracellular waveforms with a char-

acteristic spatio-temporal profile across the recording sites. However, this high resolution comes at a

cost: each electrode receives the activity from many neurons. To access the spiking activity of indi-

vidual neurons, one needs to separate the waveform produced by each neuron and identify when it

appears in the recording. This process, called spike sorting, has received a lot of attention for

recordings with a small number of electrodes (typically, a few tens of electrodes). However, for

large-scale and dense recordings, it is still unclear how to extract the spike contributions from extra-

cellular recordings. In particular, for thousands of electrodes, this problem is still largely unresolved.

Classical spike sorting algorithms cannot process this new type of data for several reasons. First,

many algorithms do not take into account that the spikes of a single neuron will evoke a voltage

deflection on many electrodes. Second, most algorithms do not scale up to hundreds or thousands
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of electrodes in vitro and in vivo, because their computation time would increase exponentially with

the number of electrodes (Rossant et al., 2016). A few algorithms have been designed to process

large-scale recordings (Marre et al., 2012; Pillow et al., 2013; Pachitariu et al., 2016; Leibig et al.,

2016; Hilgen et al., 2017; Chung et al., 2017; Jun et al., 2017), but they have not been tested on

real ‘ground truth’ data.

In ground truth data, one neuron is cherry picked from among all the neurons recorded using an

extracellular array using another technique, and simultaneousy recorded. Unfortunately, such data

are rare. Dual loose patch and extracellular recordings have been performed for culture of neurons

or in cortical slices (Anastassiou et al., 2015; Franke et al., 2015). However, in this condition, only

one or two neurons emit spikes, and this simplifies drastically the spike sorting problem. Ground

truth data recorded in vivo are scarce (Henze et al., 2000; Neto et al., 2016) and in many cases the

patch-recorded neuron is relatively far from the extracellular electrodes. As a result, most algorithms

have been tested in simulated cases where an artificial template is added at random times to an

actual recording. However, it is not clear if this simulated data reproduce the conditions of actual

recordings. In particular, waveforms triggered by a given neuron can vary in amplitude and shape,

and most simulations do not reproduce this feature of biological data. Also, spike trains of different

cells are usually correlated, and these correlations can make extracellular spikes that do overlap.

Here, we present a novel toolbox for spike sorting in vitro and in vivo, validated on ground truth

recordings. Our sorting algorithm is based on a combination of density-based clustering and tem-

plate matching. To validate our method, we performed experiments where a large-scale extracellular

recording was performed while one of the neurons was recorded with a patch electrode. We showed

that the performance of our algorithm was always close to an optimal classifier, both in vitro and in

vivo. We demonstrate that our sorting algorithm could process recordings from up to thousands of

electrodes with similar accuracy. To handle data from thousands of electrodes, we developed a tool

automating the step that is usually left to manual curation.

Our method is a fast and accurate solution for spike sorting for up to thousands of electrodes,

and we provide it as a freely available software that can be run on multiple platforms and several

computers in parallel. Our ground truth data are also publicly available and will be a useful resource

to benchmark future improvements in spike sorting methods.

Results

Spike sorting algorithm
We developed an algorithm (called SpyKING CIRCUS) with two main steps: a clustering followed by

a template matching step (see Materials and methods for details). First, spikes are detected as

threshold crossings (Figure 1A) and the algorithm isolated the extracellular waveforms for a number

of randomly chosen spike times. In the following text, we will refer to the extracellular waveforms

associated with a given spike time as snippets.

We divided the snippets into groups, depending on their physical positions: for every electrode

we grouped together all the spikes having their maximum peak on this electrode. Thanks to this divi-

sion, the ensemble of spikes was divided into as many groups as there were electrodes. The group

associated with electrode k contains all the snippets with a maximum peak on electrode k. It was

possible that, even among the spikes peaking on the same electrode, there could be several neu-

rons. We thus performed a clustering separately on each group, in order to separate the different

neurons present in a single group.

For each group, the snippets were first masked: we assumed that a single cell can only influence

the electrodes in its vicinity, and only kept the signal on electrodes close enough to the peak

(Figure 1B, see Materials and methods). Due to to this reduction, the memory needed for each clus-

tering did no scale with the total number of electrodes. The snippets were then projected into a

lower dimensional feature space using Principal Component Analysis (PCA) (usually five dimensions,

see Materials and methods), as is classically done in many spike sorting algorithms (Rossant et al.,

2016; Einevoll et al., 2012). Note that the simple division in groups before clustering allowed us to

parallelize the clustering step, making it scalable for even thousands of electrodes. ierreEven if a

spike is detected on several electrodes, it is only assigned to the electrode where the voltage peak
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Figure 1. Main steps of the spike sorting algorithm. (A) Five randomly chosen electrodes, each of them with its own detection threshold (dash dotted

line). Detected spikes, as threshold crossings, are indicated with red markers (B) Example of a spike in the raw data. Red: electrodes that can be

affected by the spike, that is the ones close enough to the electrode where the voltage peak is the highest; gray: other electrodes that should not be

affected. (C) Example of two clusters (red and blue)with associated templates. Green points show possible combinations of two overlapping spikes

Figure 1 continued on next page
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is the largest: if a spike has its largest peak on electrode 1, but is also detected on electrode 2, it

will only be assigned to electrode1 (see Figure 1—figure supplement 1).

For each group, we performed a density-based clustering inspired by (Rodriguez and Laio,

2014) (see Materials and methods). The idea of this algorithm is that the centroid of a cluster in the

feature space should have many neighbours, that is a high density of points in their neighborhood.

The centroid should also be the point where this density is a local maximum: there should not be a

point nearby with a higher density. To formalize this intuition, for each point we measured the aver-

age distance of the 100 closest points rho (intuitively, this is inversely proportional to the local den-

sity of points), and the distance d to the closest point of higher density (i.e. with a lower �).

Centroids should have a low � and a high d. We hypothesized that there was a maximum of ten clus-

ters in each group (i.e. at most ten different cells peaking on the same electrode) and took the ten

points with the largest d=� ratio as the centroids. Each remaining point was then assigned iteratively

to the nearest point with highest density, until they were all assigned to the centroids (see Materials

and methods for details - note that all the numbers mentioned here are parameters that are tunable

in our toolbox).

Thanks to this method we could find many clusters, corresponding to putative neurons. In many

spike-sorting methods, it is assumed that finding clusters is enough to solve the spike-sorting prob-

lem (Chung et al., 2017). However, this neglects the specific issue of overlapping spikes (see

Figure 1C). When two nearby cells spike synchronously, the extracellular waveforms evoked by each

cell will superimpose (Figure 1C, see also [Pillow et al., 2013]). This superimposition of two signals

coming from two different cells will distort the feature estimation. As a result, these spikes will

appear as points very far away from the cluster associated to each cell. An example of this phenom-

ena is illustrated in Figure 1C. Blue and red points correspond to the spikes associated to two differ-

ent cells. In green, we show the spikes of one cell when the waveform of another one was added at

different delays. For short delays, the presence of this additional waveform strongly distort the fea-

ture estimation. As a result, the corresponding point is far from the initial cluster, and will be missed

by the clustering. To overcome this issue, we performed a template matching as the next step of

our algorithm.

For this, we first extracted a template from each cluster. This template is a simplified description

of the cluster and is composed of two waveforms. The first one is the average extracellular waveform

evoked by the putative cell (Figure 1C, left and red waveforms). The second is the direction of larg-

est variance that is orthogonal to this average waveform (see Materials and methods). We assumed

that each waveform triggered by this cell is a linear combination of these two components. Thanks

to these two components, the waveform of the spikes attributed to one cell could vary both in

amplitude and in shape.

At the end of this step, we should have extracted an ensemble of templates (i.e. pairs of wave-

forms) that correspond to putative cells. Note that we only used the clusters to extract the tem-

plates. Our algorithm is thus tolerant to some errors in the clustering. For example, it can tolerate

errors in the delineation of the cluster border. The clustering task here is therefore less demanding

than in classical spike sorting algorithms where finding the correct cluster borders is essential to min-

imize the final error rate. By focusing on only getting the cluster centroids, we should thus have

made the clustering task easier, but all the the spikes corresponding to one neuron have yet to be

found. We therefore used a template matching algorithm to find all the instances where each cell

has emitted a spike.

Figure 1 continued

from the two cells for various time delays. (D) Graphical illustration of the template matching for in vitro data (see Materials and methods). Every line is

a electrode. Grey: real data. Red: sum of the templates added by the template matching algorithm; top to bottom: successive steps of the template

matching algorithm. E. Final result of the template matching. Same legend as (D, F) Examples of the fitted amplitudes for the first component of a

given template as a function of time. Each dot correspond to a spike time at which this particular template was fitted to the data. Dashed dotted lines

represent the amplitude thresholds (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.34518.002

The following figure supplement is available for figure 1:

Figure supplement 1. Schematic of the parallel clustering of the spikes, in a toy example with two electrodes.

DOI: https://doi.org/10.7554/eLife.34518.003
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In this step, we assumed that the templates of different cells spiking together sum linearly and

used a greedy iterative approach inspired by the projection pursuit algorithm to match the tem-

plates to the raw data (Figure 1D, see Materials and methods). Within a piece of raw data, we

looked for the template whose first component had the highest similarity to the raw signal (here sim-

ilarity is defined as the scalar product between the first component of the template and the raw

data) and matched its amplitude to the signal. If this amplitude falls between pre-determined thresh-

olds (see Materials and methods), we matched and subtracted the two components to the raw sig-

nal. These predetermined thresholds reflect the prior that the amplitude of the first component

should be around 1, which corresponds to the average waveform evoked by the cell. We then re-

iterated this matching process until no more spike could be matched (Figure 1D,E) (see Materials

and methods). We found many examples where allowing amplitude variation wasa desirable feature

(see Figure 1F).

After this template matching step, the algorithm outputs putative cells, described by the tem-

plates, and associated spike trains, that is spike times where the template was matched to the data.

Performance on ground truth data
To test our algorithm, we performed dual recordings (Figure 2A,B) using both a multielectrode

array to record many cells (see schematic on Figure 2A), and simultaneous loose patch to record the

spikes of one of the cell (Figure 2B). For this cell we know what should be the output of the spike

sorting. In vitro, we recorded 18 neurons from 14 retinas with a 252 electrode MEA where the spac-

ing between electrodes was 30 �m (see Materials and methods, (Spampinato et al., 2018)). We also

generated datasets where we removed the signals of some electrodes, such that the density of the

remaining electrodes was either 42 or 60 �m (by removing half or 3 quarters of the electrodes,

respectively).

We then ran the spike sorting algorithm only on the extracellular data, and estimated the error

rate (as the mean of false positives and false negatives, see Materials and methods) for the cell

recorded in loose patch, where we know where the spikes occurred. The performance of the algo-

rithm is limited not only by imperfections of the algorithm, but also by several factors related to the

ground truth data themselves. In particular, some of the cells recorded with loose patch can evoke

only a small spike on the extracellular electrode, for example if they are far from the nearest elec-

trode or if their soma is small (Buzsáki, 2004). If a spike of the patch-recorded cell triggers a large

voltage deflection, this cell should be easy to detect. However, if the triggered voltage deflection is

barely detectable, even the best sorting algorithm will not perform well. Looking at Figure 2C, for in

vitro data (see Materials and methods), we found that there was a correlation between the error rate

of our algorithm and the size of the extracellular waveform evoked by the spikes of the patch-

recorded cell: the higher the waveform, the lower the error rate.

We then asked if our algorithm is close to the ‘best’ possible performance, that is the only errors

are due to intrinsic limitations in the ground truth data (e.g. small waveform size).

There is no method to exactly estimate this best possible performance. However, a proxy can be

found by training a nonlinear classifier on the ground truth data (Harris et al., 2000; Rossant et al.,

2016). We trained a nonlinear classifier on the extracellular waveforms triggered by the spikes of the

recorded cell, similar to (Harris et al., 2000; Rossant et al., 2016) (referred to as the Best Ellipsoidal

Error Rate (BEER), see Materials and methods). This classifier ‘knows’ where the true spikes are and

simply quantifies how well they can be separated from the other spikes based on the extracellular

recording. Note that, strictly speaking, this BEER estimate is not a lower bound of the error rate. It

assumes that spikes can be all found inside a region of the feature space delineated by ellipsoidal

boundaries. As we have explained above, spikes that overlap with spikes from another cell will prob-

ably be missed and this ellipsoidal assumption is also likely to be wrong in case of bursting neurons

or electrode-tissue drifts. However, we used the BEER estimate because it has been used in several

papers describing spike sorting methods (Harris et al., 2000; Rossant et al., 2016) and has been

established as a commonly accepted benchmark. In addition, because we used rather stationary

recordings (few minutes long, see Materials and methods), we did not see strong electrode-tissue

drifts.

We estimated the error made by the classifier and found that the performance of our algorithm

almost always was in the same order of magnitude as the performance of this classifier, (Figure 2D,

left; r ¼ 0:89, p<10�5) over a broad range of spike sizes. For 37 neurons with large waveform sizes
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Figure 2. Performance of the algorithm on ground truth datasets. (A) Top: Schematic of the experimental protocol in vitro. A neuron close to the

multielectrode array (MEA) recording is recorded in loose patch. Bottom: Image of the patch electrode on top of a 252 electrodes MEA, recording a

ganglion cell. (B) Top, pink box: loose patch recording showing the spikes of the recorded neuron. Bottom, green box: Extra-cellular recordings next to

the loose patched soma. Each line is a different electrode (C) Error rate of the algorithm as function of the largest peak amplitude of the ground-truth

Figure 2 continued on next page
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(above) the average error of the classifier is 2.7% and the one for our algorithm is 4.8% (see

Figure 2E). For 22 neurons with lower spike size (below), the average error of the classifier is 11.1%

and the one for our algorithm is 15.2%. This suggests that our algorithm reached an almost optimal

performance on this in vitro data.

We also used similar ground truth datasets recorded in vivo in rat cortex using dense silicon

probes with either 32 or 128 recording sites (Neto et al., 2016). With the same approach as for in

vitro data, we also found that our algorithm achieved near optimal performance (Figure 2F, right;

r ¼ 0:92, p<10�5), although there were only two recordings where the spike size of the patch-

recorded neuron was large enough to be sorted with a good accuracy. For only two available neu-

rons with low optimal error rate, the average error of the classifier is 13.9% and the one for our algo-

rithm is 14.8%. For 24 neurons with lower spike size, the average error of the classifier is 64.0% and

the one for our algorithm is 67.8%. Together, these results show that our algorithm can reach a satis-

fying performance (i.e. comparing to the classifier error) over a broad range of spike sizes, for both

in vivo and in vitro recordings.

We also compared our performance to the Kilosort algorithm (Pachitariu et al., 2016) and found

similar performances (4.4% on average over all non-decimated neurons for SpyKING CIRCUS against

4.2% for Kilosort). Because Kilosort used a GPU, it could be run faster than our algorithm on a single

machine: on a 1 hr recording with 252 electrodes, Kilosort can achieve a four times speedup on a

standard desktop machine (see Materials and methods). But without using a GPU, Kilosort was only

marginally faster (1.5 speedup), and slower if we started using several cores of the machine. How-

ever, is it worth noticing that the speedup of Kilosort comes at the cost of an increased usage of

memory. Kilosort used 32 GB of RAM for a maximal number of 500 neurons, while our algorithm

had a much lower memory footprint, because of design choices. We have therefore found a trade

off where execution speed is slightly slower, but much less memory is used. Thanks to this, we could

run our algorithm to process recordings with thousands of electrodes, while Kilosort does not scale

up to this number. In the next section, we demonstrate that our algorithm still works accurately at

that scale.

Scaling up to thousands of electrodes
A crucial condition to process recordings performed with thousands of electrodes is that every step

of the algorithm should be run in parallel over different CPUs. The clustering step of our algorithm

was run in parallel on different subsets of snippets as explained above. The template matching step

could be run independently on different blocks of data, such that the computing time only scaled lin-

early with the data length. Each step of the spike sorting algorithm was therefore parallelized. The

runtime of the full algorithm decreased proportionally with the numbers of CPU cores available

(Figure 3A, grey area indicates where the software is ‘real-time’ or faster). As a result, the sorting

algorithm could process 1 hr of data recorded with 252 electrodes in 1 hr with 9 CPU cores (spread

over three computers) (Figure 3A,B). It also scaled up linearly with the number of electrodes

(Figure 3B), and with the number of templates (Figure 3C). It was therefore possible to run it on

long recordings with more than 4000 electrodes, and the runtime could be be divided by simply hav-

ing more CPUs available.

To test the accuracy of our algorithm on 4225 electrodes, we generated hybrid ground truth

datasets where artificial spikes were added to real recordings performed on mouse retina in vitro

(see Materials and methods). We ran the spike-sorting algorithm on different datasets, picked some

templates and used them to create new artificial templates that we added at random places to the

real recordings (see Materials and methods). This process, as shown in Figure 3D allowed us to gen-

erate ‘hybrid’ datasets were we know the activity of a number of artificially injected neurons. We

Figure 2 continued

neuron, recorded extracellularly in vitro. (D) Comparison between the error rates produced by the algorithm on different ground truth datasets and the

error rates of nonlinear classifiers (Best Ellipsoidal Error Rate) trained to detect the spikes for in vitro data (Spampinato et al., 2018). (E) Comparison of

average performance for all neurons detected by the Optimal Classifier with an error less than 10% (n = 37). F. Same as D. but for in vivo data

(Neto et al., 2016) (see Materials and methods).

DOI: https://doi.org/10.7554/eLife.34518.004
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Figure 3. Scaling to thousands of electrodes. (A) Execution time as function of the number of processors for a 90 min dataset in vitro with 252

electrodes, expressed as a real-time ratio, that is the number of hours necessary to process one hour of data. (B) Execution time as function of the

number of electrodes for a 30 min dataset recorded in vitro with 4225 electrodes. (C) Execution time as function of the number of templates for a 10-

min synthetic dataset with 30 electrodes. (D) Creation of ‘hybrid’ datasets: chosen templates are injected elsewhere in the data as new templates.

Dashed-dotted lines shows the detection threshold on the main electrode for a given template, and normalized amplitude is expressed relative to this

threshold (see Materials and methods). (E) Mean error rate as function of the firing rate of injected templates, in various datasets. Errors bars show

standard error over eight templates (F) Error rate as function of the normalized amplitude of injected templates, in various datasets. Errors bars show

standard error over nine different templates (G) Injected and recovered cross-correlation value between pairs of neurons for five templates injected at

10 Hz, with a normalized amplitude of 2 (see Materials and methods).
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then ran our sorting algorithm on these datasets and measured if the algorithm was able to find at

which times the artificial spikes were added. We counted a false-negative error when an artificial

spike was missed and a false-positive error when the algorithm detected a spike when there was not

any (see Materials and methods). Summing these two types of errors, the total error rate remained

below 5% for all the spikes whose size was significantly above spike detection threshold (normalized

amplitude corresponds to the spike size divided by the spike threshold). Error rates were similar for

recordings with 4255 electrodes in vitro, 128 electrodes in vivo or 252 electrodes in vitro. Perfor-

mance did not depend on the firing rate of the injected templates (Figure 3E) and only weakly on

the normalized amplitude of the templates (Figure 3F), as long as it was above the spike threshold.

The accuracy of the algorithm is therefore invariant to the size of the recordings.

A crucial issue when recording thousands of densely packed electrodes is that more and more

spikes overlap with each other. If an algorithm misses overlapping spikes, then the estimation of the

amplitude of correlations between cells will be biased. To test if our method was able to solve the

problem of overlapping spikes and thus estimate correlations properly, we generated hybrid data-

sets where we injected templates with a controlled amount of overlapping spikes (see Materials and

methods). We then ran the sorting algorithm and compared the injected spike trains and the spike

trains recovered by SpyKING CIRCUS. We then compared the correlation between both pairs. If

some overlapping spikes were missed by the algorithm, the correlation between the sorted spike

trains should be lower than the correlation between the injected spike trains. We found that our

method was always able to estimate the pairwise correlation between the spike trains with no under-

estimation (Figure 3G). Overlapping spikes were therefore correctly detected by our algorithm. The

ability of our template matching algorithm to resolve overlapping spikes thus allowed an unbiased

estimation of correlations between spike trains, even for thousands of electrodes.

These different tests, described above, show that SpyKING CIRCUS reached a similar perfor-

mance for 4225 electrodes than for hundreds electrodes, where our ground truth recordings showed

that performance was near optimal. Our algorithm is therefore also able to sort accurately record-

ings from thousands of electrodes.

Automated merging
As in most spike-sorting algorithms, our algorithm may split one cell into several units. After running

the entire algorithm, it is therefore necessary to merge together the units corresponding to the

same cell. However, for hundreds or thousands of electrodes, going through all the pairs of units

and merging them by hand would take a substantial amount of time. To overcome this problem, we

designed a tool to merge automatically many units at once so that the time spent on this task does

not scale with the number of electrodes and this allows us to automate this final step.

Units that likely belong to the same cell (and thus should be merged) have templates that look

alike and in addition, the combined cross-correlogram between the two cell’s spike trains shows a

clear dip near 0 ms, indicating that the merged spike trains do not show any refractory period viola-

tion (Figure 4A, blue example). In order to automate this merging process, we formalized this intui-

tion by estimating for each pair of units two factors that reflect if they correspond to the same cell

or not. For each pair of templates, we estimated first the similarity between templates and second

the dip in the center of the cross-correlogram. This dip is measured as the difference between the

geometrical mean of the firing rate f (i.e. the baseline of the cross-correlogram) and the value of the

cross-correlogram at delay 0 ms, CCh i (see Materials and methods and right insets in Figure 4A).

We plotted for each pair with high similarity the dip estimation against the geometrical mean of

their firing rates. If there is a strong dip in the cross-correlogram (quantified by f� CCh i), the dip

quantification and the geometrical mean, f, should be almost equal, and the corresponding pair

should thus be close to the diagonal in the plot.

In one example, where we artificially split synthetic spike trains (Figure 4A; see Materials and

methods), we could clearly isolate a cluster of pairs lying near this diagonal, corresponding to the

pairs that needed to be merged (Figure 4A right panels). We have designed a GUI such the user

can automatically select this cluster and merge all the pairs at once. Thanks to this, with a single

manipulation by the user, all the pairs are merged.

We then tested this method on our in vitro ground truth data. In these recordings, the cell

recorded with loose patch might be split by the algorithm between different spike trains. We can

determine the units that correspond to the patch-recorded cell. For one particular neuron taken
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from our database, we can visualize all the units that need to be merged together (blue points in

Figure 4B), and that should not be merged with units corresponding to other cells (green pairs in

Figure 4B). For all the other cells, we do not have access to a ground truth, and thus cannot decide

if the pairs should be merged or not (orange pairs in Figure 4B).

To automate the merging process entirely, we defined two simple rules to merge two units: first,

their similarity should be above a threshold (similarity threshold, 0.8 in our experiments). Second,

the dip estimation for this pair should be close to the geometrical mean of firing rates, that is their

difference should be below a threshold (dip threshold). In practice, the corresponding point in

Figure 4B should be above a line parallel to the diagonal. We used these rules to perform a fully

automatic merging of all units. We then estimated the error rate for the ground truth cell, in the

same way as the previous section. We also estimated the lowest error rate possible error rate by

merging the units using the ground truth data for guidance (Best Merges, see aterials and m). We

found that the error rate obtained with our automated method was close to this best error rate

A

B
[Hz2]

[H
z2
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]
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z2
]

Best
 m
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Auto
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atic
 m

erg
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]
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[%
]

pair not to merge

pair to merge

Figure 4. Automated merging. (A) Dip estimation (y-axis) compared to the geometrical mean of the firing rate (x-axis) for all pairs of units and artificially

generated and split spike trains (see Materials and methods). Blue: pairs of templates originating from thesame neuron that have to be merged.

Orange: pairs of templates corresponding to different cells. Panels on the right: for two chosen pairs, one that needs to be merged (in blue, top panel)

and one should not be merged (orange, bottom panel) the full cross-correlogram and the geometrical mean of the firing rate (dashed line). The

average correlation is estimated in the temporal window defined by the gray area. (B) Same as A, for a ground truth dataset. Blue points: points that

need to be merged. Green points: pairs that should not be merged. Orange points: pairs where our ground truth data does not allow us telling if the

pair should be merged or not. The gray area corresponds to the region where pairs are merged by the algorithm. Inset: zoom on one region of the

graph. (C) Average error rate in the case where the decision of merging units was guided by the ground truth data (left) against the automated strategy

designed here (right).
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(Figure 4C). We have therefore automated the process of merging spike trains while keeping a low

error rate. The performance did not vary much with the values of the two parameters (similarity

threshold and dip threshold), and we used the same parameters for all the different datasets. This

shows that the sorting can be fully automated while limiting the error rate to a small value. We thus

have a solution to fully automate the sorting, including all the decisions that need to be taken during

the manual curation step. However, because we used cross-correlograms in order to help automate

the merging process, it is worth noticing that one can no longer use cross-correlograms as a valida-

tion metric.

Discussion
We have shown that our method, based on density-based clustering and template matching, allows

sorting spikes from large-scale extracellular recordings both in vitro and in vivo. We tested the per-

formance of our algorithm on ‘ground truth’ datasets, where one neuron is recorded both with

extracellular recordings and with a patch electrode. We showed that our performance was close to

an optimal nonlinear classifier, trained using the true spike trains. Our algorithm has also been tested

on purely synthetic datasets (Hagen et al., 2015) and similar results were obtained (data not shown).

Note that tests were performed by different groups on our algorithm and show its high performance

on various datasets (see http://spikesortingtest.com/ and http://phy.cortexlab.net/data/sortingCom-

parison/). Our algorithm is entirely parallelized and could therefore handle long datasets recorded

with thousands of electrodes. Our code has already been used by other groups (Denman et al.,

2017; Mena et al., 2017; Chung et al., 2017; Wilson et al., 2017) and is available as a complete

multi-platform, open source software for download (http://spyking-circus.rtfd.org) with a complete

documentation. Note that all the parameters mentioned in the description of the algorithm can be

modified easily to work with different kinds of data. We have made all the ground truth data avail-

able for download (see Source Code section in Materials and methods), so that improvements in our

algorithm as well as alternative solutions could be benchmarked easily in the future.

Classical approaches to the spike sorting problem involve extracting some features from each

detected spike (Hubel, 1957; Meister et al., 1994; Lewicki, 1994; Einevoll et al., 2012;

Quiroga et al., 2004; Hill et al., 2011; Pouzat et al., 2002; Litke et al., 2004; Chung et al., 2017)

and clustering the spikes in the feature space. In this approach, the spike sorting problem is reduced

to a clustering problem and this introduces several major problems. First, to assign the spikes to the

correct cell, the different cellsmust be separated in the feature space. Finding the exact borders of

each cell in the feature space is a hard task that cannot be easily automated (but see [Chung et al.,

2017]). Second, running a clustering algorithm on data with thousands of electrodes is very challeng-

ing. Finally, overlapping spikes will appear as strong deviations in the feature space and will there-

fore be missed in this approach. These three issues preclude the use of this approach for large-scale

recordings with dense arrays of electrodes. In comparison, here we have parallelized the clustering

step efficiently, using a template matching approach, so that we only needed to infer the centroid of

each cluster and not their precise borders. The template matching approach also allowed us to

deconvolve overlapping spikes in a fast, efficient and automated manner. Some template matching

approaches have been previously tested, mostly on in vitro data (Marre et al., 2012; Pillow et al.,

2013; Franke et al., 2015b) but were not validated on ground truth datasets like the ones we

acquired here. Also, they only had one waveform for each template, which did not allow any varia-

tion in the shape of the spike, while we have designed our template matching method to take into

account not only variation in the amplitude of the spike waveform, but also in shape. Finally, several

solutions did not scale up to thousands of electrodes. All GPU-based algorithms (Pachitariu et al.,

2016; Lee et al., 2017; Jun et al., 2017) only scale for a few hundreds channels, and face severe

memory issues for larger probes.

Finally, a common issue when sorting spikes from hundreds or thousands of electrodes is the

time spent on manual curation of the data. Here, we have designed a tool to automate this step by

merging units corresponding to the same cell all at once, based onthe cross-correlogram between

cells and the similarity between their templates. Having an objective criterion for merging spike

trains not only speeds up the manual curation time, it also makes the results less sensitive to human

errors and variability in decisions. In some cases, it might be necessary to take into account
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additional variables that are specific to the experiment, but even then our tool will still significantly

reduce the time spent on manual curation.

Our method is entirely parallel and can therefore be run in ‘real time’ (i.e. 1 hr of recording proc-

essed in 1 hr) with enough computer power. This paves the way towards online spike sorting for

large-scale recordings. Several applications, likebrain machine interfaces, or closed-loop experiments

(Franke et al., 2012; Hamilton et al., 2015; Benda et al., 2007), will require an accurate online

spike sorting. This will require adapting our method to process data ‘on the fly’, processing new

data blocks when they become available and adapting the shape of the templates over time.

Materials and methods

Experimental recordings
In vitro recordings with 252 or 4225 electrodes
Retinal tissue was obtained from adult (8 weeks old) male Long-Evans rat (Rattus norvegicus) or

mouse (mus musculus, 4–9 weeks old) and continuously perfused with Ames Solution (Sigma-Aldrich)

and maintained at 32 C. Ganglion cell spikes were recorded extracellularly from a multielectrode

array with 252 electrodes spaced 30 or 60 �m apart (Multi-Channel Systems) or with 4225 electrodes

arranged in a 2D grid and spacedby 16 �m (Wilson et al., 2017),4] at a sampling rate of 20 kHz.

Experiments were performed in accordance with institutional animal care standards.

For the ground truth recordings, electrophysiological recordings were obtained from ex vivo iso-

lated retinae of rd1 mice (4/5 weeks old). The retinal tissue was placed in AMES medium (Sigma-

Aldrich, St Louis, MO; A1420) bubbled with 95% O2 and 5% CO2 at room temperature, on a MEA

(10 �m electrodes spaced by 30 �m; Multichannel Systems, Reutlingen, Germany) with ganglion cells

layer facing the electrodes. Borosilicate glass electrodes (BF100-50, Sutter instruments) were filled

with AMES with a final impedance of 6–9 M
. Cells were imaged with a customized inverted DIC

microscope (Olympus BX 71) mounted with a high sensitivity CCD Camera (Hamamatsu ORCA

�03G) and recorded with an Axon Multiclamp 700B patch clamp amplifier set in current zero mode.

We used rd1 mice because going through the photoreceptor layer with the patch pipette was easier

than for a wild-type mouse.

For the data shown in Figures 1 and 3, we used a recording of 130 min. For the data shown in

Figure 2A, 16 neurones were recorded over 14 intact retinas. Recording durations all lasted 5 min.

The thresholds for the detection of juxta-cellular spikes were manually adjusted for all the

recordings (Spampinato et al., 2018)

In vivo recordings with 128 electrodes
We use the freely available datasets provided by (Neto et al., 2016). Those are 32 or 128 dense sili-

con probes recordings (20 �m spacing) at 30 kHz performed in rat visual cortex, combined with

juxta-cellular recordings. The dataset gave us a total of 13 neurons for Figure 2.C with recordings

between 4 and 10 min each. Similarly to the in vitro case, the detection thresholds for the juxta-cellu-

lar spikes were manually adjusted based on the data provided by Neto et al. (2016) and on spike-

triggered waveforms. For the validation with ‘hybrid’ dataset, shown in Figure 3, we used the lon-

gest dataset recorded with 128 electrodes.

Details of the algorithm
In the following, we consider that we have Nelec electrodes, acquired at a sampling rate frate. Every

electrode k is located at a physical position pk ¼ xk; ykð Þ in a 2D space (extension to 3D probes would

be straightforward). The aims of our algorithm is to decompose the signal as a linear sum of spatio-

temporal kernels or ‘templates’ (see equation 1).

s tð Þ ¼
ij

P

aijwj t� tið Þþ bijvj t� tið Þþe tð Þ (1)

where s tð Þ is the signal recorded over Nelec electrodes and over multiple time points. wj t� tið Þ and
vj t� tið Þ are the two components of the template associated to each cell. They represent the wave-

form triggered on the electrodes by cell j. Times tif g are the putative spike times over all the electro-

des. aij and bij are the amplitude factors for spike time ti for the template j, and e tð Þ is the
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background noise. reNote that at a given spike time ti, it is likely that only a couple of cells fire a

spike. Only these cells will therefore have aij and bij different from zero. For all the other ones, these

coefficients are zero simply because the cell does not fire at this time.

The algorithm can be divided into two main steps, described below. After a preprocessing stage,

we first run a clustering algorithm to extract a dictionary of ‘templates’ from the recording. Second,

we use these templates to decompose the signal with a template-matching algorithm. We assume

that a spike will only influence the extracellular signal over a time window of size Nt (typically 2 ms

for in vivo and 5 ms for in vitro data) and only electrodes whose distance to the soma is below rmax

(typically for in vivo and for in vitro data). For every electrode k centered on pk, we define Gk as the

ensemble of nearby electrodes l such that jpk � plj2 � rmax. The key parameters of the algorithmare

summarized in Table 1.

Pre-processing
Filtering
In a preprocessing stage, all the signals were individually high-pass filtered with a Butterworth filter

of order three and a cutoff frequency of to remove any low-frequency components of the signals.We

then subtracted, for every electrode k, the median such that.

Spike detection
Once signals have been filtered, we computed a spike threshold �k for every electrode k:

�k ¼ lMAD sk tð Þð Þ, where MAD is the Median Absolute Deviation, and l is a free parameter. For all

the datasets shown in this paper, we set l ¼ 6. We detected the putative spike times ti as times

where there was at least one electrode k where sk tið Þ was below the threshold ��k and a local mini-

mum of the voltage vectsk tð Þ.

Whitening
To remove spurious spatial correlations between nearby recordings electrodes, we performed a spa-

tial whitening on the data. To do so, we searched for a maximum of 20 s of recordings where there

were no spikes (i.e no threshold crossings). We then computed the Covariance Matrix of the noise

Cspatial and estimated its eigenvalues dmf g and associated eigenvector matrix V. From the diagonal

matrix D ¼ diag 1
ffiffiffiffiffiffi

dþ�
p

� �

, where � ¼ 10
�18 is a regularization factor to ensure stability, we computed

the whitening matrix F ¼ VDVT. In the following, each time blocks of data are loaded, they are

multiplied by F. After whitening,we recomputed the spike detection threshold �k of each electrode

k in the whitened space.

Basis estimation (PCA)
Our first goal was to reduce the dimensionality of the temporal waveforms. We collected up to Np

spikes on each electrode. We thus obtained a maximum of Np � Nelec spikes and took the waveform

only on the peaking electrode for each of them. This is a collection of a large number of temporal

waveforms and we then aimed at finding the best basis to project them. In order to compensate for

sampling rate artifacts, we first upsampled all the collected single-electrode waveforms by bicubic

spline interpolation to five times the sampling rate frate, aligned on their local minima, and then re-

sampled at frate. We then performed a Principal Component Analysis (PCA) on these centered and

aligned waveforms and kept only the first NPCA principal components. In all the calculations we used

default values of Np ¼ 10000 and NPCA ¼ 5. These principal components were used during the clus-

tering step.

Clustering
The goal of the clustering step is to construct a dictionary of templates. As opposed to former clus-

tering approaches of spike sorting (Quiroga et al., 2004; Harris et al., 2000; Kadir et al., 2014),

because this clustering step is followed by a template matching, we do not need to perform the

clustering on all the spikes.
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Table 1. Table of all the variables and notations found in the algorithm.

Variable Explanation Default value

Generic notations

Nelec Number of electrodes

pk Physical position of electrode k [�m]

Gk Ensemble of nearby electrodes for electrode k [�m]

Nk
neigh

Cardinal of Gk

�k Spike detection threshold for electrode k [�V]

s tð Þ Raw data [�V]

wj tð Þ First component of the template for neuron j [�V]

vj tð Þ Second component of the template for neuron j [�V]

frate Sampling frequency of the signal [Hz]

Preprocessing of the data

fcut Cutoff frequency for butterworth filtering 100 Hz

Nt Temporal width for the templates 5 ms

rmax Spatial radius for the templates 250 �m

l Gain for threshold detection for channel k (�k ) 6

Np Number of waveforms collected per electrode 10000

NPCA Number PCA features kept to describe a waveform 5

Clustering and template estimation

xk
1;::l

l spikes peaking on electrode k and projected after PCA

�kl Density around xk
l

dkl Minimal distance from xk
l to spikes with higher densities

Nspikes Number of spikes collected per electrode for clustering 10000

NPCA2
Number of PCA features kept to describe a spike 5

S Number of neighbors for density estimation 100

Nclusters
max

Maximal number of clusters per electrode 10

z Normalized distance between pairs of clusters

ssimilar Threshold for merging clusters on the same electrode 3

am Centroid of the cluster m

gm Dispersion around the centroid am

h Minimal size of a cluster (in percent of Nspikes) 0.005

amin; amax½ � Amplitudes allowed during fitting for a given template

Dictionary cleaning

CCmax m; nð Þ Max over time for the Cross-correlation between wm and wn

ccsimilar Threshold above which templates are considered as similar 0.975

Template matching

aij Product between s tð Þ and wj (normalized) at time ti

bij Same as aij but for the second component vj

nfailures Number of fitting attempts for a given spike time 3

Automated merging

ccmerge Similarity threshold to consider neurons as a putative pair 0.8

rm;n tð Þ Cross correlogram between spikes of unit m and n

f m; nð Þ Geometrical mean of the firing rates for units m and n [Hz2]

fmerge Maximal value for the dip in the cross correlogram at time 0 0.1 [Hz2]

DOI: https://doi.org/10.7554/eLife.34518.007

Yger et al. eLife 2018;7:e34518. DOI: https://doi.org/10.7554/eLife.34518 14 of 23

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.34518.007
https://doi.org/10.7554/eLife.34518


Masking
We first randomly collected a subset of many spikes ti to perform the clustering. To minimize redun-

dancy between collected spikes, we prevented the algorithm to have two spikes peaking on the

same electrode separated by less than Nt=2.

Pre-clustering of the spikes
Trying to cluster all the spikes from all the electrodes at once is very challenging, because they are

numerous and live in a high dimensional space. We used a divide and conquer approach to parallel-

ize this problem (Marre et al., 2012; Swindale and Spacek, 2014). Each time a spike was detected

at time ti, we searched for the electrode k where the voltage s tið Þ has the lowest value, that is such

that. For every electrode k we collected a maximum of Nspikes spikes (set to 10,000 by default) peak-

ing on this electrode. Each of these spikes is represented by a spatio-temporal waveform of size

Nt � Nk
neigh, where Nk

neigh is the number of electrodes in the vicinity of electrode k, that is the number

of elements in Gk. Note that, in the following we did not assume that spikes are only detected on a

single electrode. We used the information available on all the neighboring electrodes.

We projected each temporal waveform on the PCA basis, estimated earlier, to reduce the

dimensionality to NPCA � Nk
neigh. During this projection, the same up-sampling technique described in

the Pre-processing was used. Each spike was then represented in a space with NPCA � N i
neigh dimen-

sions. To reduce dimensionality even further before the clustering stage, for every electrode k we

performed a PCA on the collected spikes and kept only the first NPCA2
principal components (in all

the paper, NPCA2
¼ 5). Therefore, we performed a clustering in parallel for every electrode on at max

Nspikes described in a space of NPCA2
-dimension.

Clustering by search of local density peaks
To perform the clustering, we used a modified version of the algorithm published in (Rodriguez and

Laio, 2014). We note the spikes 1; ::; lf g associated with electrode k (and projected on the second

PCA basis) as vectors xk
1;::;lf g in a NPCA2

dimensional space. For each of these vectors, we estimated

�kl as the mean distance to the S nearest neighbors of xk
l . Note that 1=�kl can be considered as a

proxy for the density of points. S is chosen such that S ¼ �Nspikes, with � ¼ 0:01. In our settings, since

Nspikes ¼ 10000 then S ¼ 100. This density measure turned out to be more robust than the one given

in the original paper and rather insensitive to changes in �. To avoid a potentially inaccurate estima-

tion of the �kl values, we collected iteratively additional spikes to refine this estimate. Keeping in

memory the spikes xk
l , we searched again in the data Nk

spikes different spikes andused them only to

refine the estimation of �kl of our selected points xk
l . This refinement gave more robust results for

the clustering and we performed 3 rounds of this new search. Then, for every point xk
l , we computed

dkl as the minimal distance to any other point xk
m;m 6¼l such that �km � �kl . This corresponds to the dis-

tance to the nearest point with a higher density. The intuition of the algorithm is that the centroids

should be points with a high density (i.e. low �) and far apart from each others (high d).

Centroids and cluster definition
To define the centroids we ranked the points as a function of the ratios d=� and we detected the

best Nmax
clusters points as putative centroids. By default Nmax

a thrmclusters ¼ 10. Intuitively, this parameter

corresponds to the maximal number of cells that will peak on any given electrode. It can be seen as

an upper bound of the ratio between the number of cells and the number of electrodes. ructure

recorded, the density of cells and the density of the electrodes, this number can be varied. Clusters

were formed by assigning each point to one of the selected centroids following an iterative rule,

going from the points of lowest � to the points of highest �: each point was assigned to the same

cluster as the closest point with a lower � (Rodriguez and Laio, 2014). Thanks to this ordering, we

started by assigning the points of highest density to the nearest centroid, and then assigned the

next points to the nearest point with higher density, which has been already assigned to a cluster.

We created Nmax
clusters clusters. Once this is done, we iteratively merged pairs of clusters that were too

similar to each others.
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Merging similar clusters
We computed a normalized distance z between each pair of clusters. The center am of each cluster

was defined as the median of all the points composing this cluster. For each pair of cluster m; nð Þ, we
then projected all the points foreach of them onto the axis joining the two centroids am � an. We

defined the dispersions around the centroids am as gm ¼ MAD xm � am � anð Þð Þ, where � is the scalar

product of two vectors. The normalized distance is:

z m;nð Þ ¼ kam�ank
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g2
mþg2

n

p (2)

We then iteratively merged all clusters m;nð Þ such that z m;nð Þ � ssimilar. At the end of the cluster-

ing, every cluster with less than hN i
spikes was discarded. In all the manuscript we used ssimilar ¼ 3,

Nmax
clusters ¼ 10, and h¼ 0:005. We chose Nmax

clusters ¼ 10 because we never see more than 10 neurons peak-

ing on the same electrode, and this approximately corresponds to the ratio between density of

observable cells and density of electrodes.

Template estimation
At the end of the clustering phase, pooling the clusters obtained from every electrode, we obtained

a list of clusters. Each cluster m is defined by a list of spike times tm
1;::;lf g. During this phase we limited

the number of spike times per template to a maximal value of 500 to avoid memory saturation,

because we had to keep in memory these 500 snippets.

We computed the first component from the raw data as the point-wise median of all the wave-

forms belonging to the cluster: wm tð Þ ¼ medls tml þ t
� �

. Note that wm is only different from zero on

the electrodes close to its peak (see Figure 1C). This information is used internally by the algorithm

to save templates as sparse structures. We set to 0 all the electrodes k where kwk
m tð Þk<�k, where �k

is the detection threshold on electrode k. This allowed us to remove electrodes without discriminant

information and to increase the sparsity of the templates.

We then computed the projection of all snippets in the space orthogonal to the first component:

8l;ql ¼ s tml
� �

� blwm, with bl ¼
s tm

lð Þ:wm

kwmk . The q are the projections of the waveforms in a space orthog-

onal to wm. We estimated the second component of the template vm tð Þ as the direction of largest

variance in this orthogonal space (i.e. the first principal component of ql).

From the first components wm, we also computed its minimal and maximal amplitudes amin =max
m . If

wm is the normalized template, such that wm ¼ wm=kwmk, we computed

amin
h ¼medls tml

� �

:ŵm� 5MADl s tml
� �

:ŵm

� �

(3)

amax
h ¼medls tml

� �

:ŵmþ 5MADl s tml
� �

:ŵm

� �

Those boundaries are used during the template matching step (see below). The factor five allows

most of the points to have their amplitude between the two limits.

Removing redundant templates
To remove redundant templates that may be present in the dictionary because of the divide and

conquer approach (for example a neuron between two electrodes would give rise to two very similar

templates on two electrodes), we computed for all pairs of templates in the dictionary

CCmax m; nð Þ ¼ maxt CC wm;wnð Þ, where CC stands for normalized cross-correlation. If

CCmax m; nð Þ � ccsimilar, we considered these templates to be equivalent and they were merged. In all

the following, we used ccsimilar ¼ 0:975. Note that we computed the cross-correlations between nor-

malized templates such that two templates that have the same shape but different amplitudes are

merged. Similarly, we searched if any template wp could be explained as a linear combination of two

templates in the dictionary. If we could find wm and wn such that CC wp;wm þwn

� �

� ccsimilar, wp was

considered to be a mixture of two cells and was removed from the dictionary.
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Template matching
At the end of this ‘template-finding’ phase we have found a dictionary of templates (w, v). We now

need to reconstruct the signal s by finding the amplitudes coefficients aij and bij described in Equa-

tion 1. Because at a given spike time ti it is likely that only a couple of cells will fire a spike, most aij
and bij in this equation are equal to 0. For the other ones most aij values are around one because a

spike usually appears on electrodes with an amplitude close to the average first component w. In

this template matching step, all the other parameters have been determined by template extraction

and spike detection, so the purpose is only to find the values of these amplitudes. Note that the

spike times ti were detected using the method described above and include all the threshold cross-

ing voltages that are local minima. Each true spike can be detected over several electrodes at

slightly different times such that there are many more ti than actual spikes. With this approach, we

found that there was no need to shift templates before matching them to the raw data.

To match the templates to the data we used an iterative greedy approach to estimate the aij for

each ti, which bears some similarity to the matching pursuit algorithm (Mallat and Zhifeng Zhang,

1993). The fitting was performed in blocks of putative spike times,{ti}, that were successively loaded

in memory. The size of one block was typically one second, which includes a lot of spike times, and

is much larger than a single snippet. The snippets were thus not fitted independently from each

other. The successive blocks were always overlapping by two times the size of a snippet and we dis-

carded the results obtained on the borders to avoid any error of the template matching that would

be due to a spike split between two blocks. Such an approach allowed us to easily split the workload

linearly among several processors.

Each block of raw data s was loaded and template-matching was performed according to the fol-

lowing steps:

1. Estimate the normalized scalar products s tð Þ �wj t � tið Þ for each template j and putative spike
time ti, for all the i and j in the block of raw data.

2. Choose the i; jð Þ pair with the highest scalar product, excluding the pairs i; jð Þ which have
already been tried and the ti’s already explored (see below).

3. Set aij equal to the amplitude value that best fits the raw data: aij ¼ s tð Þ:wj t�tið Þ
kwj t�tið Þk .

4. Check if the aij amplitude value is between amin
j and amax

j .

5. If yes, accept this value, subtract the scaled template from the raw data:
s tð Þ  s tð Þ � aijwj t � tið Þ. Then set bij equal to the amplitude value that best fits the raw data

with vj, and subtractit too. Then return to step one to re-estimate the scalar products on the
residual.

6. Otherwise increase by one ni, which counts the number of times any template has been
rejected for spike time ti.
1. If ni reaches nfailures ¼ 3, label this ti as ‘explored’. If all ti have been explored, quit the

loop.
2. Otherwise return to step one and iterate.

The parameters of the algorithm were the amplitude thresholds amin
j and amax

j , computed as

described in the section Template Estimation.

Automated merging
For the template similarity, we computed, for every pair of templates m and n, CCmax m; nð Þ ¼
maxt CC wm;wnð Þ (where CC is the normalized cross-correlation between the two templates - see

above forthe definition). To quantify the dip in the cross-correlogram, we binned the spike trains

obtained for templates m and n with 2 ms bin size, and estimated the cross correlogram rm;n tð Þ
between unit m and unit n, defined as sm tð Þsn t þ tð Þh it. sm tð Þ is the number of spikes of unit m in

time bin t. We then estimated the dip as the difference between the value of the cross-correlogram

at time 0 ms and the geometrical mean of the firing rates, that is f m; nð Þ ¼ sm tð Þh it sn tð Þh it. This geo-
metrical mean would be the value of the cross-correlogram if the two spike trains were independent.

The dip is therefore estimated as

sm tð Þh it sn tð Þh it� sm tð Þsn tþ tð Þh it (4)

We plotted the values of the estimated dip, the template similarity and the geometrical mean of
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the firing rates for each pair in a Graphical User Interface (GUI). The user can quickly define at once

a whole set of pairs that need to be merged. After merging a subset of the pairs, quantities CCmax

and f are re-computed, until the user decides to stop merging (see Figure 4).

If the two spike trains from templates m and n correspond to the same cell, there should be no

refractory spike trains. The cross-correlogram value should be close to 0 and the dip estimation

should therefore be close to the geometrical mean of the firing rates. To formalize this intuition and

fully automate the merging, we decided to merge all the pairs m; nð Þ such that:

CCmax m;nð Þ>ccmergeand sm tð Þsn tþ tð Þh it�fmerge (5)

with ccmerge ¼ 0:8 and fmerge ¼ 0:1. This corresponds to merging all the highly similar pairs above a

line parallel to the diagonal (see Figure 4A,B, gray area). With these two parameters we could auto-

mate the merging process.

Simulated ground truth tests
In order to assess the performance of the algorithm, we injected new templates in real datasets (see

Figure 3D). To do so, we ran the algorithm on a given dataset and obtain a list of putative templates

wj2 1;...Nf g. Then, we randomly selected some of those templates wj and shuffled the list of their elec-

trodes before injecting them elsewhere in the datasets at controlled firing rates (Harris et al., 2000;

Rossant et al., 2016; Kadir et al., 2014; Segev et al., 2004; Marre et al., 2012; Chung et al.,

2017). This enabled us to properly quantify the performance of the algorithm. In order not to bias

the clustering, when a template wj was selected and shuffled as a new template �wk centered on a

newelectrode k, we ensured that the injected template was not too similar to one that would already

be in the data: 8h 2 1; . . .Nf g;maxt CC wh; �wkð Þ � 0:8. Before being injected, �wk was normalized such

that mint �wk ¼ ak�k. ak is the relative amplitude, expressed as function of �k, the detection threshold

on the electrode where the template is peaking. If ak � 1 the template is smaller than spike thresh-

old, and its spikes should not be detected; if ak � 1 the spikes should be detected. In Figure 3G, we

injected the artificial templates into the data such that they were all firing at 10 Hz, but with a con-

trolled correlation coefficient c that could be varied (using a Multiple Interaction Process

[Kuhn et al., 2003]). This parameter c allowed us to quantify the percentage of pairwise correlations

recovered by the algorithm for overlapping spatio-temporal templates.

Performance estimation
Estimation of false positives and false negatives
To quantify the performance of the algorithm we matched the spikes recovered by the algorithm to

the real ground-truth spikes (either synthetic or obtained with juxta-cellular recordings). A spike was

considered to be a match if it had a corresponding spike in the ground truth at less than 2 ms.

Spikes in the ground-truth datasets that had no matches in the spike sorting results in a 2 ms window

were labeled as ‘false negatives’, while those that are not present while the algorithm detected a

spike were ‘false positives’. The false-negative rate was defined as the number of false negatives

divided by the number of spikes in the ground truth recording. The false-positive rate was defined

as the number of false positives divided by the number of spikes in the spike train extracted by the

algorithm. In the paper, the error is defined as mean of the false negative and the false positive rates

(see Figures 2 and 3). Note that to take into account the fact that a ground-truth neuron could be

split into several templates at the end of the algorithm, we always compared the ground-truth cells

with the combination of templates that minimized the error.

Theoretical estimate
To quantify the performance of the software with real ground-truth recordings (see Figure 2) we

computed the Best Ellipsoidal Error Rate (BEER), as described in (Harris et al., 2000). This BEER

estimate gave an upper bound on the performance of any clustering-based spike sorting method

using elliptical cluster boundaries. After thresholding and feature extraction, snippets were labeled

according to whether or not they contained a true spike. Half of this labeled data set was then used

to train a perceptron whose decision rule is a linear combination of all pairwise products of the fea-

tures of each snippet. If xi is the i-th snippet, projected in the feature space, then the optimized

function f xð Þ is:
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f xð Þ ¼ xTAxþ bTxþ c (6)

We trained this function f by varying A, b and c with the objective that f xð Þ should be +1 for the

ground truth spikes, and �1 otherwise. These parameters were optimized by a stochastic gradient

descent with a regularization constraint. The resulting classifier was then used to predict the occur-

rence of spikes in the snippets in the remaining half of the labeled data. Only the snippets where

f xð Þ>0 were predicted as true spikes. This prediction provided an estimate of the false-negative and

false-positive rates for the BEER estimate. The mean between the two was considered to be the

BEER error rate, or ‘Optimal Classifier Error’.

Decimation of the electrodes
In order to increase the number of data points for the comparison between our sorting algorithm

and the nonlinear classifiers defined by the BEER metric (see Figure 2), we ran the analysis several

times on the same neurons, but removing some electrodes, to create recordings at a lower elec-

trode density. We divided by a factor 2 or 4 the number of electrodes in the 252 in vitro Multielec-

trode Array or the 128 in vivo silicon probe.

Hardware specifications
The comparison between Kilosort (Pachitariu et al., 2016) and SpyKING CIRCUS was performed on

a desktop machine with 32 Gb RAM and eight cores (proc Intel Xeon(R) CPU E5-1630 v3 @ 3.70

GHz). The GPU used was a NVIDIA Quadro K4200 with 4 Gb of dedicated memory.

Implementation and source code
SpyKING CIRCUS is a pure Python package, based on the python wrapper for the Message Passing

Interface (MPI) library (Dalcin et al., 2011) to allow parallelization over distributed computers, and is

available with its full documentation at http://spyking-circus.rtfd.org. Results can easily be exported

to the kwik or phy format (Rossant and Harris, 2013). All the datasets used in this manuscript are

available on-line, for testing and comparison with other algorithms (Spampinato et al., 2018 ).
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