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Abstract. The notion of disease-associated single-nucleotide polymorphisms (da-SNP), as determined in genome-wide 
association studies (GWAS), is relevant for many complex pathologies, including cancers. It appeared that da-SNPs are 
not only markers of causal genetic variation but may contribute to the disease development through an influence on gene 
expression levels. We argue that understanding this possible functional role of da-SNPs requires to consider their 
embedding in the tridimensional (3D) multi-scale organization of the human genome. We then focus on the potential 
impact of da-SNPs on chromatin loops and recently observed topologically associating domains (TADs). We show that 
for some diseases and cancer types, da-SNPs are over-represented in the borders of these topological domains, in a way 
that cannot be explained by an increased exon density. This analysis of the distribution of da-SNPs within the 3D genome 
organization suggests candidate loci for further experimental investigation of the mechanisms underlying genetic 
susceptibility to diseases, in particular cancer. 

INTRODUCTION 

In recent years, genome-wide association studies (GWAS) have been performed by international scientific 
consortiums on large cohorts of patients and healthy people in order to disentangle the genetic components from 
other factors, typically environmental factors, in the etiology of complex diseases, including cancer [1, 2]. These 
studies statistically relate single-nucleotide polymorphisms (SNPs) with disease development, but provide no 
immediate explanation of the role of the genetic variants in the biological mechanisms responsible for the disease 
[3, 4]. The need to go beyond statistical association and unravel functional aspects of cancer risk loci has been 
rapidly underlined [5]. While da-SNPs have originally been considered only as markers of the genetic variations 
causally involved in the disease, their possible direct implication in the pathologies, mainly through a dysregulation 
of gene expression levels, is now considered. On the other hand, recent experimental advances dramatically 
improved the knowledge of 3-dimensional genome organization and its functional role in transcriptional regulation 
[6]. Joining these two research domains opens a novel research direction addressing the role of genome architecture 
and its modifications in understanding the genetic risk to diseases [7]. We here briefly review the state-of-the-art 
about these questions, then provide statistical evidences showing how insights on the functional consequences of da-
SNPs can be gained by considering their surrounding 3D genome organization as well as distal effects of genetic 
variations in regulatory elements. 



GENOME-WIDE ASSOCIATION STUDIES AND CANCER SUSCEPTIBILITY LOCI 

Disease-associated single-nucleotide polymorphisms (da-SNPs) 

Single-nucleotide polymorphisms are genetic loci (single base pairs) where a variation between individuals has 
been observed in the human genome. They have been extensively investigated as markers of human lineages and 
migrations [8]. The identification of these elementary genetic variations has also been a starting point to unravel the 
molecular bases of the genetic risk to develop various diseases [2]. Genome-wide association studies (GWAS) have 
quantified the statistical association between a disease and a SNP, that is, individuals harboring a variant allele at 
this single-nucleotide location are significantly more affected by the disease than individuals harboring another 
allele. In general, the disease-associated allele is a minor allele, with a few exceptions [9]. Such disease-associated 
SNPs (da-SNPs) are characterized by a p-value measuring the statistical significance of the association, and an effect 
size measured by the odds ratio. As a rule, the size of the cohorts determines a threshold on the effect size under 
which the association cannot be statistically significant (the larger the cohorts, the smaller this effect-size threshold). 
Accordingly, GWAS are only able to detect common disease-associated variants [10]. 

Cancer-associated SNPs generally depend on the cancer type (affected organ), although pleiotropic associations 
have been found [11]. Note that GWAS investigate mutations present at birth in the genome of an individual 
and influencing the probability to develop a cancer later on, what is termed cancer genetic susceptibility or genetic 
risk. These mutations are different from somatic mutations that accumulate in cancer cells, provide a signature of 
their pathological state and drive cancer progression. 

At first, da-SNPs were considered only as markers of the causal genetic variation, which lies in the variation 
(possibly more complex than a point mutation) of a gene [12]. This interpretation is based on linkage disequilibrium 
[13], that is, the fact that genetic variations are locally correlated within haplotype blocks. One can note that the size 
of these blocks strongly depends on the ethnic origin of the individuals, due to the varying duration of the 
recombination history in different populations (mean size 11kb in Yoruban and African-American samples and 22 
kb in European and Asian samples) [14]. These correlations are actually exploited to impute additional associations 
from the observed ones (imputed da-SNPs). Moreover, we observed in our analysis of the GWAS catalog (gathering 
all da-SNPs from various studies, see Methods section), compared to the current knowledge of human 
polymorphisms [15, 16], that is less than 1% of all possible SNPs that are associated with a disease, meaning that the 
association reflects a nontrivial and non-typical biological situation. 

 

 
FIGURE 1. Histogram of the number of da-SNPs per disease. It is drawn over all diseases considered in the GWAS catalog 
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While the results of these studies are available from the public GWAS catalog [17], the limits of GWAS and the 
difficulties in the interpretation of da-SNPs have been pointed out [18]. We observe that the number of SNPs 
associated to the same disease in the GWAS catalog, e.g. a cancer in a specific organ, is in the range of one hundred 
(depending on the thresholds on p-value and effect size in the definition of a da-SNP) (Figure 1). This indicates that 
a single da-SNP is not sufficient to determine the appearance (or non-appearance) of a disease, but only participates, 
together with numerous other genetic and non-genetic factors, in the biological mechanisms leading to the 
pathology. Therefore, more mechanistic understanding of the disease association is required, in particular for the 
development of personalized medicine [19] and in oncology [5, 20]. Thanks to the 1000 Genome Project [15, 16] 
and similar works, the knowledge of the genome of individuals became available, allowing a better characterization 
of da-SNPs, and opening the way towards experimental functional investigations. Globally, a novel view thus 
emerged according to which SNPs can have functional consequences [5, 21-23] and directly increase the propensity 
to develop a pathology [24]. One can note that the modification of the expression of a gene due to the variant form 
of a SNP can be further amplified by the gene regulatory network, thus leading to a major functional disturbance. 

Different relationships to disease 

A basic distinction lies in the dysfunction involved in the pathology, which can be due either to a defective 
biological factor (change in the sequence of a protein or non-coding functional RNA), or to a dysregulation of the 
amount of some relevant factors (typically their expression levels). This distinction reflects in the possible functional 
consequences of a SNP, as follows. 

A first class, coding SNPs, corresponds to da-SNPs located in exons hence affecting the sequence of a protein 
[25]. In this case, the protein structure and presumably the protein function are affected, and the causal role of the 
SNP is thus straightforward. This class can be extended including pseudo-coding SNPs, located in genomic regions 
that are transcribed into various non-coding RNAs (tRNA, microRNA, siRNA) [26]. Another situation of SNPs 
having a direct impact on a protein structure are mutations disrupting the proper splicing events or affecting protein 
translation when located in 3' or 5' UTR [27]. 

The second class is composed of non-coding da-SNPs, located in introns or intergenic regions. Their association 
to diseases is expected to lie in the modification, in individuals harboring the variant allele, of some levels of gene 
expression, and as such they are generally termed regulatory SNPs [21, 28]. It actually appeared that most da-SNPs  
(more than 90%) belong to this class [29-31]. A simple sub-class of regulatory SNPs is composed of da-SNPs 
located in the binding site of a regulatory protein, typically a transcription factor, so that the mutation (i.e. the 
variant allele) directly disturbs the transcription initiation of the gene regulated by this transcription factor, and 
accordingly its expression level [9, 32]. We will focus on another, more recently evidenced, sub-class composed of 
architectural SNPs, where the SNP variation first reflects in a local variation of the genome spatial conformation, 
which in turn affects some gene expression levels [7]. 

Previous approaches on cancer-associated SNPs typically used gene expression data to infer which SNPs may 
affect gene expression levels (eQTLs) and to delineate the associated pathways [9, 33]. We here adopt a 
complementary viewpoint and investigate da-SNPs, and in particular cancer-associated SNPs, in the context of the 
tri-dimensional (3D) genome organization. 

3D GENOME ORGANIZATION AND GENETIC RISK 

3D genome organization and its functional role 

Recently developed techniques of chromosome conformation capture combine chemical crosslinking and 
sequencing to identify genomic loci contacting each other in vivo. They have shown that the mammalian genome 
displays three main architectural features at the large-scale level (supranucleosomal level, beyond the kb scale), 
nested in a hierarchical way (Figure 2): chromatin loops, topologically associating domains (TADs) of larger size 
exhibiting more internal contacts than contacts between domains [34, 35], and a segregation in active and inactive 
compartments [36]. 



 
FIGURE 2. Topologically associating domains (TADs) in the human genome as derived from Hi-C data. The figure 

sketches how genome-wide chromosome conformational capture data (Hi-C contact maps, data from [34]) evidence the existence 
of disjoint self-contacting domains, known as topologically associating domains (TADs). The full contact map (i.e. of all 

chromosomes, resolution 160kb) for human embryonic stem cells is displayed on panel A, and a zoom on chromosome 5 on 
panel B (resolution 80kb). The color indicates the contact frequency (the darker the more frequent). On panel C, the partition of 
the genome in TADs is illustrated for a part of chromosome 5, with an additional zoom (resolution 40kb): TADs appear in the 
form of disjoint dark triangles along the diagonal of the contact map. One of them is underlined in black as an example. Fuzzy 

sub-structures of smaller size within TADs may feature chromatin loops 
 
TADs existence and distribution, as well as the genome segregation into active and inactive compartments have 

been unraveled using genome-wide Hi-C. TADs organize the genome into a modular and presumably functional 
structure at the sub-megabase scale [37]. Chromatin loops and TADs have also been investigated experimentally 
using local quantitative and high-resolution chromosome conformation capture technique (3C-qPCR) [38, 39]. Such 
experiments using 3C-qPCR clarified the distinction between the TADs as originally evidenced in [34] and [35], of 
size 200 kb to 1Mb (median size about 800 kb) and structures of various sizes termed chromosome contact domains 
[40], among which the smallest ones rather correspond to chromatin loops embedding a single gene and its proximal 
regulatory sequences [41]. 

The above-mentioned architectural features are closely involved in the regulation of gene expression [6], and 
architectural changes are observed in pathologies. Significant changes in genomic contacts have been observed in 
bladder cancer and lymphomas [42], as well as in breast cancer [43, 44], revealing altered chromatin architecture. 
Another emblematic example is the observed disruption of chromatin enhancer-promoter loops at specific loci in β-
thalassemia (β-globin gene, [7]) and more generally erythroid pathologies (MYB gene, [45]). Gene-specific multi-
enhancer contacts playing a key role in this 3D genome spatial organization are similarly likely to be mutation-
sensitive loci [46]. More generally, bioinformatic analyses show that a large number of da-SNPs (over all diseases) 
are located at enhancers inside TADs [31]. 

Changes in genome architecture, in particular TAD disruption, have also been evidenced in various cancers 
[47, 48]. The changes in long-range chromatin interactions associated with either the fusion of adjacent TADs or the 
creation of new TADs are potentially related to cancer progression, due to the ensuing dysregulation of oncogenes 
and tumor suppressors [49]. Specifically, TAD boundaries have been shown to be altered (microdeletion, mutations 
or epimutations in the binding sites of the architectural protein CTCF) in T-cell acute lymphoblastic leukemia (T-
ALL) [50] and in gliomas [51]. More generally, variations of chromatin architectural patterns have been observed 
between individuals [52]. This prompts to investigate their possible relationships with genetic variations, possibly 
mediated by variation in the epigenetic marks [48], and their functional correlates. 

Architectural SNPs 

The understanding of the functional role of the 3D genome organization triggers an increasing interest in non-
coding da-SNPs, whose effect on gene regulation is mediated by a change in chromatin 3D organization [7]. Such a 
scenario represents an instance of chromatin allostery, where the chromatin itself behave as an allosteric object [53]; 
here the allosteric transition would be triggered by the SNP and the effector would be some event necessary for 
transcription, e.g. TF binding or the formation of a promoter-enhancer loop [54]. 



These architectural SNPs can have an impact at multiple scales. A basic instance is a SNP in the binding site of 
the architectural protein CTCF (CCCTC-binding Factor), which have been shown to affect both loops and TAD 
boundaries [55], with stronger binding sites at TAD boundaries [56]. Another frequent instance is a SNP located in 
an enhancer, and whose variation affects the proper formation of enhancer-promoter loop [31, 57]. For instance, 
some risk loci for epithelial cancers, including colon, breast, and prostate cancers, have been found at enhancers 
forming a long-range chromatin loop with the MYC proto-oncogene in a tissue-specific way [58]. It is has been 
shown experimentally, using chromosome conformation capture techniques, that a single SNP can actually disrupt 
an enhancer-promoter loop and have deleterious effects through a dysregulation of the associated gene, potentially 
leading to disease, e.g. autoimmune diseases [59], asthma [60] or erythroid pathologies [45]. More generally, certain 
SNPs located in regulatory regions may affect not only the expression of nearby genes, e.g. through a modification 
of epigenetic marks, but also the expression of distant genes located in cis (that is, on the same chromosome, as 
opposed to trans acting factors) in the same TAD. This has been shown for SNPs associated with autoimmune 
diseases, with distal molecular coordination effects of range about 50 kb, within the same TAD [61]. 

We will here investigate the distribution of da-SNPs with respect to TADs and more specifically TAD borders. 
We here call TAD border the region limiting a TAD and across which very few physical contacts occur, thus 
corresponding to a marked insulation (slightly different from and more general than what is called TAD boundary in 
[34], namely the region separating two TADs along the genome). These borders can be observed using the 3C-qPCR 
technique (see e.g. the case of the HoxD locus in [41]). Certain TAD borders are involved in gene regulation events. 
The emblematic example is the case of Hox genes, where a displacement of a TAD border at the HoxD locus 
induces a switch of the Hoxd genes (from Hoxd11 to Hoxd8) from a telomeric TAD to a more centromeric TAD 
thus changing their expression levels [62]. Therefore, regulation of gene expression can be altered by the presence of 
a SNP variant as soon as this mutation is able to disrupt the border. Engineered genetic alteration of TAD borders 
using CRISPR/Cas9 at the WNT6/IHH/EPHA4/PAX3 locus induces limb malformation in mice; specifically, 
mutations in the binding sites of the architectural protein CTCF have been shown to cause the appearance of long-
range interactions between some promoters of a TAD and enhancers located in the adjacent one, reflecting 
topologically in the fusion of adjacent TADs and functionally in the abnormal expression of these genes [63]. 

STATISTICAL INVESTIGATION 

We performed a statistical investigation of the relationship between disease association (that is, genetic risk) and 
location with respect to TAD borders, considering first all da-SNPs then focusing the analysis to cancer-associated 
SNPs (that is, SNPs whose variant form is statistically associated with an increased risk of developing a cancer, not 
to be confused with somatic mutations accumulating in cancer cells during cancer development). We aim at a novel 
annotation of da-SNPs based on their potential impact on the functional 3D chromatin architecture, which could 
suggest candidate loci for a further experimental and mechanistic study. 

Methods 

We used the compilation of GWAS data freely available in the GWAS catalog (www.ebi.ac.uk/gwas/, version 
r2017-06-26) [17]. We translated the genomic coordinates given in the GWAS catalog (Genome assembly 
GRCh38.p10, in short hg38 reference) into the hg19 reference. We used both directly observed and imputed da-
SNPs, where imputation is based on the belonging to the same haplotype block than an observed association. We 
constructed the list of da-SNPs and the subset of cancer-associated SNPs by filtering the EFO label (Experimental 
Factor Ontology) indicating the trait(s) or disease(s) to which each SNP of the catalog has been significantly 
associated. Only diseases (including cancers) displaying at least 10 associations are considered. The da-SNPs of the 
list are moreover annotated with their genomic location in exons, introns or intergenic regions. 

TAD coordinates have been determined in [34] for human foetal lung fibroblasts (IMR90 cells) and human 
embryonic stem cells (hESC), from two replicates, with only minor variations between the two cell types. We used 
the data corresponding to hESC (human embryonic stem cells), for which more annotations are available). To 
account for the topological characterization of borders seen as regions across which the contact frequency displays a 
marked decrease [41], we defined TAD borders as zones of 20kb located inside the TAD at the limits of this TAD 
(recall that the median size of a human gene is 23kb [64]). Results remain stable under variation of the border size. 

Enrichment in da-SNPs of a given genomic region (e.g. TAD borders) has been assessed for each disease using a 
uniformly random null model, described by a binomial distribution of parameters the fraction of base pairs in the 



given genomic region and the total number of SNPs associated to the disease (this distribution corresponds to the 
large-size limit of the currently used hyper-geometric distribution, given that the total number of SNPs in the human 
genome is of order of tens of millions -- the number is evolving each year as new results accumulate [15, 16]). 
Enrichment p-value is then computed as the probability  (cumulative binomial distribution) to get by chance at least 
the observed number of da-SNPs in the considered genomic region. Multiple testing (over the different diseases in 
the GWAS catalog, considering independently cancer types and non-cancer diseases) was corrected for using the 
Benjamini-Hochberg procedure [65, 66]. A (corrected) p-value smaller than 0.05 assesses the statistical significance 
of the enrichment. The number of da-SNPs present in the TAD borders gives a measure of the effect size. 

The active compartment has been determined at a resolution of 40kb, by an analysis of the principal eigenvector 
of the contact correlation map that refines the method in [36] (data from [34], normalized according to [67]). The 
enrichment p-value has been computed using a uniform random null model and a cumulative binomial distribution. 

Location of genetic risk loci with respect to topological domain borders 

We first observed in the GWAS catalog (for all diseases investigated in GWAS) that only 8% of da-SNPs are 
located in exons, in agreement with the evaluation given in [7] and [31]. This number confirms that most da-SNPs 
are non-coding and their potential effect lies in a dysregulation of gene expression. As such, these da-SNPs belong 
to the class of expression quantitative traits loci (eQTLs, [9, 52]). It is to note that introns may contain enhancers for 
another gene [68], so that intronic da-SNPs may participate to the (dys)regulation of another gene. 

 
da-SNPs in exons in introns intergenic 

8 % 47,3% 44,7% 
 

TABLE 1. Distribution of da-SNPs. The table indicates the location of da-SNPs in the different genomic compartments, 
according to the data gathered in the GWAS catalog (over all diseases). 

 
We then performed a statistical investigation of the location of da-SNPs with respect to genomic architectural 

features, considering first all diseases, then more specifically cancers. To detect a possible impact of some da-SNPs 
on TAD delimitation, we considered TAD borders, namely regions surrounding the limits of the TADs, and across 
which a step-wise decrease of the contact frequency occurs [41] (see section Methods). We found that for a small 
fraction of diseases, da-SNPs are over-represented in TAD borders (Figure 3). 

 

 
FIGURE 3. TAD border enrichment in disease-associated SNPs. The normalized histograms of (minus the logarithm of) p-
values assessing TAD border enrichment for all non-cancer diseases (blue) and all cancer types (yellow) are compared (TAD 
border of size 20kb inwards). The grey color corresponds to the overlap of the two histograms. The vertical line indicates the 

significance threshold at p=0.05. It means that for each disease and each cancer type contributing to the right part of the 
histograms, the associated genetic risk loci display a significant over-representation in TAD borders 
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We more specifically compared the set of cancers and the set of other diseases (Figure 3). Both sets contain 
diseases for which TAD border enrichment is observed, and which can be identified in our analysis. This result 
supports a role of TAD borders and their modifications in these particular diseases, and suggests further 
investigation of the corresponding da-SNPs and surrounding loci. Noticeably, our results show that a significant 
enrichment of TAD borders in da-SNPs is present only for specific diseases and cancers, and thus represents a 
nontrivial feature. Noticeably, cancers dominate among the diseases displaying such TAD-border enrichment. The 
corresponding cancer types are listed in Table 2, together with the number of associated SNPs, while the list of the 
non-cancer diseases can be found at http://www.lptl.jussieu.fr/user/lesne/disease_list1.txt . 

 
EFO term Cancer type p-value (TAD 

border enrichment) 
number of 
da-SNPs 

number of da-SNPs 
in TAD borders 

EFO_0000095 Chronic lymphocytic leukemia 0.0043 124 13 
EFO_0000178 Gastric cancer 0.0157 18 4 
EFO_0000182 Hepatocellular carcinoma in  

hepatitis B infection  
0.0145 10 1 

EFO_0000305 Breast cancer 0.0055 244 22 
EFO_0000571 Lung adenocarcinoma 0.0013 25 1 
EFO_0000756 Melanoma 0.0055 55 13 
EFO_0001071 Lung cancer 0.0034 50 7 
EFO_0001075 Ovarian cancer 0.0002 35 8 
EFO_0005088 Testicular germ cells cancer 0.0157 41 7 
EFO_0005570 Oral cavity cancer 0.0145 9 3 
EFO_0005842 Colorectal cancer 0.0112 181 12 
EFO_1000650 Breast cancer  

 (estrogen-receptor negative) 
0.0004 27 3 

 

TABLE 2. Cancer types displaying a significant enrichment of TAD borders in da-SNPs. For each of these 12 cancer types, 
the total number of da-SNPs and the number of da-SNPs belonging to a TAD border are indicated. The list of cancer-associated 

SNPs located in TAD borders for these cancer type, is given in Annex, Table 4. 
 
It has been observed in [34] that inter-TAD regions (termed TAD boundaries) are enriched in housekeeping 

genes. However, this fact cannot explain the association of embedded SNPs to a specific disease, since a flaw in a 
housekeeping gene would produce far more defects than a specific pathology. Our result about TAD borders 
enrichment in da-SNPs for only a small subset of diseases points at the existence of more specific mechanisms. 

 
cancer associated SNPs  
(for cancer types in Table 2) 

total number number in the active 
compartment 

% p-value  
of the enrichment 

 
 

73 47 64,4% 7.21 10 -6 

 

TABLE 3. Preferential location of cancer-associated SNPs in the active compartment. For cancer types displaying a TAD-
border enrichment (Table 2), the genetic risk loci located in TAD borders (Annex, Table 4) are over-represented in the active 

compartment (which represents only 39.9% of the genome). 
 
The cancer-associated SNPs located in TAD borders, for cancer types displaying TAD-border enrichment, 

appear to be preferentially located in the active compartment (Table 3). Moreover, the enrichment of TAD borders is 
mainly due to non-exonic SNPs (Figure 4). Over-representation in TAD borders of exonic SNPs is observed for only 
two cancer types (gastric and ovarian cancers). Interestingly, exonic and non-exonic enrichments exclude one 
another, which points at two distinct mechanisms. Overall, these results support a functional interpretation of these 
SNPs as being involved in the deregulation of gene expression, presumably through a change in the TAD borders, 
and promote further experimental investigation to specify and validate this interpretation. 

 



 
FIGURE 4: Enrichment of TAD borders in exonic and non-exonic cancer-associated SNPs. For each cancer type, described 
by its EFO label (Experimental Factor Ontology), the TAD border enrichment p-value is computed separately for the subsets of 

exonic and non-exonic da-SNPs. Enrichment in exonic SNPs is observed only for two cancer types (gastric and ovarian cancers). 
Non-exonic enrichment is observed for breast, oral cavity and testicular germ cell cancer, chronic lymphocytic leukemia, and 

hepatocellular carcinoma. The dotted red lines indicate the significance threshold at p=0.05. The dotted blue line indicates equal 
p-values for exonic and non -exonic subsets 

 
It has recently been shown that the very existence of TADs (but not the compartmentalization into active and 

inactive domains) depends on the CTCF protein [69], which suggests analyzing the relationship between cancer-
associated SNPs and CTCF binding sites. The link with cohesin binding sites is also a promising direction 
[31, 70, 71]. It is however to note that CTCF binding sites determined by sequence analysis have not the same 
strength (occupancy rate), and that only part of them are involved as insulators at the TAD boundaries [56] so that 
the analysis cannot be done in a straightforward way. 

CONCLUSION: CANDIDATE LOCI FOR EXPERIMENTAL STUDIES 

The present approach proposes to extend GWAS results interpretation by including in the analyses some aspects 
of the 3D genome architecture. We here focused on the large-scale sub-megabase organization of the genome into 
topological domains, with the working hypothesis that modifications in their borders may mediate a functional role 
of some disease-associated single-nucleotide polymorphisms. 

Our main result is a list of diseases, including some cancer types, and a list of cancer-associated SNPs whose 
variant forms could contribute to a dysregulation of gene expression at a TAD border. This result delineates 
candidate loci for experimental studies, for instance 3C-qPCR experiments measuring contact frequencies in a 
quantitative way and thus able to assess a displacement or a disruption of a TAD border [41]. Genome-wide Hi-C 
investigation can also been envisioned, as done in a study of breast cancer genetic risk focusing on the long-range 
interactions between putative regulatory elements, harboring cancer-associated SNPs, and distal target genes [72]. 
Chromatin immuno-precipitation (ChIP-qPCR) can then be exploited to find which protein binding, if any, is 
affected at these SNPs and elucidate the basic step of their functional role and diseases association. 
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ANNEX: LIST OF CANDIDATE ARCHITECTURAL DA-SNPS 

EFO term Cancer type da-SNPs in TAD 
borders 
 

Chromosome Genomic 
coordinates  (hg19) 

EFO_0000095 Chronic lymphocytic leukemia rs41271473 chr1 228880296 
rs7558911 chr2 202023949 
rs9880772 chr3 27777779 
rs10936599 chr3 169492101 
rs31490 chr5 1344458 
rs4869818 chr6 154471225 
rs2236256 chr6 154478440 
rs11636802 chr15 56775597 
rs142215530 chr15 56777691 
rs72742684 chr15 56780767 
rs874460 chr19 47176752 
rs11083846 chr19 47207654 

EFO_0000178 Gastric cancer rs4072037 chr1 155162067 
rs1108143 chr2 235465858 

EFO_0000182 Hepatocellular carcinoma in 
hepatitis B infection  

rs2596542 chr6 31366595 

EFO_0000305 Breast cancer rs11903787 chr2 121088182 
rs653465 chr3 27343644 
rs6788895 chr3 150467808 
rs7716600 chr5 44875005 
rs2229882 chr5 56168712 
rs16886448 chr5 56170813 
rs3822625 chr5 56178111 
rs12655019 chr5 56195790 
rs10474352 chr5 90732225 
rs2180341 chr6 127600630 
rs11814448 chr10 22315843 
rs1926657 chr13 95874956 
rs2236007 chr14 37132769 
rs6504950 chr17 53056471 
rs8170 chr19 17389704 
rs8100241 chr19 17392894 
rs56069439 chr19 17393925 
rs4808801 chr19 18571141 
rs10411161 chr19 52372976 

EFO_0000571 Lung adenocarcinoma rs31489 chr5 1342714 
EFO_0000756 Melanoma rs3219090 chr1 226564691 

rs13097028 chr3 169464942 
rs401681 chr5 1322087 
rs1636744 chr7 16984280 
rs201131773 chr9  21805205 
rs7023329 chr9 21816528 
rs258322 chr16 89755903 

EFO_0001071 Lung cancer rs4254535 chr2 69198388 
rs10197940 chr2 152253918 
rs4975616 chr5 1315660 
rs402710 chr5 1320722 
rs401681 chr5 1322087 
rs4589502 chr15 67155069 
rs13181 chr19 45854919 

EFO_0001075 Ovarian cancer rs11782652 chr8 82653644 
rs183211 chr17 44788310 



rs8170 chr19 17389704 
rs2363956 chr19 17394124 

EFO_0005088 Testicular germ cells cancer rs3790672 chr1 165873392 
rs10510452 chr3 16625048 
rs17021463 chr4 95224812 
rs2720460 chr4 104054686 
rs4635969 chr5 1308552 
rs7040024 chr9 845516 

EFO_0005570 Oral cavity cancer rs10462706 chr5 1343794 
rs928674 chr9 133952024 
rs2398180 chr15 96863169 

EFO_0005842 Colorectal cancer rs10936599 chr3 169492101 
rs1370916 chr7 47238707 
rs2128382 chr8 130820039 
rs174537 chr11 61552680 
rs10849432 chr12 6385727 
rs11169552 chr12 51155663 
rs2286313 chr14 71514163 
rs1800469 chr19 41860296 

EFO_1000650 Breast cancer  
 (estrogen-receptor negative) 

rs11903787 chr2 121088182 
rs8170 chr19 17389704 
rs56069439 chr19 17393925 

 

TABLE 4. Candidate architectural da-SNPs. The table provides a list of the cancer-associated SNPs located in TAD borders 
for cancer types displaying a significant TAD border enrichment in da-SNPs (see Table 1). Note that the number of SNPs 

associated to a cancer may be different from Table 2, in which the cancer-associated SNPs observed in independent studies were 
considered as different entries, like it is done in the GWAS catalog. The data presented in the above table can be downloaded at 

http://www.lptl.jussieu.fr/user/lesne/SNP_list2.txt 


