N

N

Static Value Analysis of Python Programs by Abstract
Interpretation

Aymeric Fromherz, Abdelraouf Ouadjaout, Antoine Miné

» To cite this version:

Aymeric Fromherz, Abdelraouf Ouadjaout, Antoine Miné. Static Value Analysis of Python Programs
by Abstract Interpretation. NFM 2018 - 10th International Symposium NASA Formal Methods, Apr
2018, Newport News, VA, United States. pp.185-202, 10.1007/978-3-319-77935-5_14 . hal-01782390

HAL Id: hal-01782390
https://hal.sorbonne-universite.fr /hal-01782390

Submitted on 11 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-01782390
https://hal.archives-ouvertes.fr

Static Value Analysis of Python Programs by
Abstract Interpretation*

Aymeric Fromherz'2, Abdelraouf Ouadjaout?, and Antoine Miné?

! Carnegie Mellon University
afromher@andrew.cmu.edu
2 Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, LIP6, F-75005
Paris, France
{abdelraouf.ouadjaout,antoine.mine}@lip6.fr

Abstract. We propose a static analysis by abstract interpretation for a
significant subset of Python to infer variable values, run-time errors, and
uncaught exceptions. Python is a high-level language with dynamic typ-
ing, a class-based object system, complex control structures such as gen-
erators, and a large library of builtin objects. This makes static reasoning
on Python programs challenging. The control flow is highly dependent
on the type of values, which we thus infer accurately.

As Python lacks a formal specification, we first present a concrete col-
lecting semantics of reachable program states. We then propose a non-
relational flow-sensitive type and value analysis based on simple abstract
domains for each type, and handle non-local control such as exceptions
through continuations. We show how to infer relational numeric invari-
ants by leveraging the type information we gather. Finally, we propose
a relational abstraction of generators to count the number of available
elements and prove that no Stoplteration exception is raised.

Our prototype implementation is heavily in development; it does not
support some Python features, such as recursion nor the compile builtin,
and it handles only a small part of the builtin objects and standard
library. Nevertheless, we are able to present preliminary experimental
results on analyzing actual, if small, Python code from a benchmarking
application and a regression test suite.

1 Introduction

Sound static analyzers based on abstract interpretation [7] have been successful
in formally checking correctness properties of programs. Academic and indus-
trial successes include, for instance, Polyspace Verifier, Astrée [5], Sparrow [18],
and Julia [26]. The major part of these analyzers target solely statically typed
languages, such as C, Java, or C#. With the rise of web applications, the static
analysis of JavaScript programs has started to gain some attention [2,14,15].
The more dynamic nature of the language makes this task challenging. In this

* This work is partially supported by the European Research Council under Consol-
idator Grant Agreement 681393 — MOPSA.

article, we look at another dynamic language, Python [21], that, we feel, has
been largely neglected by the static analysis community.

Python is a relatively recent programming language, introduced in 1991,
which has gained a lot of popularity due to its readable syntax, ease of pro-
gramming, interactive toplevel, and large library support. It is used notably in
education and science, for beginners and non-computer scientists, as a scripting
and prototyping language. It is an interpreted language with dynamic features,
including dynamic typing (variables are not typed, and can hold values of any
type), a class system supporting object run-time alteration (adding fields beyond
what is declared in the object class, and possibly altering the class hierarchy),
overloading for methods but also builtin language operators (such as +), reflec-
tion, closures, and an eval keyword. While these dynamic features are a popular
aspect of the language, and are effectively relied on in Python programs [1], they
make reasoning on Python programs and ensuring the absence of run-time errors
very difficult at compile-time. This has motivated the design of Python subsets
and variants with more static typing [3], but that does not help with the large
majority of existing Python code that does not obey these restrictions.

We design instead a specific analysis for Python that embraces fully the dy-
namic aspects of the language — we nevertheless draw the line and reject pro-
grams featuring code generation, calling eval or compile builtins, or importing
modules from locations that are not statically known. Our abstract interpreter
infers the possible values of program variables in a flow-sensitive way. This in-
formation allows us to derive the possible types of each variable at each program
point, and hence deduce the control flow for the next instruction. Our analysis
then detects soundly all possible run-time errors, that is, uncaught exceptions.

Formal semantics. Following the standard abstract interpretation road-map, we
define a concrete collecting semantics, and then derive an effective analyzer by
abstraction. An additional difficulty of Python is the lack of formal specification
— unlike, for instance, JavaScript, that features an English specification [9] that
provides a sound basis for formal specifications [6]. The Python language is de-
fined by its reference manual [21], which leaves room for ambiguity and permits
implementation freedom. We base our own semantics on earlier formalization
efforts [20], on the reference manual [21], and on the CPython reference imple-
mentation. We innovate by defining the semantics as an input-output function
on environments, by induction on the syntax with explicit fixpoints for loops,
which lends itself well to the design of an abstract interpreter.

Value and type analysis. The core component of our analyzer employs non-
relational abstractions, assigning an abstract set of values to each variable. Fol-
lowing the JavaScript analysis by Jensen et al. [14], each variable is given a
tuple of abstract values to account for values of all possible types. We employ
standard numeric domains, as well as field-sensitive representations for objects
abstracted by allocation site, and simple abstractions of builtin Python types
(e.g., strings are represented as finite concrete sets or T; lists are represented as
a summary object and a length information, etc.). Consider, for instance, that

1 def init(f, n=None): 1 def gen():

2 if nis None or n <= 0 : return [] 2 for i in range(0,10):

3 1= 3 yield i

4+ for i in range(n): 1 b = gen()

5 1.append(£(i)) s for j in range(0,5):

6 assertlen(l) ==n 6 a = next(b) # no Stoplteration
(a) Dynamic typing example. (b) Generator example.

Fig. 1: Python programs illustrating challenging static analysis situations.

the function init in Fig. la is called with a function object argument £ and an
optional argument n with a default None value. Our value analysis will infer that
n is never None when range(n) is evaluated, so that no exception is raised at
this point. Additionally, attribute, method, and operator resolution is handled
easily by extracting type information from the value abstraction. Another com-
plication we handle is that attributes and methods can be added dynamically to
an object beyond what is statically declared in its class.

Relational numeric analysis. Additionally, we show how we can go beyond non-
relational abstractions and leverage numeric relational domains, such as polyhe-
dra [8], which are invaluable to program analysis — notably to infer non-trivial
inductive loop invariants. We rely on a reduction with the non-relational do-
mains to deduce variables that are purely numeric at each program point and
can thus be fed to a relational domain. When applying our relational analysis
on the previous example shown in Fig. 1a, we are able to prove the assertion at
line 6, while the non-relational value analysis will raise a false alarm.

Generators. A unique characteristic of Python is the pervasive use of generators,
a limited form of co-routines that permeate the standard library. The example
in Fig. 1b creates a generator gen that returns a new value in 0,1,...,9 at
each call to next. More precisely, each call to next resumes the execution of the
iterator, until it calls yield and the control is returned to the caller, until the
next call to next, etc. We develop specific abstractions to model generators, and
use a continuation-based iterator to analyze complex, non-local inter-procedural
control in an abstract interpreter by induction on the syntax. Combined with
relational invariants, the analyzer is able to prove that there are less calls to
next than to yield, so that a Stoplteration exception is never raised.

Implementation. We have implemented a prototype analyzer and run it on a
small set of Python benchmarks. The output of the analysis is a superset of
all the possible variable values at each program point as well as the set of un-
caught exceptions. Note that Python is a large language with many builtin types,
primitives, and standard support libraries. We currently support a selected rep-
resentative set of primitives, that are sufficient to analyze our benchmarks.

Focus and limitations. Although we believe that our design is sound and scalable,
it currently employs some very naive abstractions with respect to the state of
the art. Our almost-concrete string abstraction could be replaced with the com-
plex abstractions designed by Amadini et al. for JavaScript [2]. Likewise, object
abstractions have been studied extensively, especially for the analysis of Java,
and we could replace our simple allocation-site abstraction based on recency ab-
straction [4] with more efficient ones, such as object-sensitive abstractions [24].
Python instructions involving dynamic code generation or retrieval, including
eval and compile, are not supported — although existing work on JavaScript [13]
could help. Likewise, we do not support recursive procedures, which are not much
employed in Python — classic interprocedural analysis techniques [23] could also
apply. Integrating and evaluating these previous works in the context of Python
analysis is left as future work. We chose instead to focus our research on novel
aspects of the analysis of Python: the integration of relational abstract domains,
and the support for generators, which were not considered in previous works.
Finally, the currently scarce support for Python builtins and libraries severely
limits the practical usability of our prototype on realistic Python code. We are
more interested at the moment in developing relational analyses that go beyond,
in term of expressiveness, current analyses for dynamic languages, than sup-
porting imprecisely the entirety of the language primitives. We also note that,
to our knowledge, none of the proposed formal semantics of Python [22,11,19,20]
were mature enough to analyze actual Python programs without rewriting them,
while we are at least able to analyze small benchmarks and tests unmodified.

Organization. The rest of the article is organized as follows: Sect. 2 presents
the syntax and concrete collecting semantics of our normalized Python subset;
Sect. 3 presents a non-relational analysis based on replacing the concrete domain
with abstract value domains, as well as a relational abstraction; Sect. 4 presents
our generator analysis; Sect. 5 presents our implementation and experimental
results. Finally, Sect. 6 discusses related work and Sect. 7 concludes.

2 The Mini-Python Language

The language we analyze is a significant subset of Python 3.6, using a simpli-
fied syntax removing redundant constructions and syntactic sugar, that we call
Mini-Python. Some features that are supported by our implementation are not
described here for simplicity: slices, for loops, and import directives. Some other
omitted features are not supported at the moment: eval and compile, recursion,
coroutines (although we do support generators).

2.1 Syntax

Following the Python language reference [21], we distinguish between expres-
sions, that return a value, and statements, that do not.

expr = True | False | i € Z | s € string (constants)

| None | NotImpl | Undef (singletons)
| (expr,...,expr) (tuples) | expr.string (attributes)
| id (identifier) | expr o expr (binary op.)
| cexpr (unary op.) | exprlezpr] (subscript)
| expr(ezpr,...,expr) (call) | next expr (generator next)

Fig. 2: Mini-Python expressions.

stat ::= expr (evaluation) | id < expr (assignment)
| id.string < expr (attribute set) | return expr (return,)
| break (loop exit) | continue (go to loop head)
| raise expr (exception) | yield, expr (generator exit)
| stat; stat (sequence) | while(ezpr, stat) (loop)
| if_then_else(expr, stat, stat) (conditional)
| try_except_else(stat, (string x stat)”, stat) (exception handling)
| fun(string, string”™, stat) (function declaration)
| gen(string, string”™, stat) (generator declaration)
| class(string, expr”, stat) (class declaration)

Fig. 3: Mini-Python statements.

Ezxpressions. Expressions, presented in Fig. 2, include constants of various types:
integers (in Z), booleans (True, False), strings. None and NotImpl are types with
a single inhabitant each, also denoted as None and NotImpl. They represent
respectively the absence of a value and of a special method (such as __add__,
modeling +). Undef denotes the value of uninitialized variables. Expressions
also include literal tuples (eq,...,e,), object attributes e.string, identifiers for
variables, functions, and classes, an element of a collection e;[es] and, finally, a
call e(eq,...,e,) to any callable object: function, generator, class constructor.

Statements. Fig. 3 presents the syntax of statements. Most are standard: atomic
statements such as expression evaluation, assignment e; < es, attribute up-
date ej.string < es; control instructions such as return e, break, continue,
tests if _then_else(c,t,e), and loops while(c, b). Exceptions are raised through
raise e and caught through try_except_else(e, clauses, else), where clauses is
a list of pairs (name, body) assigning a body to specific exception classes, and
else to execute when no exception is raised. Generators generate a value using
yield, e, while the next element of a generator is queried with next o, passing
the generator object o as argument — o.__next__() in Python. Each yield, e
statement is subscripted with a unique syntactic token ¢ € N, used later in the
semantic state of generator instances to remember to which yield instruction we
should jump back when next o is called. Finally, fun(name, args, body) declares
a function with a name, a list of formal arguments, and a body; gen(name,
args, body) declares a generator similarly; and class(name, bases, body) declares
a new class with the given name, inheriting from a list of base classes, and with
the given body. Such declarations can appear in any statement, possibly nested
in conditionals, loops, or other declarations. Definitions occur at run-time: the
act of executing a definition statement creates a new binding in the environment.

There is a unified namespace for variable names, function names, and class
names and we assume that all identifiers in the program are unique. We also
restrict the language to recursion-free programs. We will be able to encode en-
vironments as maps from names to values without ambiguity. Python features
unintuitive scoping rules: due to the lack of variable declarations, any assigned
variable automatically gets function scope, even if it is used before it is first
assigned. We hoist declarations at the function scope level, explicitly assigning
them to Undef. The analysis is then able to detect UnboundLocalError excep-
tions due to using uninitialized variables, which is a major issue in Python.

2.2 Concrete Collecting Semantics

We define a concrete collecting semantics by induction on the syntax, as a func-
tion mapping sets of environments to sets of environments. To handle non-local
control flow, such as break and return, we add a continuation layer to envi-
ronments. The case of generators is more involved; its description is deferred to
Sect. 4. As Python is a large language, we only present here the semantics of a
selection of statements that we feel illustrate the specific difficulties of Python
semantics and our solutions.

Program environments and values. We denote as Id the (finite) set of identifiers
used in the program and as Addr an infinite set of memory addresses. As usual,
a memory state is a pair m = (¢, X) € £ x H, where the environment € € £ is
a partial function assigning a value to existing variables, while the heap X' € H
maps currently allocated addresses to objects. Values, in Val, can be atomic,
such as integers, strings or constants, or addresses of objects, which live in Obj:

£ = Id— Val

H ¥ Addr — Obj

Obj = string — Val

Val = ZU string U {True,False, None, NotImpl,Undef} U Addr

Objects map (finitely many) attributes to values. Following Python, we model
complex values, including lists, functions, generators, classes, and methods, as
objects: List, Fun, Gen, Class, Method C Obj. Their special semantic proper-
ties are derived from the presence of some attributes. For instance: a list [€ List
has a length l.length € Z. We assume that identifiers are strings, Id C string,
which can be exploited to reify environments € € £ as objects: € € Obj.

States and continuations. To implement non-local control-flow in our input-
output semantic, we employ continuations: a semantic state contains not only the
current memory state (¢,), but also memory states at previously encountered
jump points, that are meant to flow into the current state when encountering the
corresponding jump target. This technique has been used, for instance, in Astrée
[5], to model break and return in C. For Python, we consider the following flow

lef . .
tokens: F = { cur,ret, brk, cont, exn }, where cur is the current flow, on which

E[id](f,e,2) =
if f # cur then (f, €, X, None) else
if €(id) = NotFound then NameError(f, e, X) else
if €(id) = Undef then UnboundLocalError(f,e, X) else (f, ¢, X, €(id))
NameError(f,e,) &
let (fi,€1,X1,v1) = E[NameError()] (f,e, X) in
(exn, e1[ezn_var — v1], X1, None)
(and similarly for UnboundLocalError and TypeError)

E[[el +62ﬂ(f7672) d:ef
if f # cur then (f, e, X, None) else
let (f17€17217’01) = E[[elﬂ (f7672) in
if f1 # cur then (f1,€1,X1,v1) else
let (fz, €2, X2, UQ) = EH@QH (f1, €1, El) in
if fo # cur then (f2, €2, X2, v2) else
if has_field(v1, __add__, X)2) then
let (fs,e3,X3,v3) = E[vi.ccadd-—(v2) | (f2, €2, X2) in
if f3 # cur then (f3, €3, X'3,v3) else
if v3 = NotImpl A typeof (v1) # typeof (v2) then
if has_field(va, --radd__, X'3) then
let (f4, €4, 4, 1}4) = E[[vz.,,mdd,,(vl)}] (f3, €3, 23) in
if fa # cur then (fa, €4, X4, v4) else
if v4 = NotImpl then TypeError(fs,es, Xu) else (fa, €4, X4, v4)
else TypeError(fs, €3, X3)
else if v3 = NotImpl then TypeError(fs,es, Xs) else (fs, €3, X3, v3)
else if has_field(ve, ——radd-_, X2) N typeof (v1) # typeof (v2) then
let (f37 €3, 23, U3) = E[[vg.,,mdd,,(vl) ﬂ (fg, €2, 22) in
if fs # cur then (f3, €3, X3, v3) else
if v3 = NotImpl then TypeErrox(fs,es, X3) else (f3, €3, X3, v3)
else TypeError(fa, €2, X2)

Fig.4: Semantics of a few Mini-Python expressions.

most instructions operate; ret, brk, cont, exn collect the set of states jumping
respectively from a return, a break, a continue, or a raise statement to the
end of, respectively the current function, loop, loop iteration, or try statement.
Our semantics manipulates collections of memory states attached to flow tokens.

def

The concrete domain is thus D = P(F x £ x H).

Semantics. Expressions return a value, but can also have side effects — including
changing the control flow in case an exception is raised. The semantics E[e] :
P(F x ExH) — P(F x ExH x Val) of an expression e in some states thus
returns a set of states with a value attached. Many expressions map each state
to a single state and value, in which case we define E[e] as a function (F x £ x
H) = (F x € x H x Val) and leave implicit the lifting to sets of states. Fig. 4
gives a representative sample of such expression semantics. Expressions are only
evaluated for the current flow cur, while states attached to other flows “pass

S[if_then_else(e, s1,s2)]S & S[while(e,c)]S =
S[s1 [(filter(e)(S)) S s2 | (filter(—e)(S)) let So ={(f, e, X) € 5|

ot f # brk, cont } in

S[break |S = let Sy = filter(—e)(Ifp post) in
{(fie X) eS| f#curtuU {(f,e,X) € S| f € {brk, cont}} U
{(brk, e, %) | (cur,e,) € 5} {(f,e,X) € S | f # brk, cont } U

ﬁlter(e)(S) d:Of U(f,e,Z)ES ﬁlter(e)(f, €, 2) { (CU’I", € 2) | (bT‘k, € 2) € Sl }
filter(e)(f, e,) & post(T) <!
let (f1,€1,21,v1) = E[e] (f,¢,X) in let Ty = S[c] (filter(e)(T)) in
if f1 # cur then {(f1,€1,X1)} else SoUThH U

let (fg,éz, 22,1)2) = is,true(fl,vl,el,ﬂﬂ in {(C’U/I",E, E) | (COTlt,E, Z‘) c TO}
if fo # cur then {(f2, €2, X2)} else
if v = True then {(f2, €2, X2)} else 0

Fig. 5: Semantics of a few Mini-Python statements.

through” the evaluation unchanged — they return a None value which is not used.
The case of identifiers E[id | illustrates the generation of an exception when the
variable has not been found or not been initialized: NameError() is a constructor
that allocates a new object of class NameError and returns its address, while the
helper function NameError(f,e, X) binds this new object to the special global
variable exn_var denoting the currently raised exception, and shifts the flow
token to exn to instruct the semantics to ignore the effect of instructions on this
environment until an except statement is encountered; UnboundLocalError and
TypeError behave similarly. The case of the addition + is far more complex, and
a good illustration of the complexity of the language — most operators are as
complex, and yet sufficiently different from one another to defeat attempts to
factor their definitions. We start by evaluating the arguments from left to right.
We then execute the __add__ method from the left argument, if it exists — which
is detected using has_field (v, attr, X). If it does not exist, or if it returns Not Impl,
we call the __radd__ method from the right argument. Note the systematic check
that the flow token is still cur: a change of flow token denotes an exception that
causes the operator to abort while returning the latest environment.

We denote as S[s] : P(F x € x H) — P(F x £ x H) the semantics of a
statement s. Using sets of environments allows us to easily chain statements,
so that we define S[s1;s5] = S[sy] oS[s1]. Fig. 5 gives the semantics of
a few statements that illustrate the use of non-local control flow. As usual, a
test filters its environments to keep only those satisfying the condition, or its
negation, to execute the respective branch, and merges them with a union. Filters
use is_true (omitted for concision) to compute truth values; similarly to +, it
successively tries to call the special methods __bool__ and __len__, and returns True
if none of these methods are implemented. The semantics of loops computes,
as usual, a least fixpoint. Its definition is complicated by non-local control: a
break instruction shifts the current environment into a brk continuation, which
is consumed by the loop semantics to compute the actual exiting environments.
The case of continue and return, as well as exception handling, is similar.

3 Value Abstraction

We now present our static analysis of Python. Following the Abstract Interpreta-
tion framework, it is designed by abstraction of the concrete semantics from the
previous section. The result is an interpreter by induction on the syntax follow-
ing closely the concrete semantics, using standard non-relational and relational
domains, and modeling control flow through partitioning by flow tokens.

3.1 Non-Relational Abstraction

We first consider non-relational abstractions: each variable is assigned an ab-
stract value in Val® representing a set of possible concrete values. Following
[14], we abstract separately each type of values in its abstract domain, while
their product Val® can represent sets of heterogeneous values:

Val’ & Undef? x Nonef x NotImpl* x Bool? x Num® x String’ x P(Addrﬁ)

For finite types, each domain tracks the presence of each possible value. For
instance, Undef! & {L,Undef}, where L denotes the definite absence of Undef,
while Undef denotes the possible presence of Undef; None® and NotImpl are sim-
ilar, while Bool? = {1, True,False, T}. Our string domain is simply the finite
sets of strings, plus a T element to denote any string: String® B Pfinite (string)U
{T}. More clever abstractions, such as [2], will be considered in future work. We
can use any non-relational domain for Num?, and our implementation uses integer
and float intervals. To finitely represent the heap, we use a classic allocation-site
abstraction of Addr into a finite set Addr* of abstract addresses — our imple-
mentation actually uses recency abstraction [4], which we omit in our formaliza-
tion for simplicity. An abstract tuple V' = (Viyndefs - - -, Vstring, Vaddr) € Val®
then represents the join of elements from the type-based abstractions:

'YVal(V) déf ’YUndef(VUndef) U---u 'VString(VString) U (UaeVAddr YAddr (G))

The definition of the join Ua,al, subset g{,al, and widening Vva) operators on
this abstract domain is pointwise and straightforward.

Given abstract values Val* and addresses Addr®, environments ¢! map vari-
ables to values, and stores X map addresses to objects, as in the concrete:

et e = 1d — Val

Ytent ¥ Addr' — Obj
where Obj* % (string — Val*) x P(string)
Due to address abstraction, an abstract object may represent a set of concrete
objects with different attributes. Abstract objects are pairs (attr, must) € Ob jﬁ,
where attr maps all possible object attributes to their values, while must is the
subset of attributes from dom(attr) that are guaranteed to exist in all objects:
Yowj(attr, must) = {0 € Obj | must C dom(o) C dom(attr) A
Vi € dom(o) : o(i) € yyar(attr(i)) }
The must information is important to precisely rule out AttributeError excep-
tions.

S*[break S ' SHcur — L, brk — S*(cur) UBM S*(brk))
Sf[while(e,c)]S* &

let S% = Su[brk cont — L] in

let S” filter* (=e)(lim AT*. T*v(S% UF post*(T*))) in

Sﬁ[cur — S¥(cur) UF SH(brk), brk — S*(brk), cont — S*(cont))

where post*(T*) &' (S*[¢] o filter® ())(T*[cur — T*(cur) U T*(cont)])

Fig. 6: Abstract semantics of a few Mini-Python constructions.

Finally, we partition abstract states with respect to flow tokens in F. Hence,
an abstract element lives in D! = F — (EF x H*), with concretization:

V(X = A{(f6 D)] (6,2) € tm(XH() }

where Yr¢(ef, %) = { (e, 2) | dom(X) C (Ugtedom(st) Yadar(af)) A
Vit €(i) € yval (€ (1)) A
a € yadar(a¥) = Z(a) € yobj(Z*(ah)) }

The join U on abstract states is pointwise. Note that it joins the must

attribute information for objects with an intersection N:
XPUtXE < \F e F.XUF) U, X”(F)
where (el,xﬁ) Ul (€, Z5) = (M. € (i) Uk €h(i), AaP. S5 (a%) Uy, Xh(a))
and (a1, mq) Ug)bj (az,ms) = (As.ay(s)UQ,al as(s), my Nms)

Fig. 6 gives the abstract semantics for a few Mini-Python constructions. It
is similar to the concrete one, up to the partitioning with respect to flow tokens.
For instance, a break statement merges with a join UB\A the current flow with
that of the accumulated break flows, and empties the current flow. Similarly,
the loop incorporates back the continue flow at the loop head, and the break
flow at its end, after which the continue and break flow from any enclosing loop
is restored. Additionally, it replaces the least-fixpoint with a limit lim of the
iteration accelerated with a widening Vv, which applies Vg pointwise.

3.2 Relational Abstraction

We now present how we leverage relational numeric domains in a dynamically
typed language to improve the analysis precision. The intuition is to maintain
relations among pure numeric variables only. We exploit, in a reduced product,
the type information provided by D! to update the relational invariant dynam-
ically when the type of a variable changes. Let us assume that we are given a
numeric abstract domain A%, such as octagons [17] or polyhedra [8], provided
with classic operators, such as a concretization vy € N — P(Id — Z), transfer
functions Sﬁv[[stmtﬂ € N* — N* and condition filters ﬁlterjﬁv(e) € N* — NE.
We define our relation-aware domain as D?R = F o ((E% x H*) x N*) with the
following concretization:

YR(XH) = {(f,6,2) | let (6, X%),v
W € (v

v) (f) in (€>E)€7M(€u72ﬁ)A
),Vid € dom(v) : e(id) = v(id) }

Shid «e]S* =
let S5 = merge(Su,Su[[id +— e](extract(S)) in
let ((eo,Eu) 8 = Si(cur) in
let vf = if is_ num(id)(eg) then S%.[id < e] Vi else Silid « T] vt in
Sleur = ((eh, £5),)]

filterk, (e)S* &
et 55 = merge (%, fier*(¢) exract (7))
let ((eo,Zu)) Su(cur) in
let f = ﬂﬂevars(e) ﬁlterN(e Ainf(v) () < v < SUp(v)(ﬁg))(Vg) in
SEleur — ((éh, £8), 1)

where:

extract(S%) & Af.let ((¢f, X%),) = S*(f) in (¢f, £%)

mmw&)@VM(M:mmu%mﬂ>

is-num (id) (') & ¢ (id) C{,al (L, L, L)L T hum, L, 0)

inf(id)(ef) & 1f is num(4d) (e) then inf (¢! (id).num) else — oo
d) #

sup(id)(e*) < if isnum(id)(e*) then sup (e (id).num) else + oo

Fig. 7: Abstract relational semantics of atomic statements.

The concretization performs a reduction between the relational and non-
relational environments. The reduction with the heap objects is similar but it is
omitted here for simplicity.

Some transfer functions in D?z are given in Fig. 7. They show the interaction
between D and N*. After an assignment, the type of the ks variable is checked
by the non-relational domain. If its value is necessarily numeric, the statement
is also applied in the numeric environment v#; otherwise the variable is removed
from v#. When applying a filter, mixed-type variables can be constrained to
become pure numeric variables. The pre-condition numeric environment 1/8 has
no information on them, and they are thus created and initialized with interval
information extracted from the non-relational environment eg.

We illustrate these abstractions through our motivating example from Fig. 1a.
Assume that the function init is called with the abstract environment {(cur, !
= (n > (NoneV[10,100]),...)),v* = T, ¥)}. In the else branch at line 3, ¢ is
filtered and n becomes numeric, which allows v to be refined with the invariant
10 < n < 100. An expressive enough domain can then prove 0 < i =1len(l) <n
at line 5 inside the loop, so that the assert statement at line 6 is satisfied.

4 Generator Analysis

Generators allow a called function to suspend itself with a yield statement,
storing its state into an object, and resume its execution later with a next. We
now show how to leverage our continuation-based semantics to analyze them.

E[next e](f,e,X) &
if f # cur then (f, ¢, X, None) else
let (fi,€1,X1,v) = E[e] (f,6,X) in
if f1 # cur then (f1,€1,X1,v) else
if X1 (v) = Gen(cont, frame, body, vars) then
if cont = end then StopIteration(fi,e1, X1) else
let S1 = if cont = start then S[body | (cur,e1 U frame, X1)
else S[body | (next(i), e1 U frame, X1) in
{(cur, €14, Xlv = Gen(j, €,,,, body, vars)], e(yield_var)) |
(yield(j),e, X) € S1,j €N} U
{(exn, e, X[v — Gen(end, [], body, vars)],None) | (ezn,e, X) € S1 } U
{StopIteration(cur,e, X[v — Gen(end,[], body, vars)]) |
(f,e,X) € S1 A f# exn,yield }
else Efv._next__()] (f1,€1,X1)

def

S[yielqd, e[S =
let S1 = S[yield_var < e] S in
{(cur,e, X) | (next(i),e, X) € S1}U{ (yield(i),¢, X) | (cur,e,X) € S1} U
{(f,e,X) € S1| f # cur,next(i) }

Fig. 8: Concrete semantics of generators in Mini-Python.

4.1 Concrete Semantics

We extend flow tokens to represent continuations able to jump between next
and yield instructions: F, = F U {next(i),yield(i) | i € N}, where i rep-
resents a syntactic label to identify statements. A generator is an object g =
Gen(cont, frame, body, vars) € Gen C Obj which is given, upon creation, a
body to execute and its set vars C Id of local variables. It also maintains
some state information: a map frame € wvars — Val from local variables to
values, stored at yield statements and restored at the following next, and the
location cont € C where to resume execution upon the following next, where
C = NU {start, end} denotes either the beginning (start) of the generator be-
fore the first next, or a yield, statement (i € N), or the end (end) of the
generator — meaning that a call to next raises a StopIteration exception.
The concrete semantics of next and yield is given in Fig. 8. Each call to
next executes the generator body from the beginning but sets the flow token
to next(:): it instructs the interpreter to ignore the effect of statements until
reaching the corresponding yield,;, effectively modeling a jump to the correct
location. The yield, e statement uses a yield(i) flow token to skip remaining
statements and return to the calling next. A global yield_var variable is used
to transfer the value of e to next, while ¢, and €, . extract the values of
the local variables at yield and freeze them into the frame attribute of the
generator. They are restored into the environment at the following next.

4.2 Abstractions

Value abstraction. The concrete modeling of generators can be reduced to simple
kinds of operations: flow token updates, and copies between local variables and

S¥yield, e]S* &
let § = S*[yield_var + e] S* in
S eur — S (next(i)), yield (i) — S (cur) Uﬁw 5% (yield(i))]

Fig.9: Abstract semantics of yield.

def gen():

1
2 for i in range(0,10):
1 def gen(): 3 yield i
2 for i in range(0,10): 4 b= gen()
3 yield i 5 Y%counter = 0
1 b = gen() ¢ for j in range(0,5):
5 for j in range(0,5): 7 %counter +=1
6 a = next(b) # no Stoplteration s a = next(b) # no Stoplteration

(a) Original generator example (b) Instrumented generator

Fig. 10: Generator example (a) and its instrumented version with counters (b).

entries in the generator frame, which can be seen as object attributes. Section 3
showed how to abstract these operators, and it is thus easy to enrich it to sup-
port generators without the need to enrich the abstract domains at all. This is
illustrated in Fig. 9 for the yield statement — the case of next is similar.

This abstraction is sufficient to infer valuable information on the type, value,
and even numeric relations between the local variables of a generator. However,
it does not always precisely match the flow of control between yield and next
instructions, leading to spurious exceptions. Consider the example in Fig. 10a.
An interval analysis with widening will correctly infer that ¢ € [0,9] and j € [0, 4].
However, the abstraction states that all calls to next can jump back to the
yield statement, whatever the number of iterations of the loop indexed by i.
In particular, at iteration 10, the generator exits the loop, causing a (spurious)
Stoplteration exception.

Counting abstraction. We solve this precision issue by automatically instrument-
ing programs to keep track of the number of calls to next and yield through a
counter. We show in Fig. 10b a version with this counter explicit.> We maintain
the counter in both the frame of the caller and the frame of the generator —
which is stored in its frame attribute. Using a relational domain, such as oc-
tagons, allows the analysis to establish both equalities %counter = i + 1 at line
3, and %counter = j + 1 at line 7. As j € [0, 3], we deduce that ¢ € [0,3] as
well, i.e., we never actually exit the loop at line 2 and never raise a Stoplteration
exception. Through the counter, relations between a generator and its caller can
be established.

3 A global variable is used for illustration purposes. In practice, a counter is an at-
tribute attached to the generator instance.

Program Lines Analysis time Tests ¢ X 7 3% Coverage
test_augassign 273 645ms 7 4 0 2 1 8571%
test_baseexception 141 20ms 10 6 0 0 4 60.00%
test_bool 294 47ms 26 12 0 0 14 46.15%
test_builtin 454 360ms 21 3 0 0 18 14.29%
test_contains 7 418ms 4 1 0 0 3 2500%
test_int_literal 91 29ms 6 6 0 0 0 100.00%
test_int 218 88ms 8 3 0 0 5 37.50%
test_list 106 88ms 9 3 0 0 6 33.33%
test_unary 39 11ms 6 2 0 0 4 3333%

Table 1: Experimental results on regression tests. Result categories: v test passed
with no false alarm, X test failed with no false alarm, ? test failed with false
alarms, ¥ test containing unsupported builtins.

5 Experimental Evaluation

We have implemented our method in a prototype static analyzer in OCaml and
tested it on two categories of benchmarks. Firstly, regression tests from the
official Python 3.6.3 distribution were used to assess the correctness of the im-
plementation. Secondly, to evaluate precision and efficiency, we have considered
programs from the Python Performance Benchmark Suite,* which employ more
realistic and challenging constructions. Our analyzer reports all uncaught excep-
tions: type errors, name errors, unbound locals, stop iterations, failed assertions.

Regression tests. The official regression tests suite consists in a large number of
test programs (nearly 500) covering the builtins of the language and the standard
libraries. Since our prototype supports only a subset of Python builtins, we have
selected only the handful of tests that target the implemented features. The
results of the analysis are presented in Table 1.

For each program, we compute the analysis time (in milliseconds) and the
number of unit test methods that (i) were proven correct, (ii) raised exceptions
and assertion violations, (iii) were not completely analyzed due to the pres-
ence of unsupported language features. We investigated the failed tests to check
whether the alarms are real or spurious. The obtained outcomes for each regres-
sion test are shown in columns 5 to 8. The last column gives the percentage of
test methods that we were able to analyze completely. No alarm was detected,
which argues in favor of our analyzer faithfully modeling the language semantics,
as the tests do not raise errors when executed by the Python interpreter either,
and they generally test a single execution. Also, the precision of our prototype
analyzer is reflected by the low false alarm rate: only 2 unit tests among 97
resulted in spurious violations of assert statements. Finally, due to the incom-
plete support for builtins, the analyzer was unable to analyze some methods,
resulting in low coverage ratios in many cases. However, the analyzer is still un-
der development and features a modular architecture that allows adding missing
builtins abstractions easily, without requiring the modification of existing code.

4 https://github.com/python/performance

https://github.com/python/performance

Relational tests. We have analyzed three programs from the Python Performance
Benchmark Suite: float, fannkuch, and nbody (around 270 lines of Python in
total) and we varied the underlying numeric domains to show the impact of
relational information on the analysis. Firstly, the analysis of these programs
using the interval domain terminated in less than 3s: float was proven correct
but fannkuch and nbody resulted in a total of 5 false alarms. Using octagons, the
analysis time increased to 10mn10s, but the number of false alarms was reduced
to 3. Finally, an analysis with the polyhedra domain was able to prove the
correctness of both float and fannkuch under 5s, but the analysis of nbody did
not terminate before a timeout of 30mn. The scalability is limited because each
relational abstract element currently contains all variables and object attributes;
classic packing techniques [5] would help us improve this situation.

6 Related Work

Several works aim at restricting Python towards more static typing, as Mypy or
RPython [3], to ease program verification. While this would help design future
programs, a static analyzer for existing code is still invaluable. Note also that
Python features static analyzer tools, such as Pylint that, while helping the user,
are not based on a formal semantics and do not attempt to be sound.

While [22] proposed a semantics for an object-free Python, the first realistic
formal semantics of Python was proposed by Smeding [25] in 2009 for Python 2.5
in Haskell, followed by [20] for Python 3.2 in Racket, and [11] for Python 3.3 in K,
inspired from related work on JavaScript [10]. They present small-step executable
operational semantics that aim at being tested against CPython’s own regression
tests, although experiments were limited by the lack of support for advanced
language features and libraries used by the tests — an issue from which we also
suffer. Poli [19] presents the first attempt at deriving an abstract semantics,
but remains uninstantiated as no abstract value domains are provided. Hassan
[12] proposes a static typing using SMT solvers, but require variables to have a
single type in the program, a limitation that we overcome. We provide the first
complete and implemented abstract interpreter for (a subset of) Python. Unlike
previous works, we opted for a big-step semantics, which maps conveniently to
an abstract interpreter by induction on the syntax. Continuations have been
employed before in abstract interpreters to model control flow, as in Astrée for
C [5]; we go one step further by handling exceptions and generators.

We find the works closest to ours in the abstract interpretation of JavaScript.
Our non-relational abstraction resembles that of Jensen et al. [14] and later [15].
We go one step further by leveraging relational abstractions as well, which were
absent in previous works up to our knowledge. Certain non-relational domains
differ due to the different nature of the language and properties we seek, notably
our need to under-approximate sets of strings to precisely detect AttributeError
exceptions. Nevertheless, we could benefit from more advanced string domains
as proposed in [16]. Likewise, the analysis of practical uses of eval in JavaScript
[13] could be the basis to support the equivalent construction in Python.

7 Conclusion

We have presented the first static analysis for a realistic subset of Python, able
to infer the types and values of variables, and the exceptions that can be raised.
In addition to its novel language target, its main characteristics are the ability to
infer numeric relations despite dynamic typing, and the support for generators.
Our implementation is currently limited to a small subset of Python builtins and
standard libraries; nevertheless, it is sufficient to analyze a few small Python
programs from actual tests and benchmarking suites, without modification.

Our prototype is a work in progress. Planned work include completing the
support for builtins and libraries to be able to analyze Python applications. We
also wish to enrich the abstractions used in our analyzer, targeting in particular
abstractions proposed for JavaScript [2,13,14] and Java [24]. The static analysis
of dynamic languages, and in particular of Python, is still a new field. There is
much to do to raise its effectiveness to that of the analysis of static languages,
such as C.

References

1. B. Akerblom, J. Stendahl, M. Tumlin, and T. Wrigstad. Tracing dynamic features
in Python programs. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR 2014, pages 292—-295. ACM, 2014.

2. R. Amadini, A. Jordan, G. Gange, F. Gauthier, P. Schachte, H. Sgndergaard,
P. Stuckey, and C. Zhang. Combining string abstract domains for JavaScript
analysis: An evaluation. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2017), Uppsala, Sweden, pages 41-57. Springer, 2017.

3. D. Ancona, M. Ancona, A. Cuni, and N. Matsakis. RPython: A step towards
reconciling dynamically and statically typed OO languages. In Proceedings of the
2007 Symposium on Dynamic Languages, DLS 07, pages 53-64. ACM, 2007.

4. G. Balakrishnan and T. Reps. Recency-abstraction for heap-allocated storage. In
Static Analysis: 18th International Symposium, SAS 2006, Seoul, Korea, August
29-81, 2006. Proceedings, pages 221-239. Springer, 2006.

5. J. Bertrane, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, and X. Rival.
Static analysis and verification of aerospace software by abstract interpretation. In
ATAA Infotech@ Aerospace, number 2010-3385 in ATAA, pages 1-38. ATAA (Amer-
ican Institute of Aeronautics and Astronautics), Apr. 2010.

6. M. Bodin, A. Chargueraud, D. Filaretti, P. Gardner, S. Maffeis, D. Naudziuniene,
A. Schmitt, and G. Smith. A trusted mechanised JavaScript specification. SIG-
PLAN Not., 49(1):87-100, January 2014.

7. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Proc.
of the 4th ACM Symp. on Principles of Programming Languages (POPL’17), pages
238-252. ACM, Jan. 1977.

8. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In Conf. Rec. of the 5th Annual ACM SIGPLAN/SIGACT
Symp. on Principles of Programming Languages (POPL’78), pages 84-97. ACM,
1978.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Standard ECMA-262. ECMAScript 2017 Language Specification, 8th edition, June
2017.

A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In
Proceedings of the 24th FEuropean Conference on Object-oriented Programming,
ECOOP’10, pages 126-150. Springer-Verlag, 2010.

D. Guth. A formal semantics of Python 3.3. Master’s thesis, University of Illinois
at Urbana-Champaign, Jul. 2013.

M. Hassan. SMT-based static type inference for Python 3. Bachelor thesis, ETH
Zirich, Department of Computer Science, 2017.

S.-H. Jensen, P. A. Jonsson, and A. Mgller. Remedying the eval that men do. In
Proceedings of the 2012 International Symposium on Software Testing and Analy-
sis, ISSTA 2012, pages 34—44. ACM, 2012.

S.-H. Jensen, A. Mgller, and P. Thiemann. Type analysis for JavaScript. In
Proceedings of the 16th International Symposium on Static Analysis, SAS '09, pages
238-255. Springer-Verlag, 2009.

V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons, J. Sarracino, B. Wie-
dermann, and B. Hardekopf. JSAI: A static analysis platform for JavaScript. In
Proceedings of the 22Nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering, FSE 2014, pages 121-132. ACM, 2014.

M. Madsen and E. Andreasen. String analysis for dynamic field access. In Compiler
Construction: 23rd International Conference (CC 2014), pages 197-217. Springer,
2014.

A. Miné. The octagon abstract domain. Higher Order Symbol. Comput., 19(1):31—
100, March 2006.

H. Oh, K. Heo, W. Lee, W. Lee, and K. Yi. Design and implementation of sparse
global analyses for C-like languages. SIGPLAN Not., 47(6):229-238, June 2012.
F. Poli. A small step abstract interpreter for (desugared) Python. Master’s thesis,
Universita degli Studi di Padova, Dipartimento di Matematica, 2016.

J. G. Politz, A. Martinez, M. Milano, S. Warren, D. Patterson, J. Li, A. Chitipothu,
and S. Krishnamurthi. Python: The full monty. SIGPLAN Not., 48(10):217-232,
October 2013.

Python Software Foundation. The Python language reference, 3.6 edition, 2017.
https://docs.python.org/3.6/reference.

J. F. Ranson, H. J. Hamilton, and P. W. L. Fong. A semantics of Python in
Isabelle/HOL. Technical report, Department of Computer Science, University of
Regina, Dec. 2008.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Program Flow Analysis: Theory and Applications, pages 189—234. Prentice-Hall,
1981.

Y. Smaragdakis, M. Bravenboer, and O. Lhotak. Pick your contexts well: Under-
standing object-sensitivity. SIGPLAN Not., 46(1):17-30, January 2011.

G. J. Smeding. An executable operational semantics for Python. Master’s thesis,
Universiteit Utrecht, 2009.

F. Spoto. Julia: A generic static analyser for the Java bytecode. In Proc. of the 7th
Workshop on Formal Techniques for Java-like Programs (FTfJP’2005), page 17,
July 2005.

https://docs.python.org/3.6/reference

	Static Value Analysis of Python Programs by Abstract Interpretation

