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Abstract7

This work aims at developing a high-order numerical method for the propagation of acoustic shock waves using the
discontinuous Galerkin method. High order methods tend to amplify the formation of spurious oscillations (Gibbs
phenomenon) around the discontinuities/shocks, associated to the relative importance of higher-harmonics resulting
from nonlinear propagation (in our case). To handle this critical issue, a new shock sensor is introduced for the sub-cell
shock capturing. Thereafter, an element-centered smooth artificial viscosity is introduced into the system wherever an
acoustic shock wave is sensed. Validation tests in 1D and 2D configurations show that the method is well-suited for
the propagation of acoustic shock waves along with other physical effects like geometrical spreading and diffraction.
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1. Introduction9

One of the most spectacular features of nonlinear acoustics is the generation of shock waves along the propagation.10

In this case, the speed c of finite amplitude sound waves is not strictly constant, even in homogeneous fluids. It is11

dependent on the wave instantaneous pressure amplitude pa. At first order, one has c ≈ c0 + βpa/ρ0c0 where c0 is the12

speed of sound of waves of infinitely small amplitude, and ρ0 is the medium density. The parameter β characterizes13

the medium nonlinearity and will be defined later on. Accordingly, the parts of the waves with the highest amplitude14

travel faster than those with smaller values. This results into a distortion of the waveform that cannot keep its profile15

unchanged. Starting, for instance, from a smooth sine wave, this distortion first leads to the steepening of parts of16

the wave profile, and ultimately to the formation of acoustic shock waves if the amplitude is high enough, or if the17

propagation distance is sufficiently long [49]. The acoustic shock waves can also be produced directly by the source18

itself and persist along propagation. Atmospheric acoustic shock waves arise in many situations, like for instance19

the sonic boom from a supersonic aircraft [52], bolide hypersonic atmospheric entries [33], or the so-called “buzz20

saw noise” due to the supersonic rotation of the tip of fan blades [54, 25]. Lithotripsy [2] uses ultrasonic shock21

waves propagating in biological tissues to fragment kidney stones, while new medical applications are based on HIFU22

(High Intensity Focused Ultrasound) [11]. Many of these examples involve shock formation, reflection, diffraction or23

focusing in propagation media with complex geometries. Most of the numerical methods developed and well studied24

in the field of nonlinear acoustics are for models that govern “one-way” wave propagation. The most popular model is25

the KZK equation [46] which is a parabolic approximation of the nonlinear wave equation. Even if this model is valid26

for many situations, it suffers from an angular limitation (±18o). Several improvements have been proposed to go27

beyond the parabolic approximation (see [12] or [20]). These methods are highly efficient for modeling long distance28

propagation, for instance, sonic boom in atmosphere. But the intrinsic limitation of these methods, is the inability29

to model back-scattering/reflections. This problem can only be addressed by the “full-wave” methods which model30

the nonlinear wave propagation in all the directions. Some of the popular full-wave methods are: “Fullwave” by31

Pinton et al. [58] using a finite difference approach, “K-wave” by Treeby et al. [64] using the k-space method, Fourier32

Continuation method [1], these methods are based on Cartesian meshes and can manage weak nonlinear propagation33

(only the first few harmonics of the wave spectrum). A numerical method handling complex geometries by using34

unstructured mesh and acoustic shock waves together is still a challenge, which is the aim of this work.35
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To solve these two issues, we propose to use the discontinuous Galerkin method (DGM) for the propagation of1

acoustic shock waves on an unstructured mesh. DGM is a kind of hybrid between the finite element and the finite2

volume methods. Hence, it gives the advantage of local high order accuracy. Moreover, it is suitable to handle complex3

geometries thanks to the use of unstructured meshes. Another advantage is its parallelization potential similar to the4

finite volume methods, which further increases the efficiency of the method. The DGM was first proposed by Reed5

and Hill [59] for solving a steady-state neutron transport equation, with its analysis provided by Lesaint and Raviart6

[48]. At present the DGM is widely applied to many areas [35]. In acoustics, it has been mainly used for linear7

acoustics [44], aeroacoustics [63, 26, 27], propagation at the interface between moving media and isotropic solids8

[50], and weakly nonlinear propagation in solids [8]. To our knowledge, DGM has not been used for propagation of9

acoustic shock waves in complex geometries.10

Nevertheless, using DGM for acoustic shock wave propagation requires to pay attention to the shock handling.11

One of the main difficulties in shock handling is to avoid Gibbs oscillations. In order to tackle this problem for12

high-order schemes, many tools are available in the literature based on slope limiters, filters, and artificial viscosity.13

A lot of work has been done in the area of slope limiters by Cockburn and co-workers [13, 16, 17, 14] and further14

extended by Biswas et al. [6] and Burbeau et al. [10]. Recent work in the direction of slope limiters are for high-order15

WENO methods like in ADER-WENO approach [23] with a subcell shock limiter, and Zhu et al. [66] proposed the16

use of Hermite WENO limiter for DGM by reconstructing the polynomial using the original DG solution from the17

neighboring cells. Nevertheless, slope limiters are not the optimal choice for high-order methods as they flatten the18

smooth extrema so that accuracy is lost. The use of modal filters in spectral methods was initially proposed by Majda19

et al. [53]. Relevant works on filtering can be found in [34, 35]. Here also, the problem could be the flattening of20

smooth extrema, if filters are applied globally. Coupling with shock-capturing tools (based on the spectral modes)21

is not efficient as filtering destroys the natural evolution of the modes. Recent application of spectral filtering for22

discontinuous Galerkin methods is achieved by Meister et al. [55], based on the idea of spectral viscosity initially23

proposed by Maday et al. [51] in coupling with sub-cell shock detection designed by Persson and Peraire [56]; finally24

the solution is post-processed using what is called as the digital total variation filtering.25

We choose here the method of artificial viscosity introduced by von Neumann and Richtmyer [65] as an efficient26

method of shock capturing for acoustic shock waves. This approach has been proposed and used with success also to27

stabilize the Euler equations on arbitrary geometric domains by Jameson et al. [40]. Relying on this approach, Hughes28

and co-workers [9, 38, 39, 36, 37] introduced the streamline diffusion method which was successful in damping the29

oscillations. For DGM in past few years, the local artificial viscosity method has gained significant importance. It30

is possible to couple it with the sub-cell shock detection algorithm, which is particularly important for unstructured31

meshes. Persson and Peraire [56] implemented this idea of sub-cell shock detection using the highest-order coefficients32

in an orthonormal representation of the solution. Once a shock is sensed in a particular element, a piecewise-constant33

artificial viscosity is introduced depending on the mesh and the solution. This local approach makes it highly adapt-34

able for parallelization, which is of key importance for DG implementation. The problem with this method are the35

jump discontinuities occurring in the viscosity map associated to the solution, which induce oscillations at the element36

boundaries. To dampen these oscillations, Barter and Darmofal [3] used a smooth artificial viscosity resulting from a37

diffusion equation. They combined hybrid meshes (structured ones near the shock and unstructured ones otherwise)38

for solving compressible Navier-Stokes equations. They also used an inter-element jump indicator proposed by Dole-39

jsi et al. [21]. Klockner et al. [43] extended the work of Persson, actually trying to smoothen the viscosity through40

its linear interpolation in the neighboring elements, while choosing the parameters more methodically. Alternatively,41

Guermond et al. [28] proposed to use the entropy viscosity, for which the viscosity coefficient depends on the entropy42

production. The viscosity is then further smoothened, as theoretically justified by Bonito et al. [7]. Recent approaches43

of shock capturing by means of residual-based artificial viscosity are implemented by Kurganov et al. [45] based on44

the concept of weak local residual error [42, 41]. Hartmann and Houston [31, 30] relied on the interior penalty DGM45

for compressible Navier-Stokes while capturing the shocks using local residuals. Reisner et al. [60] worked in a direc-46

tion similar to Barter et al. [3] by modeling the viscosity coefficient through a linear scalar-diffusion equation where a47

gradient-based source term is introduced to trigger the viscosity. Reisner et al. [60] clearly outlined as a perspective48

that: “In the future, the gradient-based source term used in the current implementation of the C-method may be com-49

bined with a noise-indicator that turns off the current gradient-based source term when it is not needed.” Therefore, a50

detailed study of the combined effect of gradient and noice indicators is essential step forward. Moreover, none of51

these works are directly related to nonlinear acoustics.52
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In the present work, we derive nonlinear equations of acoustics under a conservative form. Then, we propose1

a new sub-cell shock capturing for the DG method tool based on the gradient and the noise sensors, which we call2

as the shock sensor (SS). A detailed study of the combined effect of the gradient and noise indicators is presented,3

highlighting the motivation behind the development of this very sensitive and robust shock sensor. Though, it still4

depends on global parameters which is the topic of further research. Once an acoustic shock is sensed in a particular5

element, an element centered smooth artificial viscosity (ECSAV) is introduced there locally into the system. Note6

that, as we do not model the viscosity coefficient using a PDE, this makes it comparatively simpler to implement7

while still having only three empirical parameters. The validity of the method is demonstrated throughout different8

problems of nonlinear acoustics. Planar wave propagation is used to study the formation of N-wave, along with the9

illustration on the motivation behind the shock sensor. Then, propagation of cylindrical shock waves is studied to10

demonstrate the ability of the method to handle geometrical spreading and nonlinear effects. The last test deals with11

the nonlinear radiation of a piston source. It demonstrates the ability of the code to handle diffraction combined with12

nonlinearity.13

2. Theoretical Model14

Using the fundamental equations of fluid dynamics [47], a first-order system of equations is derived, written in15

conservative form relevant for nonlinear propagation of acoustic waves. It is equivalent to the Kuznetsov equation16

[46] which is a second-order, nonlinear scalar wave equation for potential. The fluid is assumed to be homogeneous17

in composition and quiescent i.e., therefore its ambient density and pressure are uniform and there is no ambient flow.18

Moreover, it is assumed to be lossless i.e., the viscous and thermal effects are negligible. The state variables, density,19

velocity, pressure are denoted as ρ, v = (u, v), p, respectively.20

State variables can be written as the sum of the ambient state and the acoustic perturbation [57, 18, 29]: one has21

p(x, t) = p0 + pa(x, t) and ρ(x, t) = ρ0 + ρa(x, t), where the subscripts 0 and a indicate the ambient quantities and22

acoustic perturbations, respectively. We identify v = va as the medium is quiescent. Substituting these expressions23

in the conservation laws of fluid dynamics, and retaining only terms up to second order whereas neglecting the cubic24

O(ρ3
a) and higher order terms, one gets a system of three, first-order equations exact up to the quadratic nonlinear25

terms included. Its non-dimensionalized formulation is26

∂ρ̄a

∂t̄
+
∂

∂x̄
(1 + ερ̄a) ūa +

∂

∂ȳ
(1 + ερ̄a) v̄a = O(ε2) (1)

∂

∂t̄
(1 + ερ̄a) ūa +

∂

∂x̄

[
εū2

a + ρ̄a + ε
B

2A
ρ̄2

a

]
+ ε

∂

∂ȳ
(ūav̄a) = O(ε2) (2)

∂

∂t̄
(1 + ερ̄a) v̄a + ε

∂

∂x̄
(v̄aūa) +

∂

∂ȳ

[
εv̄2

a + ρ̄a + ε
B

2A
ρ̄2

a

]
= O(ε2). (3)

The acoustic pressure pa has been eliminated by means of an expansion of the state equation at the same order27

p̄a = ρ̄a + ε
B

2A
ρ̄2

a + O(ε2). (4)

The non-dimensionalized variables are: p̄a =
pa

pm
a
, where pm

a = max |pa|; ūa =
ua

um
a
, and v̄a =

va

vm
a
, where um

a = vm
a =28

pm
a

ρ0c0
; ρ̄a =

ρa

ρm
a

where ρm
a =

pm
a

c2
0

for the state variables. The spatial and temporal variables are transformed using29

x̄ =
x
L
, ȳ =

y
L
,with L =

c0

ω0
and t̄ = ω0t, respectively. Here, ω0 is the angular frequency of the initial wave profile30
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and 2πL is the corresponding wavelength. The acoustic Mach number ε, in front of all nonlinear quadratic terms, is1

defined as:2

ε =

maxx {ua}

c0
=

pm
a

ρ0c2
0

. (5)

For most of the applications cited in introduction, the acoustic Mach number rarely exceeds 10−2. The assumption of3

weak nonlinearity and the neglecting of cubic and higher order terms is therefore fully justified.4

The ratio B/A is the fluid nonlinear parameter, measuring the quadratic nonlinearity of the state equation. For a5

perfect gas, it is equal to (γ − 1)/2 where γ is the ratio of specific heats. One also has β = 1 + B/2A. This ratio plays6

a key role in nonlinear acoustics. Values for various non-gaseous media are collected in [5, 29]. Note that Sparrow7

and Raspet [62] used the system (1)-(4) for the first time to simulate directly the propagation of nonlinear acoustic8

waves. This set of equations can be used to derive the inviscid Kuznetsov equation with just algebraic manipulations9

and without any additional assumption. In 1D frame, assuming a one-way propagation, the system (1)-(4) can also be10

reduced to the inviscid Burgers equation which is a nonlinear, scalar and 1D model.11

The method of artificial viscosity involves a parabolic regularization of hyperbolic conservation laws, by adding12

one or several dissipative terms on the right hand side of each conservation law. The choice of the dissipative term(s)13

is far from unique. Introducing the viscosity coefficient η(x), the most intuitive choice would be
(
η
∂2

∂x2

)
. However, the14

choice of the parabolic term
(
∂

∂x

(
η
∂

∂x

))
is more consistent with the form of conservation equations with a variable15

viscosity, and will help to develop a first order system of equations as a prerequisite for the DGM implementation.16

Therefore, the parabolic-regularization of the above dimensionless system of equations (1), (2), (3) becomes17  ρ̄a

(1 + ερ̄a)ūa

(1 + ερ̄a)v̄a


t

+ ∇ ·

(1 + ερ̄a)ūa εū2
a + ρ̄a + ε

B
2A

ρ̄2
a εūav̄a

(1 + ερ̄a)v̄a εūav̄a εv̄2
a + ρ̄a + ε

B
2A

ρ̄2
a


= ∇ ·


η1

∂

∂x
ρ̄a η2

∂

∂x
((1 + ερ̄a) ūa) η3

∂

∂x
((1 + ερ̄a) v̄a)

η1
∂

∂y
ρ̄a η2

∂

∂y
((1 + ερ̄a) ūa) η3

∂

∂y
((1 + ερ̄a) v̄a)

 .
(6)

Here, the viscosity coefficients ηi = ηi(x, y, t), i = 1, 2, 3 are functions of space variables and time, and are non-zero18

only over a small neighborhood of each shock. Details about the viscosity coefficients are given in section 3. The19

above system can be written in a generic conservative form for variables q1 = ρ̄a, q2 = (1+ερ̄a)ūa and q3 = (1+ερ̄a)v̄a20

as21

∂qm

∂t
+
∂ fm
∂x

+
∂gm

∂y
=

∂

∂x

[
ηm

(
∂

∂x
qm

)]
+
∂

∂y

[
ηm

(
∂

∂y
qm

)]
; for m = 1, 2, 3. (7)

Flux terms fm and gm are obviously deduced from (7).22

The discontinuous Galerkin formulation of such a convective-diffusive system is achieved using the so-called local23

discontinuous Galerkin method, initially proposed by Bassi and Rebay [4] for compressible Navier-Stokes equations.24

It was further studied by Cockburn and Shu [15]. It involves the splitting of the convective-diffusive equation into25

a system of first-order equations. Its weak formulation is written using Dubiner basis [22] (constructed using 2D26

Jacobi polynomials) as test functions. The two-dimensional complex domains are discretized using an unstructured27

mesh made up of triangular elements. The key feature of the discontinuous Galerkin method is the element-centric28

approach implying that almost all the computations are done independently within each element. The local Lax-29

Friedrichs flux is used for the connectivity within different elements. This gives the motivation to parallelize the30

computation within each element. This is done using the Nvidia graphic cards with the pycuda environment [43].31

The temporal advancement is achieved using the low storage explicit fourth-order Runge-Kutta method. Additional32

details about the method and its implementation can be found in the textbook [35].33
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3. Shock Management1

As mentioned above, the problem of spurious oscillations is tackled by localizing the regions with non-physical2

oscillations and introducing there the appropriate amount of viscosity (ηi(x), for i = 1, 2, 3) into the system (6).3

3.1. Shock Sensor4

In order to define the shock sensor, the primitive variables ρa, ua, va are easily computed from the conserved5

quantities q1, q2, q3. In discontinuous Galerkin method the approximate solution can be represented in two different6

forms, namely, the nodal one and the modal one. For the management of shock, the modal solution is of most7

importance. Indeed, with motivation from the work of Persson and Peraire [56], our new sub-cell shock detection8

tool is developed along similar lines using the coefficients of the spectral solution (modal solution). The interpolating9

polynomials ψi(ξ) being two dimensional, here, ξ is the coordinate system in the reference element. The modal10

solution can be written using two indices as11

ρa(ξ, t) =

N∑
i=0

N−i∑
j=0

(ρ̂a)i j(t)ψi j(ξ). (8)

where i and j denote the order of the interpolating polynomial ψi j(ξ) with respect to ξ and η, respectively. ψi j(ξ) is the12

2D orthonormal Dubiner basis [22, 35] with the scope in a particular element only. With N as the order of interpolating13

polynomial, the total number of points in one element turns out to be Np = 1 . . . (N + 1)(N + 2)/2, see [35] for further14

details. The coefficients (ρ̂a)i j(t) of the basis functions are often referred as the modes of the DG solution. They play15

a key role in our method for sensing the shock. We intend to exploit the modes of kth element which is (ρ̂a)k
i j(t), this16

helps us estimate the shape of the solution vector in each and every element of the mesh.17

Our shock sensor is based on the linear components i.e., the coefficients of ψ01(ξ) and ψ10(ξ), and the highest order18

components of the modal solution of order N, i.e.the coefficients of ψ0N(ξ) and ψN0(ξ). The reason for this choice of19

coefficients is that the linear component measures the gradient of the waveform, whereas the highest order coefficients20

indicate the presence of spurious oscillations associated to the nonlinear generation of higher harmonics. In various21

tests not reproduced here, the choice of only linear coefficients was insufficient as they were not sensitive to spurious22

oscillations. Different combinations of (ρ̂a)i j(t) were considered but no improvement was evident, implying that the23

first and last modes are the first to respond to any change in the waveform in nonlinear acoustics. Moreover, this idea24

was also expressed by Reisner et al. [60] as an important perspective for future research. Further details of this choice25

are explained in section 5.1.1. Now, we define the Shock Sensor (SS) in the kth element associated to any physical26

variable (ρa, ua, va) of the system (6), as27

(S S )k
ρa

(t) =
(S S 1)k

ρa
(t)

max
k
{(S S 1)k

ρa
(t)}

+
(S S N)k

ρa
(t)

max
k
{(S S N)k

ρa
(t)}

, (9)

(S S )k
ua,va

(t) =
(S S 1)k

ua,va
(t)

max{max
k
{(S S 1)k

ua
(t)},max

k
{(S S 1)k

va
(t)}}

+
(S S N)k

ua,va
(t)

max{max
k
{(S S N)k

ua
(t)},max

k
{(S S N)k

va
(t)}}

, (10)

The notation (S S )k
ua,va

(t) implies that it is either (S S )k
ua

(t) or (S S )k
va

(t). It is important to mention here that, the28

maximum is calculated over all the elements. Further, (S S 1) fa is the first-order sensor of variable fa equal to either29

ρa, ua or va and defined as30

(S S 1)k
fa (t) =| ( f̂a)k

01(t) | + | ( f̂a)k
10(t) |, (11)

and (S S N) fa is similarly the Nth-order sensor of variable fa31

(S S N)k
fa (t) =| ( f̂a)k

0N(t) | + | ( f̂a)k
N0(t) | . (12)
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Here ( f̂a)k
i j(t) are the coefficients of the modal solution (8) in the kth element. For the sake of brevity we denote the1

shock sensors (S S )k
m(t) with m = 1 for (S S )k

ρa
(t), m = 2 for (S S )k

ua
(t) and m = 3 for (S S )k

va
(t). Note that the L∞-norm2

is used to calculate the shock sensor as the objective is to give the maximum importance to the element with the3

maximum gradient or maximum oscillations. Also, it is important to note that (11)-(12) gives a relative value, and4

this choice works efficiently for sensing acoustic shock waves when represented using the Dubiner orthonormal basis.5

Once shock sensors are calculated for each element, the need of viscosity ηm in the kth element is checked provided6

the condition7

(S S )k
m(t) ≥

max
k
{(S S )k

m(t)}

α1
, k = 1, · · · ,K, (13)

is satisfied. Here α1 is a user-given parameter quantifying the minimum value of (S S )k
m(t) above which a region of8

high gradient is sensed for m component of the solution at time t in element k. When satisfied, the corresponding9

element is tagged as an infected element. (S S )k
m(t) ∈ [0, 1] with the highest value representing the element with10

highest contribution from linear and highest order modes. This shock check condition helps identifying the elements11

needing artificial viscosity. All the numerical results in this paper are computed using α1 = 10. According to our12

numerous tests α1 = 10 gives a sufficiently broad range of elements in and around the region of shock, and therefore13

remains fixed. In order to reduce the spread of the viscosity around the shock, the value of the parameter α1 can be14

reduced or vice versa. A physical explanation for our choice of shock sensor will be explained by means of various15

numerical experiments in section 5.1.1.16

It is important to sense regions of high gradient at all time steps irrespective of the presence or not of a shock.17

Therefore it is important to calibrate the amount of viscosity to be introduced in the domain at each time step. This is18

done using the Gradient Factor (GF), defined as19

GF(t) = exp

 max
k
{(S S 1)k

ρa
(t)}

max
k
{(S S 1)k

ρa
(0)}
− 1

 . (14)

The function GF(t) measures the steepening of the wave profile with respect to the initial condition. Note that the20

GF(t) is chosen as an exponential function, because the evolution of the modes in time tends to behave exponentially.21

This keeps the artificial viscosity sufficiently low before the acoustic shock is formed so that the smooth profile is22

dissipated as less as possible. In order to keep the gradient factor GF(t) under control, it is tapped by an upper limit as23

GF(t) ≤ α2, (15)

where α2 is a user given parameter. All the numerical results in this paper are computed using α2 = 20.24

3.2. Element Centered Smooth Artificial Viscosity25

Once shocks are localized (i.e. the infected elements are flagged), an appropriate amount of smooth artificial26

viscosity is introduced in the kth infected element as a two-dimensional Gaussian distribution27

ηk
m(xk

i ) = (η0)k
m exp

−  xk
i − (x0)k

(σ0)k

2

−

yk
i − (y0)k

(σ0)k

2 , i = 1, ...,Np. (16)

Here xk
i = (xk

i , y
k
i ), i = 1 . . .Np, are the points in the kth element. We label (16) as the element centered smooth28

artificial viscosity (ECSAV). The ECSAV reaches its maximum in the element at position (xk
0, y

k
0), naturally chosen as29

the centroid of the considered kth element. The width σk
0 of the ECSAV beyond which artificial viscosity exponentially30

decays is defined as the circumradius of the respective infected element. Finally, the choice of the amplitude of ECSAV31

(η0)k
m in the kth infected element is very crucial because it has to be nonzero only around the shock and zero elsewhere.32

It is defined as33

(η0)k
m(t) =

 α3.GF(t).(S S )k
m(t) if (S S )k

m(t) ≥
max

k
{(S S )k

m(t)}

α1
0 otherwise.

(17)

6



Numerical Paramters Values
α1 10
α2 20
α3 O(2ε × 10−2)

Table 1: Numerical Parameters

We recall here that the inequality (13) is used as an indicator function to turn on/off the viscosity. Parameter α3 is1

empirically chosen. At present, we do not have an expression/bound for this parameter. Nevertheless, based on our2

experience relying on numerous numerical tests, we propose3

α3 ≈ O(2ε × 10−2), (18)

where ε is the acoustic Mach number. Note that proportionality of numerical viscosity to wave amplitude ε is never-4

theless coherent with the expansion order of the system (1)-(4). All the numerical parameters in this implementation5

are summarized in the Table 1. It is important to mention that the use of smooth viscosity instead of a piecewise6

constant viscosity gives a significantly better solution. Sudden inter-element jumps in the viscosity induce oscillations7

that will propagate and may even lead to new unphysical tiny shocks due to cumulative nonlinearity. Further details8

are given in the forthcoming sections, and especially in subsection 5.1.4, different ways of implementing ECSAV are9

discussed so as to make viscosity as smooth as possible.10

4. One-dimensional validation tests11

First, the method is implemented in 1D. This preliminary stage allows to focus on the design of the shock sensor12

and to validate the method carefully by comparing the numerical results to a quasi-analytical solution [32, 19]. In 1D,13

the system of equations (6) can be simplified into the Burgers equation in retarded time :14

∂p
∂σ
−
∂

∂τ

[
p2

2

]
=

∂

∂τ

[
η(τ, σ)

(
∂p
∂τ

)]
, (19)

with the following dimensionless variables:15

σ =
x

Lsh
, τ = ω0

(
t −

x
c0

)
. (20)

The characteristic length Lsh is the shock length i.e., the distance required for an initially sine wave to become an16

acoustic shock wave. It is given by17

Lsh =
1
βεk

, (21)

where k = ω0/c0 is the wavenumber. We choose as initial condition a single sine wave period18

p(0, τ) =

{
sin(π(τ − 0.05)) if − 2π ≤ τ − 0.05 ≤ 2π

0 otherwise. . (22)

Quasi-analytical solution of Burgers equation is given by the so-called Burgers-Hayes method [32, 19], which con-19

sists in Poisson’s implicit solution expressed for potential rather than pressure. In case of shock formation, Poisson’s20

solution gets multivalued. Then physically admissible solution for potential is the maximum value, in order to satisfy21

the entropy condition. Analytical Burgers-Hayes solution will be referred as ‘Quasi-Analytical’ in the following. The22

numerical parameters used for DGM are chosen as τ̄ ∈ [−2π, 2π], σ̄ ∈ [0, 1.5].23
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Figure 1: Comparison between smoothness indicator (SI) and shock sensor (SS). Left: the unstabilized DG solution at distance σ̄=1.07 computed
with 40 elements and polynomial order 8 with no viscosity, compared to the quasi-analytical solution. Center: Persson’s SI for the unstabilized DG
solution. Right: Shock sensor SS for the unstabilized solution. The black dotted line shows the threshold above which a shock is sensed.

4.1. Shock Sensor Vs Smoothness Indicator1

The efficiency of our shock sensor (SS) is highlighted over the Persson’s smoothness indicator (SI) in this section.2

Figure 1 shows the comparison of the two using the same unstabilized DG solution computed (left subplot) slightly3

beyond shock formation (σ̄=1.07) with no viscosity. In Persson’s approach (center subplot), the value of S I must4

be greater than (note S I is a negative axis) the value of the black dotted line in order to turn on the viscosity. The5

method responds well but at the central element. However, the value of S S (right subplot) is obviously well above the6

threshold for all three central elements located around the shock, and much below elsewhere. Therefore, SS is more7

sensitive to such numerical oscillations, which makes it more susceptible to shocks than to smoothness.8

4.2. Smooth Artificial Viscosity Vs Piecewise constant viscosity9

Figure 2 shows the comparison of the solutions obtained using the different methods of artificial viscosity alloca-10

tion. Persson’s algorithm combining smoothness indicator and constant viscosity per element is denoted by ‘SI+CV’.11

The second approach is a kind of hybrid of Persson’s approach and ours, using SS to detect the shock but introducing a12

constant viscosity (equal to the maximum of ECSAV) when (13) is satisfied. This is denoted by ‘SS + max(ECSAV)’.13

Lastly, Figure 2 displays the full method combining SS shock sensor and ECSAV smooth viscosity. These three14

ways of introducing artificial viscosity are compared with quasi-analytical solution. Computation is shown at position15

σ̄ = 1.455 close to maximum shock amplitude, and is performed with K = 50 elements and fourth polynomial order16

approximation (N = 4). The overall wave profile (left upper subplot) shows that all methods well localize the shock17

and simulate the waveform away from it. The artificial viscosity map (left lower subplot) nevertheless shows for18

ECSAV a smooth viscosity distribution well localized around the shock, while the two other methods with piecewise19

constant viscosity necessarily introduce some discontinuities and a more widespread distribution. From the zoom-in20

of the lower part of the discontinuity (right subplot), the full ‘SS+ECSAV’ method shows a very smooth solution with21

no oscillations at all, thanks to the smooth viscosity distribution, while other methods are not as efficient and lead to22

oscillations just before shock. Same conclusions could be drawn by examining the solution just after shock.23

Full propagation of this case is shown in Figure 3, i.e., before and after shock formation till two shock lengths. It24

is important to observe that even before the shock is formed, ECSAV is present with a very small amplitude.25

4.3. Handling of Multiple Shocks and Shock Merging26

We now consider an initial condition leading to multiple moving shocks, chosen as27

p(0, τ) =


−

(τ + 0.5π)
π

, if − π ≤ τ ≤ −0.7π

−
τ

π
, if − 0.7π < τ ≤ π

0, otherwise

(23)
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Figure 2: Comparison of the three viscosity implementations namely, Persson’s approach (SI+CV), constant viscosity based on SS
(SS+max(ECSAV)), ECSAV based on SS (SS+ECSAV) with the quasi-analytical solution in a domain with K = 50 elements and order of polyno-
mial N = 4 at distance σ̄ = 1.455. Top left-subplot shows the pressure variation with corresponding viscosity distribution in lower subplot. The
zoom-in of the lower part of discontinuity is shown in the right plot.

The numerical parameters chosen for DGM are1

Space: τ̄ ∈ [−2.2π, 2.2π],
Time: σ̄ ∈ [0, 5],
Elements: K = 110,
Polynomial: N = 6.

(24)

Figure 4 shows the initial condition (left column) and the waveform after propagating over two shock lengths (right2

column). The three initial shocks are now moving, the two first ones leftwards, the last one rightwards, which leads to3

a lengthening of the waveform. All these features are well simulated, the only approximation being a slight spreading4

of the numerical solution resulting from the introduction of the stabilizing artificial viscosity. One can observe that5

there is no viscosity initially (center-left plot), however the viscosity allocation during the propagation (center-right6

plot) is proportional to the shock strength. Shock sensors (two lower plots) and viscosity maps well follow the shock7

displacement. The two first shocks keep perfectly separated from one another, despite the fact they are quite close8

from one another. Figure 5 shows the same figures (waveforms, viscosity maps, shock sensors) after traveling over9

three shock lengths (left) and five shock lengths (right). At three shocks lengths, the two first shocks are about to10

merge, the shock sensor is spread over 3 elements only instead of 2, and the two viscosity maps now slightly interfere11

locally. At five shock lengths, the two head shocks have merged, wave profile has stabilized into an N-wave, with12

two shocks moving in opposite directions. These ones are perfectly well-tracked over one single element by Shock13

Sensor.14
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Figure 3: Full propagation of a sine-period in a domain with K = 50 elements and order of polynomial N = 4 at different distances, the pressure(top)
and its respective ECSAV(bottom) is presented. Top Left: σ̄ = 0.182; Top Right: σ̄ = 0.545; Bottom Left: σ̄ = 1.091; Bottom Right: σ̄ = 2.0.
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Figure 4: Top: Comparison of the complete numerical method (DG+SS+ECSAV) with the quasi-analytical solution for initial condition with three
shocks. Middle: Viscosity allocation in the domain. Bottom: SS in each element, the dotted line indicates the threshold above which a shock is
sensed. Left: Initial condition. Right: Simulation at around 2 shock lengths.
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Figure 5: Same as Figure4. Left: at around 3 shock lengths. Right: at around 5 shock lengths.
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5. Two-dimensional validation tests1

In this section, three numerical tests are presented for the validation of the 2D method. First, the numerical solution2

for the propagation of a plane wave is compared to the quasi-analytical solution of the inviscid Burgers equation for3

plane waves [32, 19]. This test is also used to underline the motivations behind the shock sensor, along with the4

different approaches of implementation of ECSAV on an unstructured mesh. The second test deals with the nonlinear5

propagation of cylindrical waves. The numerical results are compared to a quasi-analytical solution of the Burgers6

equation for cylindrical waves [24]. The last test is a comparison between the numerical results and results computed7

by another method: a one-way method called HOWARD (Heterogeneous One-Way Approximation for the Resolution8

of Diffraction) presented in Dagrau et al. [20] for simulating nonlinear radiation from a piston-transducer.9

5.1. Propagation of Nonlinear Plane Waves10

In this part, a simulation of a plane-wave along x̄-axis is done on a 2D unstructured mesh (boundary conditions11

are rigid walls). For this configuration it is possible to compare the numerical results to the quasi-analytical solution12

of the Burgers equation, as the initial and the boundary conditions are consistent with the assumptions underlying the13

Burgers equation.14

5.1.1. Numerical motivations behind the shock sensor15

To illustrate the interest of the composite shock sensor (between the first and the highest orders), its behavior is16

analyzed for the case of a plane wave propagating in a 2D unstructured mesh. The importance of SS1 is highlighted in17

subsection 5.1.2, and that of SSN is discussed in subsection 5.1.3. The computational domain is rectangular (x̄, ȳ) =18

[−21, 21] × [−4.2, 4.2]. The unstructured mesh consists in 1308 triangular elements and the order of polynomial19

approximation is 8. The initial conditions are set to correspond to a plane wave propagating toward +x̄ and the20

waveform is an inverted sine-period:21

p̄a(x̄, ȳ, t = 0) = − sin (x̄) ; if |x̄| ≤ π,
ūa(x̄, ȳ, t = 0) = p̄a(x̄, ȳ, t = 0),
v̄a(x̄, ȳ, t = 0) = 0.

(25)

The acoustic Mach number is set equal to ε = 2.2 × 10−4. The numerical parameters related to ECSAV taken for this22

configuration are: α1 = 10, α2 = 20, and α3 = 6 × 10−6.23

5.1.2. First-Order Contribution to the Shock Sensor24

Figure 6 presents three different shock sensors corresponding to ρa, along with a zoom-in of the plot over x̄-axis25

of pa. All these plots are made after the propagation over around three shock lengths.26

The subplot-(a) shows (S S )k
ρa

(t), k = 1, · · · ,K, when only the linear contribution of the modal solution (8) is27

considered to construct the shock sensor. Recall that the S S k
ρa

is constant in each element as it is computed from the28

modal solution of that element, and this constant is assigned to each node in that particular element. In this case, the29

shock sensor takes the form:30

(S S )k
ρa

(t) =
2(S S 1)k

ρa
(t)

max
k
{(S S 1)k

ρa
(t)}

(S S )k
ua,va

(t) =
2(S S 1)k

ua,va
(t)

max{max
k
{(S S 1)k

ua
(t)},max

k
{(S S 1)k

va
(t)}}

.

(26)

The subplot-(b) shows (S S )k
ρa

(t), k = 1, · · · ,K, when only the highest-order contribution of the modal solution31

(8) is considered to construct the shock sensor. In this case, the shock sensor takes the form:32

(S S )k
ρa

(t) =
2(S S N)k

ρa
(t)

max
k
{(S S N)k

ρa
(t)}

(S S )k
ua,va

(t) =
2(S S N)k

ua,va
(t)

max{max
k
{(S S N)k

ua
(t)},max

k
{(S S N)k

va
(t)}}

.

(27)
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Figure 6: Comparison of the different numerical solutions after the propagation of a sine-period (25) over three shock lengths. S S maps cor-
responding to ρa are shown in subplots (a), (b), (c) using the definition ‘SS1’:(26), ‘SSN’: (27), ‘SS1+SSN’: (9)-(10), respectively. A zoom of
pressure plot p̄a over x̄-axis ȳ = 0 of p̄a of all the three cases is shown in subplot-(d).
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Lastly, the subplot-(c) shows (S S )k
ρa

(t), k = 1, · · · ,K, with the actual definition of S S as given by (9)-(10). Note,1

the factor 2 in (26) and (27) is due to the purpose of normalization.2

After propagation over around three times the shock length, the sine-period is transformed into a sawtooth wave-3

form due to nonlinear effects. Shock is clearly located by the first order shock sensor (26) as evident from Figure4

6-(a). Also, the value of the shock sensor is very high around the shock, thus inducing as expected a high viscosity5

introduced into the system to suppress the oscillations.6

In the case of a highest-order sensor (27), the shock front is not as clearly visible on Figure 6-(b), and the value of7

the shock sensor is not as high as previously in the elements around the shock. Consequently, the viscosity introduced8

is much smaller and nonuniform around the shock. Therefore, there remains a possibility of spurious oscillations due9

to insufficient dissipation.10

In the case of full shock sensor S S , a clear shock front is once again captured by the shock sensor as evident from11

Figure 6-(c). This case is similar to the first order sensor, with high values of shock sensor implying the sufficiently12

high viscosity required for dissipating spurious oscillations.13

All the above remarks are supported by the resulting axial pressure p̄a zoomed around the shock and shown in14

Figure 6-(d). As expected p̄a corresponding to SSN (green) keeps some unphysical spurious oscillations, whereas15

the other two curves corresponding to the first-order sensor and full SS display no oscillations at all and are close to16

one another. It can therefore be concluded that highest-order sensor SSN is not sufficient alone to manage shocks, at17

least in the framework of weak acoustic shock waves on unstructured mesh. On the other hand, first-order sensor SS118

seems to be the key ingredient for tackling such situations. However, there are some numerical artifacts which the19

sensor SSN is capable of controlling, as will be discussed in the next subsection.20

5.1.3. Highest-Order Contribution to the Shock Sensor21

Since we are simulating the propagation of a plane wave along the x̄-axis in a 2D domain, v̄a should remain zero.22

But due to non-smooth ICs or discontinuities, it may become significant in our method. Therefore, it is required to23

locate resulting mild oscillations right at the beginning of the simulation so as to damp them as soon as possible.24

Otherwise, they could get dominant in long propagation due to the cumulative nonlinear effect. In this subsection,25

the importance of highest-order sensor SSN is highlighted for this purpose. Figure 7 presents the same three different26

shock sensors as in previous subsection, but now corresponding to v̄a, along with a zoom-in of the plot over x̄-axis of27

v̄a around shock. Recall that the S S k
va

is constant in each element as it is computed from the modal solution of that28

element, and this constant is assigned to each node in that particular element.29

All these plots are made after the propagation over around a half shock length. As before, the subplot-(a) shows30

the value of (S S )k
va

(t), k = 1, · · · ,K, when only the first-order sensor (26) is considered, whereas the subplot-(b)31

shows the map (S S )k
va

(t), k = 1, · · · ,K, when considering only the highest-order sensor (27). Lastly, the subplot-(c)32

shows the map of (S S )k
va

(t), k = 1, · · · ,K when the full shock sensor is used.33

It is important to observe that there is no clear pattern in Figure 7-(a) for a first-order sensor. Moreover, the value of34

the shock sensor keeps very small compared to the previous case, and consequently, the viscosity imposed is feeble. It35

can therefore be concluded that mild, noisy oscillations of the velocity v̄a are not detected by the shock sensor (26). On36

the other hand, a much better pattern is visible on Figure 7-(b), with also a large value of the Nth-order shock sensor.37

As a result the imposed viscosity is stronger. However, the shock sensor is distributed over all the numerical domain.38

Because of this non-distinguishable pattern of S S map, the viscosity is spread almost everywhere. This could lead to39

unwanted dissipation. Nevertheless, SSN is definitely required as it senses the oscillations. In the case of Figure 7-(c),40

a clearly distinguishable pattern is obviously visible where the oscillations are important. Also, SS value is significant41

enough to impose the required viscosity. As the contrast in the SS pattern is significant, introduction of viscosity is42

more localized near the oscillations compared to the previous case.43

All the above observations are supported by the plot over x̄-axis of v̄a shown in Figure 7-(d). The value of v̄a44

corresponding to SS1 (blue) is, as expected, greater than other two, because there is almost no viscosity damping45

it. On the contrary, the dissipation is maximum in the case corresponding to SSN (green) as the shock sensor is the46

largest. However, in the case corresponding to the full shock sensor (red), the dissipation keeps nevertheless evident47

compared to the first-order sensor. Therefore, the first-order sensor is not able to sense the mild oscillations caused by48

non-smooth ICs or discontinuities, contrarily to the highest-order sensor and the full shock sensor. We can conclude49

this section with the inference that neither SS1 nor SSN are by themselves sufficient to capture weak acoustic shock50

waves in the numerical method based on DGM using fully unstructured meshes. However, the full shock sensor51

14



Figure 7: Comparison of the different numerical solutions after the propagation of a sine-period (25) till half shock length. Shock Sensor maps
(S S ) corresponding to v̄a is shown in subplots (a), (b), (c) using the definition ‘SS1’:(26), ‘SSN’: (27), ‘SS1+SSN’: (9)-(10), respectively. Plot
over x̄-axis of v̄a of all the three cases is shown in subplot-(d).
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Figure 8: Illustration of different approaches for viscosity allocation in an unstructured mesh. Left plot (a) : example of unstructured mesh. Plots
(b) to (e): examples of viscosity maps for CV (b), ECSAV (c), ECSAV+EN (d) and ECSAV+EN+VN approaches (e). See text for more details.

(9)-(10) which is the amalgamation of SS1 and SSN, is able to simultaneously capture shocks as well as detect mild1

oscillations caused by the non-smooth part of the waveform.2

5.1.4. Implementation of ECSAV3

In this part, the influence of the implementation of the maps of artificial viscosity is analyzed for different strate-4

gies. At this point, it is important to highlight that the method is implemented to use GPU (Graphical Processing5

Units) and especially Nvidia graphic cards with the CUDA framework. Parallelization is done in an element-centric6

way where all the computations are made in parallel in each element. If the artificial viscosity is not taken into account,7

communication between elements arise only for one stage (exchange of the numerical flux across the boundaries) and8

requires only for each element to communicate with their closest neighbors. As mentioned in section 3.2, the key idea9

in ECSAV is to have smooth maps of viscosity. It is important to recall that DGM involves elements (triangle in this10

work) with quadrature points inside, which depend on the order of polynomials (see Figure 8-a for an illustration).11

Formulation given in section 3.2 provides a smooth viscosity inside each element (on the quadrature points) but do12

not necessarily between elements.13

Four different ways of implementing artificial viscosity are proposed here. Figure 8 provides an illustration of14

the allocation through the unstructured mesh. Let us assume the rth element is an infected element i.e., (η0)r
m , 0. It15

shares its edges with three different elements, say, re1 , re2 , re3 , we call these neighbors edge neighbors (ENs) (in case16

of a boundary element, it will have two edge neighbors only). Moreover, its vertices are shared by elements other than17

just the edge neighbors, let us label them , rv1 , · · · , rvR , (say), and we call them vertex neighbors (VNs).18

The first approach is when a piecewise constant viscosity denoted as ‘CV’ (similar to [56]) is introduced instead19

of a smooth artificial viscosity, as shown in Figure 8-(b):20

ηr
m(x) = (η0)r

m. (28)

The second approach is when ECSAV is introduced only in the respective element without any interaction with21

the neighbors, as shown in Figure 8-(c):22

ηr
m(xr

i ) = (η0)r
m exp

− (
xr

i − (x0)r

(σ0)r

)2

−

(
yr

i − (y0)r

(σ0)r

)2 (29)

The third approach is when the ECSAV in the rth element interacts with the ECSAVs of its three neighbors23

elements. In the following it is referenced as ECSAV + EN, as shown in Figure 8-(d): (29) is appended by the edge24

16



Figure 9: Comparison of the different numerical solutions after the propagation of a sine-period around five shock lengths. Viscosity corresponding
to ρ̄a is shown in subplots (a), (b), (c), (d) using the definition ‘CV’:(28), ‘ECSAV’: (29), ECSAV+EN: (30), ECSAV+EN+VN: (31), respectively.
Plot over x̄-axis of p̄a of all the four cases is shown in subplot-(e) with zoom-in near the discontinuities in subplots (f),(g).17
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Figure 10: Comparison of the plot over x̄-axis of the numerical solution (ECSAV+EN+VN) after the propagation of a sine-period around five shock
lengths with a quasi-analytical solution of the 1D inviscid Burgers equation. The numerical solution is obtained using the approach (31) for the
introduction of viscosity. Zoom-in of the left and the right shock are shown in the center and the right subplots, respectively.
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This makes the viscosity map smoother than the two previous approaches. This is important because, as shown in2

1D, discontinuities in the viscosity function could induce oscillations at the element boundaries. To further smoothen3

the viscosity function, it is convenient to take also into account the viscosity contributions of the vertex neighbors, as4

shown in Figure 8-(e) and referenced by ECSAV + EN + VN. This is achieved by appending the viscosity function in5

(30) by viscosity of vertex neighbors, given by6
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(31)

7

These different strategies are tested on the propagation of a plane wave on a 2D domain with unstructured mesh.8

Parameters are the same as in section 5.1.1 except the initial waveform which is chosen to be the opposite : p̄a(x̄, ȳ, t =9

0) = sin (x̄) ; if |x̄| ≤ π. Note that this change of sign in the initial waveform has an important consequence in nonlinear10

acoustic, since theoretically the solution after a shock distance is no longer a sawtooth wave, as in previous section,11

but an N-wave. Figure 9 presents results for the four different implementations of artificial viscosity. The viscosity12

is computed on each point of the element. Subplot (a) takes the constant state as each point of the element, subplot13

(b) computes a Gaussian within an element with centroid of that element as the center of the Gaussian, subplot (c)14

constructs the Gaussian like in (b) and also adds the overlapping three Gaussian adjacent to the edges, whereas subplot15

(d) does everything as (c) and also adds the overlaps from the vertices (respectively CV, ECSAV, ECSAV + EN and16

ECSAV + EN + VN). The results are shown for a distance of propagation of around five shock lengths. One can17
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Figure 11: Comparison of the plot over x̄-axis of the numerical solution (ECSAV+EN+VN) after the propagation of a two sine-periods with
amplitudes: 5 MPa and 5%, 10%, 20% of the maximum amplitude with their quasi-analytical solution in subplot (left), (center), (right), respectively.
The distance of propagation is taken to be 20 shock lengths of the bigger sine-pulse.

see that the viscosity maps are smoother and smoother as expected. The locations of the high values of viscosity1

are also remarkable, on each subplot, they correspond to the locations of the two shocks of the N-wave. Subplot (e)2

shows the waveform extracted at the center of the computational domain (ȳ = 0) for the different implementations.3

Each of them allows to recover the classical N shape. Nevertheless, the zooms provided in subplots (f) and (g) show4

that spurious oscillations are reduced if the viscosity is smoother. It demonstrates that the strategies with the edge5

neighbors and with the vertex neighbors are better than the ones without interaction between elements. The additional6

cost of communication between elements is not very important and this strategy can easily be implemented in practice.7

In the following parts, the viscosity maps are computed with the fourth option (ECSAV + EN + VN). Figure 108

shows the comparison between the numerical solution with this implementation and the 1D reference solution for the9

dimensionless pressure. There is an excellent agreement concerning the position of the shocks and their amplitude.10

Moreover the zooms (second and third subplots) show that spurious oscillations are very weak.11

To further demonstrate the robustness of the shock sensor, we consider the following initial condition made of two12

signals with different amplitudes:13

p̄a(x̄, ȳ, t = 0) =


R sin(x̄ + π) if |x̄ + π| ≤ π
sin(x̄ − π) if |x̄ − π| ≤ π

0 otherwise
,

ūa(x̄, ȳ, t = 0) = p̄a(x̄, ȳ, t = 0),
v̄a(x̄, ȳ, t = 0) = 0,

where R < 1 is the amplitude of the first sine-pulse, the amplitude of the second sine-pulse is assumed to be 1 (ie the14

reference for the computation). This initial condition is an extension of the initial condition taken in the previous test.15

Three different cases are considered with R = {0.05, 0.10, 0.20}. All the other numerical parameters and the mesh16

are the same as in the previous test. This maintains the same ECSAV parameters as in the above case, and thus can be17

used to study the effect of ECSAV (triggered by a larger amplitude) on smaller amplitudes. Also, unlike the previous18

test, the distance of propagation is taken to be 20 shock lengths (Eq. 21) for the bigger sine-pulse (previously it was 519

shock lengths). Figure 11 presents the comparison of the three cases with their quasi-analytical solutions. The shock20

length is inversely proportional to the amplitude of the wave: the higher the amplitude, the shorter the shock length.21

Therefore, the values of R correspond to 1, 2 and 4 shock lengths based on the smallest signal respectively. So the22

nonlinear effects are up to 20 times smaller for the small sine-pulse than for the high sine-pulse. Nevertheless, in all23

the cases, none of the smaller amplitudes are excessively dissipated. This test demonstrates the ability of the method24

to handle shocks with very different amplitudes. Indeed, the method does not impose extra dissipation in smooth25

regions of the waveform, and is capable to model propagation of signals of different amplitudes for long distances.26

Results of this section illustrate the ability of the proposed method to simulate the propagation of a plane acoustic27

shock waves on an unstructured mesh. In the next section, more complex 2D configurations are investigated.28
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5.2. Propagation of Nonlinear Cylindrical Waves1

The goal of this section is to compare the numerical results to a quasi-analytical solution in the case of nonlinear2

propagation of cylindrical waves. This test is meant to demonstrate the shock formation along with the geometrical3

spreading away from the center. We consider a circular domain and choose the physical parameters to be those of4

water: ρ0 = 1000 kg.m−3, c0 = 1500 m.s−1, β=3.5. The cylindrical waves are generated by imposing a Gaussian pulse5

as initial condition:6

pa(x, y, t = 0) = pm
a exp

(
−

x2 + y2

λ2

)
, (32)

where the amplitude pm
a = 1.5 × 108 Pa and λ = 1.5 × 10−3 m. Note that the width of the pulse is approximatively7

λ. The computational domain has a radius of 40λ as shown in Figure 12-(a). It is meshed anisotropically, the left part8

of the mesh is discretized using 1 element per wavelength, whereas 4 elements per wavelength are used on the right9

side. The polynomial order is N=6. This mesh allows to have a very good accuracy along the positive x-axis and to10

limit the global number of nodes. In Figure 12-(b) the x-component of the velocity ua is shown, the global shape of11

the waveform remains the same in all directions, however some numerical dispersion is clearly visible on the left side12

of the domain, due to a poor discretization. Consequently, the distribution of ECSAV, η2, is significantly different in13

the left and right semi-circles, as seen in Figure 12-(c). This difference highlights the sensitivity of the shock sensor14

to small amplitude oscillations (like noise) due to dispersion in the coarser mesh, which increases the magnitude and15

the spread of the ECSAV.16

The numerical results can be compared to a quasi-analytical solution. The nonlinear propagation of cylindrical
waves can be described by the generalized inviscid Burgers equation for cylindrical waves [61, 24]:

∂v
∂r

+
v
2r
−
β

c2
0

v
∂v
∂t

= 0, (33)

where v is the particle velocity, r is the propagation distance.17

This equation is valid outside the source region for small acoustic Mach number, for more details see [61, 24].
This equation can be rewritten under a dimensionless formulation:

∂v̄
∂σ̄
− µv̄

∂v̄
∂τ̄

= 0, (34)

where v̄ = v
v0

(
r
r0

)1/2
, and σ̄ =

(
r
r0

)1/2
, with r0 and v0 are the radius of the source and the maximum particle velocity18

at r = r0. The dimensionless retarded time is τ̄ = ω(t − r/c0), and µ = 2βkεr0 measures the importance of the19

nonlinear effects, smaller values imply weaker nonlinearity. This dimensionless formulation is analogous to the20

Burgers equation for plane wave. Therefore, the Burgers-Hayes quasi-analytical solution [32, 19] of the previous21

section can also be used here by changing the variables.22

As mentioned above, the cylindrical Burgers equation is only valid away from the source. Therefore, the velocity23

field is extracted at a distance greater than λ, the approximate width of the source. We choose to extract the velocity24

field at r0 = 2λ. In practice, a probe located at (x = r0, y = 0) is used during the numerical simulation to store the25

velocity field every time step. This signal is used as an initial condition for the quasi-analytical method, that is why26

it is referred to “initial condition” in the following paragraphs. Then, the quasi-analytical solution is compared to the27

numerical signals extracted with other probes located every λ on the positive x-axis. Note that the value of the initial28

pressure of the Gaussian pulse has been chosen in order to have µ ≈ 1 with r0 = 2λ. It is important that the initial29

conditions have a high amplitude to observe nonlinear effects because the geometrical spreading for cylindrical waves30

scales as r1/2.31

Figure 13 shows the comparison between the quasi-analytical solution and the numerical solution at three different32

distances of propagation 1λ, 17λ, 35λ, respectively. Here, the distances of propagation are along the positive x-axis,33

defined from the the point where the initial condition has been extracted. The waveforms are presented in the left34

column and their respective spectra are presented in the right one. Each subplot shows 1) the initial condition (black),35

2) the linear analytical solution (green with µ = 0, models geometrical spreading only), 3) the nonlinear quasi-36

analytical solution (red), and 4) the numerical DG solution (blue). Concerning the waveforms, it is important to37
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Figure 12: (a) Mesh used for the simulation, (b) velocity field, and (c) ECSAV map for ua.

observe the different evolutions of the linear and nonlinear solution. After a propagation over 1λ, all solutions are1

very close, but after a propagation over 15λ, the solutions are different, even though the positive amplitudes of the2

linear and nonlinear simulations are close to one another because of the geometrical spreading. A very evident shock3

formation is occurring in the nonlinear solution, and the steepening increases with the radial distance. The nonlinear4

steepening is very well-matched with the quasi-analytical solution in all cases. Concerning the spectrum, the three5

subplots show the transfer of energy to the higher harmonics with the propagation distance. The steeper the shock, the6

greater the energy in the higher harmonics. A close match of both nonlinear and quasi-analytical spectrum is observed,7

while the linear spectrum remains similar in all three cases without any transfer of energy to higher harmonics. It is8

important to note here that, the propagation of the acoustic shock is from right to left, this is counter-intuitive, as the9

wave is propagating outwards i.e., from left to right. This is due to the fact that we are working in a retarded time frame10

(i.e., when we move with the wave in a time window). Further, the combined effects of nonlinearity and geometrical11

spreading is illustrated using Figure 14. It shows the maximum amplitude of the first shock, in retarded time, for both12

numerical and quasi-analytical solutions. Since the comparison is made in retarded time, the shock moves from right13

to left. Since, the figure is presented in retarded time, if the same curve was plotted for a linear propagation, then the14

position would remain unchanged (no shift just a decrease of the amplitude due to the geometrical spreading). There15

is a good agreement between the two curves, which is a proof of the ability of the numerical method to accurately16

reproduce the shock speed, even after the introduction of artificial viscosity, though some noise is visible around 1.4µs.17

In this configuration, geometrical spreading is a much more dominant effect than nonlinearity, this is why a very18

high amplitude initial pulse is chosen to be able to see the nonlinear effects. In the following test case, a configuration19

where nonlinear effects are stronger is investigated.20
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Figure 13: Temporal waveforms(Left) and their corresponding spectra(Right) at three distances from the point on the +x-axis where the initial
condition is extracted : (d = {1λ, 17λ, 35λ}, from top to bottom). The black curve is the initial condition (i.e., the signal extracted at r0 = 2λ in
the DG simulation), the green curve corresponds to the solution after a linear propagation of the initial condition, the red curve corresponds to the
solution after a nonlinear propagation of the initial condition, the blue curve is the numerical solution computed by the DG method.

22



Figure 14: Shock position along the x-axis vs the amplitude, note the shock is moving leftward by the virtue of retarded time formulation. The data
are extracted along the positive x-axis.

5.3. Nonlinear radiation from a piston-transducer1

In order to further validate the method, the DG results are compared with the numerical results obtained with2

the HOWARD method [20]. It is a one-way method (the propagation is modeled only in one direction and cannot3

model reflections or back-scattering) which is able to simulate the propagation of nonlinear acoustic waves in weakly4

heterogeneous media. One-way methods are very popular in nonlinear acoustics because they give good results in a5

short time. Nevertheless, they suffer from intrinsic limitation: due to the one-way approximation they cannot simulate6

the backscattering, if any.7

The chosen validation test is based on Dagrau’s test case [20]. It deals with the radiation of a pure tone piston in8

a homogeneous medium. The Rayleigh distance and the shock formation distance are chosen to be of the same order9

of magnitude in order to provide a test case involving diffraction and nonlinearity with equal importance.10

The piston is located on the left side of a two-dimensional computational domain. It radiates a pure tone at the11

amplitude pm
a = 1360 Pa and a frequency f0 = 1000 Hz for t = 0.03 s (30 periods). The medium is homogeneous,12

its physical parameters are being taken from Dagrau et al. [20]: c0 = 340 m/s, ρ0 = 1.2 kg/m3 and the nonlinear13

parameter β = 1.2 (these values correspond to propagation in air, the acoustic Mach number is ε = 0.0098). The14

piston radius a is equal to 2λ. So, the Rayleigh distance is LR = ka2/2 = 4πλ. The choice of these parameters implies15

comparable values for the Rayleigh distance LR and the shock formation distance Lsh (Eq. 21): Lsh/LR ≈ 1.077.16

The computational domain is rectangular but its size depends on the numerical method. Indeed, the HOWARD
method is based on Fourier transforms and requires a large lateral extension while it is not necessary (and numerically
costly) for the DG method. The numerical domain considered for the DG method is presented in the Figure 15-left, the
piston transducer is shown in y ∈ [−2λ, 2λ]. The mesh is built using the 6 elements per wavelength along the central
axis and 1 elements per wavelength elsewhere. The polynomial order of approximation is taken to be 8 throughout
the mesh. The ECSAV parameters are taken to be α1 = 10, α2 = 20, α3 = 1e − 4. For DG, the boundary conditions
are non reflecting conditions (using characteristic method [35]) on all the boundaries except along the left boundary
where the pressure is imposed:

p(x = 0, y, t) = w(y) sin(2π f0t),
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Figure 15: left: Geometry and its corresponding mesh; Right: Maximum pressure for each point of the computational domain, the color map is
computed by DG and the contours by Howard

where w(y) = 1
2 + 1

2 tanh
(

y+a
d

)
tanh

(
−

y−a
d

)
with a = 2λ the piston radius and d = a/15 a parameter controlling the1

smoothness of the piston. For HOWARD method, the same left boundary condition is used. The lateral boundary2

conditions are absorbing boundary conditions to mimic non reflecting conditions.3

Figure 15-right shows the maximal pressure for each point of the computational domain. The color map is com-4

puted by the DG method and the contour lines are computed using the HOWARD method. There is an excellent5

agreement between the two methods concerning the positions of the maxima and minima. Figure 16 presents the6

maximum pressure along the x-axis (y = 0) in both the a) linear and b) nonlinear regimes. Linear regime is simulated7

by forcing ε = 0 which deactivates nonlinearities in both methods. Therefore, we can see the comparison without8

nonlinear effect. The two curves are well superimposed. Nonlinear effects increase the maximum value of the pres-9

sure field after the near-field. This is due to the formation of shock waves which are interacting with diffraction.10

Acoustical shock waves are visible in Figure 17-(a) which displays a snapshot of the pressure field. They correspond11

to very sharp transitions between positive and negative parts near the central region. Figures 17-(b) and (c) shows the12

corresponding ECSAV maps for ρa and ua. We can see that the artificial viscosity is mainly located at the position of13

the acoustic shocks. It is also evident that the two maps of artificial viscosity are not exactly the same.14
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Figure 16: Maximum pressure along the axis computed by DG (line) and HOWARD (dash) methods for Dagrau’s test case [20]: (Left) in linear
regime, (Right) in nonlinear regime

Figure 17: Snapshots of the pressure (a), and the ECSAV introduced for ρ (b) and u (c).
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6. Conclusions1

The present paper introduces three new ingredients for the numerical simulation of weak acoustic shock wave2

propagation by means of discontinuous Galerkin method. The first one is a novel sub-cell shock capturing tool3

(Shock Sensor), coupling a gradient sensor and a noise sensor. Though here implemented in the framework of the4

DG method, we believe this tool is more general and can be made independent from the choice of the numerical5

method. The second innovation is the Element Centered Smooth Artificial Viscosity - ECSAV introduced to smoothen6

the solution in case a shock is detected by the shock sensor in one mesh element. The last element is the Gradient7

Factor measuring the steepening of the waveform and accordingly scaling the artificial viscosity. Special attention is8

paid to discuss the implementation of the shock sensor and the element centered artificial viscosity on unstructured9

meshes. The resulting numerical solver is equipped for simulating the propagation of weak acoustic shock waves10

on unstructured meshes, as modeled by a first-order system of equations in conservative form. Validation tests are11

performed for 1D and 2D configurations, highlighting that the method can model the nonlinear effects well along with12

the other physical effects like geometrical spreading and diffraction.13
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