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Abstract—Affective gaming is a hot field of research that
exploits human emotion for the enhancement of player’s ex-
perience during gameplay. Physiological signal is an effective
modality that can provide a better understanding of the emotional
states and is very promising to be applied to affective gaming.
Most physiological-based affective gaming applications evaluate
player’s emotion on an overall game fragment. These approaches
fail to capture the emotion change in the dynamic game context.
In order to achieve a better understanding of psychophysiological
response with a better time sensitivity, we present a study that
evaluates the psychophysiological responses related to the game
events. More specifically, we present a multi-modal database
DAG that contains peripheral physiological signals (ECG, EDA,
respiration, EMG, temperature), accelerometer signals, facial
and screening recordings as well as player’s self-reported event-
related emotion assessment through game playing. We then
investigate physiological-based emotion detection and recognition
by using machine learning techniques. Common challenges for
physiological-based affective model such as signal segmentation,
feature normalization, relevant features are addressed. We also
discuss factors that influence the performance of the affective
models.

I. INTRODUCTION

Affective gaming is a hot field of research that exploits
human emotion for the enhancement of player’s experience
during gameplay. To understand the player’s emotion, one im-
portant research direction for affective gaming is the emotion
detection and recognition. Modalities such as facial expres-
sion [1], [2], speech [3], [4] have been extensively studied
for emotion detection, however, video-based modalities are
limited by the lighting and position condition, while audio-
based modalities are only applicable to situations where speech
exists. On the contrary, using physiological modalities is a very
promising approach as it provides continuous, objective, and
quantitative measures without the above limitations. Moreover,
smart devices such as smart clothes, wristband [5]–[7] or
non-contact measurements using video processing technology
[8], [9] have been able to non-intrusively measure signals
from peripheral nervous system (PNS) (ECG, HR, EDA, etc.)
which proves to be a better solution in a practical context.
Recent years have seen a lot of studies that explore the
interplay between physiological signals and emotion during
gameplay [10]. Generally, these studies apply the concepts
and methodologies of traditional psychophysiology [11] and

contribute to applications such as introducing novice game
control [12], [13], game experience augmentation or dynamic
difficulty adjustment (DDA) [14]–[16], player modelling [17].

Despite of the interest and advances of affective comput-
ing [18] in game [10], only a few databases are publicly
available in the affective gaming community. The first public
game experience corpus is the Platformer Experience Dataset
(PED) [19] that contains game content, behavioural and visual
recordings of Super Mario Bros players. The game expe-
rience evaluation on engagement, frustration, and challenge
are realized on the whole segment of the game. The PED
dataset provides a first corpus to model player experience via
visual and behavioural cues and self-reported evaluation on
the whole game in both ratings and ranks forms. However,
the physiological signals are not presented in the dataset
and the self-reported evaluations are only realized on the
overall game segment which neglects the emotion change
related to game events during gameplay. Another dataset is the
Mazeball dataset [20], which investigates the effects of camera
viewpoints on the psychophysiological state of players by
collecting physiological signals (heart rate (HR), blood volume
pulse (BVP) and skin conductance (EDA)) and by evaluating
the pairwise self-reported emotional preferences in terms of
fun, challenge, boredom, frustration, excitement, anxiety, and
relaxation. The Mazeball dataset offers the possibility to inves-
tigate the physiological features related to player experience.
Still, the self-reported assessments are realized at the game
segment level. The investigation of the psychophysiological
responses related to game events is still unavailable.

In this paper, we first present the multimodal database DAG1

which contains peripheral physiological modalities (ECG,
EDA, Respiration, EMG), behaviour modality (accelerometer
signals) as well as the self-reported emotion assessment on
both event and segment level. Then, we present a set of anal-
yses aiming at investigating the psychophysiological response
using machine learning approaches. Two tasks are considered:

(i) emotion detection aims to distinguish the segments with
psychophysiological response from those without psy-
chophysiological response. The effects of segmentation
lengths and relevant signals are discussed;

1http://erag.lip6.fr



(ii) emotion recognition aims to distinguish the different
emotional states related to the emotional segments. The
effects of segmentation lengths and relevant features,
as well as three normalization methods (standard nor-
malization, neutral baseline referencing normalization,
precedent moment referencing normalization) aiming at
reducing individual variabilities are discussed;

The paper is organized as follows: Section II reviews
the related work. Section III presents the database and the
experience it comes from. Section IV presents the study on
emotion detection and recognition. Section V discusses the
factors than influence the model’s performance. Conclusion
and future work are presented in Section VI.

II. RELATED WORK

Physiological-based affective game is an active research
topic [10], [21]. Compared with simulations such as image,
music and video clips, video game provide a more active and
dynamic emotional experience so that dispose several special-
ities. In this section, we overview the dimensions that charac-
terize the physiological-based affective gaming researches.

1) Game selection: Game selection refers to the selection
of game used in the study. In the existing works, there are
simple games such as Pong, Pac-Man, Tetris, car racing game
[14], [22], [23]. These games only contain a few kinds of
events, and are less potential to generate various types of
emotions. Meanwhile, there is no direct mapping between
the events and emotions. Same event can result in several
emotions, which increase research difficulty. There exists
games providing more operation liberty such as strategy games
or FPS [24], [25]. They offered a richer emotion possibilities
and hence represent a better option to analyse physiological
response of different emotions during game playing.

2) Modalities: Most physiological modalities presented in
the literatures are signals coming from PNS, which confirmes
the popularity of using signals from PNS over using central
neural system (CNS) in the affective game research. PNS
modalities used are modalities related with cardiovascular
system such as ECG, HR, BVP, HRV, Respiration, EDA and
EMG. Among them, EDA and HR are the most frequently
used signals.

3) Representation: The emotion representation largely de-
pends on the genre of game and the research purpose. There
are basically 3 types of representation methods:

• representation based on the emotion theory, using di-
mensional representation such as arousal/valence score
[23], [26] or using categorical emotions such as critical
emotion in game such as horror, anxiety [22], [24];

• representation based on the flow theory [27] such as
boredom, engagement and frustration [14], [28];

• representation based on other dimensions such as prefer-
ence, attention [29], [30] which represent specific char-
acteristics interested by the researchers.

Representation based on the emotion theory is the most
frequently used and also the most flexible. The most fre-
quently used axes are the Russell’s original two-dimension

(arousal/valence) [31]. Arousal represents the general excita-
tion, ranging from deactivation to activation. Valence means
the intrinsic attractiveness/”good”-ness or averseness/”bad”-
ness of an event, ranging from unpleasant to pleasant. This
method has been widely used in affective computing due to
its flexibility [32]–[34]. Concerning the categorical represen-
tation, a little difference from the emotion theory is that not
all the basic emotions are used in the game research. Selection
of the critical emotion is dependent on the type of game. For
example, [22] only used “horror”, as it is the most frequently
occurred emotion in the game they used.

Representation based on the flow theory proposed a high
level adaptation objective. The Flow [27] is a balance between
the inherent challenge of the game activity and the player’s
ability to achieve the task. When required skills for the game
go beyond players skills, the task becomes too challenging
and thus provoks anxiety and frustration. On the contrary, if
the task is too simple, the game will fail to engage player and
thus evoks boredom. The objective of flow-based adaptation
is to try to detect and avoid the frustration or boredom
emotion in game to make sure the player stays in the “flow”
zone. However, video games often provide complex emotional
experiences, so that the high level state of “flow” may depend
on a series of low level events and emotions. An overall
evaluation based on Flow theory often fails to reveal the
mechanism of how “flow” is generated. We can notice that the
researchers who adopt this model [14], [28] have only applied
adaptation on the simple games such as Tetris or Pac-Man by
adapting the speed parameter. When the game becomes more
complex, the realization of “flow” state should be based on
more detailed low level events and emotions.

4) Time window: Time window refers to the size of time
window on which the physiological signals are evaluated for
emotion. It represents the temporal sensibility of the emotion
recognition. Modalities such EEG or facial expression are
reported to have good temporal sensibility [35]. However,
the response on PNS are relatively longer. There is still
no consensus for the optimal time window for each PNS
signal because of the complexity of the physiological signals
and the variety of the application contexts.According to the
psychophysiological review in [36], the most frequently used
time windows are 60, 30 and 10s.

Some researches applied a direct mapping approach rather
than an emotion based approach [14], [24]. The direct mapping
approach maps the physiological features to a certain game
parameter directly and adapt game without recognizing the
player’s psychological state. The size of time window only
controls the frequency of adaptation and can have a wide range
[16]. However, this method is not robust as it fails to determine
the real psychological state of the user. The emotion-based
approach relies more on the appropriate window size. Too
short time window may fail to capture the physiological
response, while a too long fails to capture the dynamic of
emotional experience during the gameplay.

Most emotion-based adaptive affective game research using
PNS evaluate the game segment as a whole [15], [22], and



result in long time window and neglect the dynamics of the
emotion during the game. As has been put forward by [15],
the analysis of physiological signals should also be conducted
on the basis of the game events in order to have a better
sensitivity.

5) Classification: Some empirical works on emotion mea-
suring explore the direct mapping between the physiological
responses and emotions based on expert knowledge in theo-
retical framework [36], [37], while most application-oriented
studies refer to techniques such as machine learning [15], [22],
[30] to create data-driven models instead of relying on prior
knowledge. As psychophysiological responses in practical
contexts are complicated, the major point is that the data-
driven approaches may be able to investigate the non-linear
multivariate relationship that may otherwise be neglected by
the theoretical methods.

III. DATABASE DESCRIPTION

We selected a football simulation game FIFA 2016 as emo-
tion stimulation for the following reasons: (i) short repeated
events in game can be used to generate different emotions and
are easier to get significant analysis; (ii) close relation between
emotion and event can be used to provide emotion reference;
(iii) changeable difficulty level of the game can be used to
provide different experiences. The experiment was conducted
at INSEAD - Sorbonne University Multidisciplinary Centre
for Behavioural Sciences2. In total, 58 participants of different
skill levels took part in this study.

A. Modalities and measuring equipments

To analyse physiological responses during game playing,
we recorded (i) peripheral physiological signals: ECG, EDA,
EMG, respiration and body movement with a 3-axis ac-
celerometer, (ii) facial recording, (iii) game screen recording,
(iv) meta-information such as player skill level, game difficulty
level, and game resulting score. Physiological signals were
collected using the BioNomadix wireless sensors and physi-
ology monitoring system Biopac MP1503. The sensors used
were: an ECG sensor to measure electrocardiogram, an EDA
sensor to measure electro-dermal activity, a respiration belt
to estimate chest cavity expansion, two ElectroMyoGraphic
(EMG) sensors to measure zygomaticus and corrugator mus-
cles movement, an accelerometer sensor to measure body
movements. All the used electrodes were Biopac pre-gelled
electrodes. In order to reduce the artefacts caused by the
movements of hands, the EDA signals have been taken from
the arch of the foot.

The game screen output, webcam recording, and screen
containing the physiological data were synchronized using
a software ObserverXT4 and visualized on the same screen
(Fig. 1) for experimenter.

Fig. 1. Experiment scene on one half-time match. The presented elements
from top to bottom are: screen recording, player video, physiological signals
(HR, Respiration, EDA, pre-processed EMG and pre-processed ACC), and
annotations.

Fig. 2. Protocol of experimentation.

B. Experimental Protocol

Participants played the game in an isolated environment.
The procedure of the experiment is presented in Fig. 2. Each
experiment was composed of 4 phases: one training phase
and 3 match phases. Each match began with 3 minutes of
soft music, during which the participant return to neutral state
(Fig. 2 Baseline soft music phase). Then, the participant played
two half-time (4 minutes for each) of game (Fig. 2 1st half-
time and 2nd half-time phase).

After each half-time, the participants filled out a game ex-
perience questionnaire (Fig. 2 Sequence questionnaire phase).

At the end of each match, the participant viewed the
recording of match and annotated the emotions triggered by
significant events during the game (Fig .2 Event annotation
phase). To make the annotation easier, we offered participants
a list of emotions and events. These lists drawn from the pre-
questionnaires during the recruitment process contained the
most frequent emotions and events in the game. The elements
included in each annotation are:

• events: goal, penalty, shooting, interception of guard, foul,
gesture, tackle, corner kick, free kick, arbitration, offside,
missing and touch;

2http://centres.insead.edu/sorbonne-behavioural-lab/eng/index.cfm
3https://www.biopac.com
4http://www.noldus.com/the-observer-xt



• emotions: happiness, frustration, proud, curious, angry,
fear, boredom, sadness;

• arousal/ valence score: -3, -2, -1, 0, 1, 2, 3.
To speed-up the annotation process, the experimenter helped
the participant to annotate with corresponding time-stamp
using the software ObserverXT.

In the end, the participants ranked the 3 matches in terms of
their perception of difficulty, immersion and amusement (DIA)
(Fig. 2 Ranking phase).

IV. EMOTION DETECTION AND RECOGNITION MODEL

The following work lies on the physiological signals and the
corresponding self-reported emotion assessments to construct
emotion detection and recognition models. We first present the
step of feature extraction from a physiological signal segment
(Section IV-A), and after, the method and the results for
the emotion detection (Section IV-B) and recognition models
(Section IV-C). In the end, we show the obtained relevant
features and signals for the detection and recognition tasks
(Section IV-D).

A. Feature extraction

The general process of feature extraction consists of 3 stages
(Table I): (i) signal pre-processing cleans the signals to avoid
noise or artefacts (such as spiking removing, signal baseline
removing, filtering), (ii) signal transformation represents the
characteristic of a signal in a different aspect (e.g. generating
HR sequence from ECG signal), (iii) feature calculation
extracts common/ specific linear/non-linear time/frequency do-
main features on the pre-processed or transformed signal. For
the feature calculation, 2 common feature sets are considered:

1) time-domain feature set (time)
Common time-domain statistic features applied to the se-
quences are : mean, median, maximum, minimum, range,
variance, standard deviation, average derivative, maximum
derivative, absolute deviation, kurtosis and skewness. Time–
domain feature set contains 12 features in total.
2) frequency-domain feature set (freq)
For feature in frequency domain, as no consensus has been
found in the existing works [32], [34], we propose the fre-
quency bands reflecting the main spectral characteristic by
covering the principle spectral space. We calculate the band
energy of 3 frequency bands in the frequency range [0,4.8] Hz.
4 band energy of the [0,1.6] Hz and the band energy ratios.
Frequency-domain feature set contains 8 features in total.

For each segment of signals we obtain 173 features. In
the following section, we present the classification tasks and
results based on these features.

B. Emotion detection model

1) Learning process: Emotion detection distinguishes emo-
tional segments from other segments. By taking advantage
of the self-assessed annotations on critical match events, we
obtained 2 types of segments for this task: “segments with
annotations” which can be considered as emotional moments

TABLE I
FEATURE EXTRACTION PROCESS

Sig. (nb. fea.) Preprocess. Trans. Feature calcu.

ECG (44)
baseline removing,

filtering

raw

IBI

HRV

HR

raw: freq

IBI: time.

HRV: time.

HR: time, freq.

EDA (53)

spike removing,

filtering,

subsampling

raw

phasic

dephasic

tonic

raw: time, freq

phasic: time

dephasic: time

tonic: time

specific: nb. of peaks

EMG (24)

RMS smoothing,

aggregating,

subsampling

raw raw: time

Respiration (40)

spike removing,

filtering,

subsampling,

baseline removing

raw

RR

amp.

raw: time, freq

RR: time

amp.: time

ACC (12)

baseline removeing,

RMS smoothing,

3-axis aggregating,

subsampling

raw raw: time

raw - pre-processed signals, time - calculate time domain feature
set, freq - calculate frequency domain feature set

and “segments without annotation” which can be considered
as less likely to be emotional moments.

These 2 types of segments form 2 classes: emotional and
non-emotional class. In order to construct the learning set, we
managed to get the same number of instances for each class.
For each half-time, we took the segment centred around the
annotation points as instances for emotional class, and took
randomly the same number of non-annotated segments of the
same length as instance for the non-emotional class.

By taking advantage of the annotation items: dimensional
emotion and categorical emotion, we are interested in de-
tecting each type of emotion. For example, in dimensional
emotion, annotated segments can be categorized into 4 groups:
high arousal and high valence (HAHV), high arousal and low
valence (HALV), low arousal and high valence (LAHV), low
arousal and low valence (LALV). For each type of emotional
segments (e.g. HAHV), we took the same number of non-
annotated segments which represent non-emotional class, in
order to construct the learning set to detect (e.g. HAHV).

The learning process is detailed below:
1) Segmentation: Physiological signals are segmented with

different lengths (10s, 14s, 20s, 30s) in order to inspect
the most effective signal length to detect the presence of
emotions in a dynamic context. The general time-scale
to investigate the physiological signals related to affect
in based on a whole segment which can sometimes takes



TABLE II
ACCURACY (ACC) AND F1-SCORE (F1) OF EMOTION DETECTION FOR EACH EMOTION GROUP WITH DIFFERENT SEGMENTATION LENGTHS

10 s 14 s 20 s 30 s

Groups ACC F1 Base ACC F1 Base ACC F1 Base ACC F1 Base

Dimensional Emotion

HAHV 0.645 0.625** 0.485 0.616 0.629** 0.476 0.630 0.641** 0.553 0.580 0.604** 0.524

HALV 0.630 0.634** 0.512 0.633 0.645** 0.523 0.611 0.644** 0.512 0.588 0.644** 0.519

LALV 0.585 0.515 0.534 0.570 0.482 0.473 0.552 0.498 0.513 0.495 0.465 0.533

Categorical Emotion

anger 0.700 0.689** 0.482 0.688 0.684** 0.498 0.676 0.685** 0.495 0.588 0.597* 0.487

boredom 0.671 0.595* 0.514 0.607 0.583* 0.474 0.533 0.424 0.533 0.640 0.607* 0.560

fear 0.623 0.591* 0.530 0.570 0.541 0.473 0.613 0.575* 0.493 0.612 0.574* 0.462

frustration 0.663 0.685** 0.499 0.635 0.645** 0.502 0.628 0.661** 0.492 0.583 0.629** 0.512

happiness 0.631 0.609** 0.493 0.634 0.624** 0.467 0.619 0.628** 0.497 0.569 0.595* 0.465

Stars indicate whether the F1-score on detection each type of event is significantly higher than 0.5 according to an independent-samples t-test
(∗∗ : p < 0.01, ∗ : p < 0.05). For comparison, baseline F1-score is given by the maximum between majority and uniform classifier and is
presented in the column Base.

as long as several minutes. This setting is evidently not
applicable to analyse the psychophysiological response
in dynamic context. According to [36], the shortest
segmentation length presented is 10s. By varying the
segmentation length, we seek the most suitable length.
More combinations of different segmentation length on
different features and signals can be investigated in the
future.

2) Feature extraction: For each segment, we extract features
presented in Section IV-A.

3) Normalization: In order to reduce the individual vari-
ability, each feature is separately normalized for each
participant using standard normalization and min-max
normalization in the [0,1] range.

4) Cross validation: We use a 10-fold cross validation
scheme.

5) Feature selection: In each inner loop of the cross vali-
dation, we use Fisher’s linear discriminant J for feature
selection as in [32]:

J(f) =
|µ+ − µ−|
σ2
+ + σ2

−

where µ+, µ− and σ+, σ− are the mean and standard
deviation of feature f for the positive, negative class
respectively. We have tested different sizes of feature set,
from 10 to 120 with a step of 10, and finally the best
classification rate is obtained for a size of 20.

6) Classification: Of all the different classifiers (Linear
SVM, RBF SVM, Decision tree, Random Forest) we have
tested, Linear SVM was the one that achieved the best
average accuracy. Hence, we present the results obtained
by linear SVM by reporting its accuracy and F1-score.
The baseline is taken as the maximum F1-score from the
uniform classifier and majority classifier.

2) Detection result: Table II shows the average accuracy of
classification of emotional and non-emotional moments.

Among the dimensional emotion groups, event groups with
high level of arousal (HAHV and HALV) obtain the best
result of classification, while the event group with low level
of arousal and valence (LALV) obtains the worst result of
classification. The performance of event detection on the
HAHV and HALV events is significantly better (p < 0.01)
than on the LALV events. We may conclude that it is easier
to detect the HA events than the LA events. Also, whether the
event is of high or low valence don’t play an important role
in the detection efficiency.

Among the categorical emotion groups, by observing F1-
scores on the 10s segmentation length, event groups with
the best detection accuracies are “anger” and “frustration”.
These emotions are centred on the HALV region of the
AV plan which corresponds with our previous observation
that events with HALV have the best performance on their
detection. “Boredom”,“fear” and “happiness” detection had a
more modest result.

C. Emotion recognition model

1) Learning process: Emotion recognition distinguishes the
emotional state for all the emotional segments. This task
involves the classification of LA/HA and LV/HV on annotated
events (“sequence with annotation”). The ratings of AV on
each event is used as learning target. On a scale of 7 points,
the AV scores are splitted into two classes: LA/HA classes for
arousal classification problem and LV/HV classes for valence
classification. Note that the split results in unbalanced classes.
To solve this problem, we randomly sample the majority class
to get a subset with balanced classes. The classification takes
the similar process as in the previous task, except for the
normalization step which is detailed below.

In order to reduce the individual variability and exploit the
dynamic of the physiological signals, 3 methods of normal-
ization are applied.



TABLE III
ACCURACY (ACC) AND F1-SCORE (F1) OF EMOTION

DETECTION ACROSS PARTICIPANTS

Arousal Valence

norm. win(s) ACC F1 ACC F1

Std

10 0.477 0.476 0.468 0.502

14 0.545 0.448 0.546* 0.539

20 0.532 0.550* 0.524 0.567*

30 0.364 0.362 0.478 0.520

delta

10 0.505 0.509 0.457 0.489

14 0.559 0.602** 0.524 0.573*

20 0.523 0.534* 0.551* 0.557*

30 0.477 0.479 0.511 0.526

base.

10 0.508 0.433 0.480 0.461

14 0.570 0.551* 0.531* 0.517

20 0.502 0.473 0.554* 0.543*

30 0.453 0.360 0.498 0.473

majority 0,423 0,42 0.455 0,455

uniform 0,504 0,504 0.507 0,507

Stars indicate whether the F1-score on detection each
type of event is significantly higher than 0.5 according
to an independent-samples t-test (∗∗ : p < 0.01, ∗ : p <
0.05). For comparison, baseline F1-scores of classifica-
tion by majority classifier, uniform classifier is presented
below.

• Standard normalization (std) normalizes each feature for
each participants in such a way to have zero mean and
unit standard deviation.

• Normalization referencing precedent segment (delta)
takes the segment just before the annotated segment
as reference level. The difference is calculated between
annotation segment and the segment before. Then, a
standard normalization is applied on this difference for
each participant.

• Normalization referencing baseline segment (base) takes
the neutral state of each participant during music session
as reference level. The difference is calculated between
annotated segment and music segment. Then a standard
normalization is applied on the new features for each
participant.

2) Recognition result: Table III shows the average accu-
racies of binary classification of AV scores with different
segmentation lengths and normalization methods across par-
ticipants.

By comparing the accuracy and F1-scores, we notice that
the classification of AV scores is more difficult than the
classification of sequences with and without annotation. The
classification of valence is more difficult than arousal, as the
best F1-score for arousal classification is 0.602 which is better
than valence classification F1-score with 0.573.

Concerning the 3 normalization methods, traditional stan-
dard normalization (std), precedent sequence referencing nor-
malization (delta) and neutral state referencing normalization

Fig. 3. Importance of modalities for learning tasks: classification of
with/without annotation events (event), classification of binary arousal score
(arousal), classification of binary valence score (valence).

(base), the best result for both arousal and valence prediction is
obtained by using the precedent sequence referencing method
(delta). This method takes the signal and the emotion dynamic
into account by assuming that emotion recognition is more
linked with the relative feature change than the absolute feature
value. For arousal classification, when considering both the
ACC and F1 measures, the second best result is obtained
by using the referencing neutral state (base) method. The
improvement may be explained by the fact that referencing
with neutral state reduces the individual variability. However,
no clear improvement can be observed on classification of
valence.

By comparing the performances of different segmentation
lengths, one can notice that the best results are obtained with
the segmentation lengths of 14 or 20 seconds, which is longer
than the length used in the task of classification of sequences
with/without annotation. We may conclude that detection of
events requires short segmentation length as longer segmenta-
tion smoothes the effects of events, whereas the classification
of emotion requires longer sequences as physiological signal
varies slowly with emotion, but too long segmentation (e.g.
30s) may cause the overlapping of successive events. As
a result, one should find a balance between reaching the
necessary signal length for emotion recognition and attaining
the optimal time precision to avoid overlapping.

D. Relevant signals for detection and recognition

In order to better understand the role of each signal on the
classification results, we select the best 20 features for each
task and analyse the most relevant signals for each learning
task. Fig. 3 presents the frequency of each signal, from which
the features are selected for the emotional event detection and
emotion recognition.

One can notice that for emotion detection, the most relevant
features are the accelerometer (Acc) and Zygomaticus muscles
signals (EMG-z). This further explains why shorter segmenta-
tion length is demanded for this task, as the reactions on Acc
and EMG-z are instant, longer segmentation length smooth the
response effects. For valence classification the most relevant



modalities are ECG and EDA, while for arousal classification,
EDA is more important than ECG. This observation is con-
sistent with the work in [38] where ECG is more accurate for
classifying valence and EDA for classifying arousal.

Fig. 4. Process of analysing the affective database.

V. DISCUSSION

Factors that influence the model performance widely exist
in each model construction step. Fig. 4 illustrates the process
of constructing a machine learning model. In the figure, black
points (points 1, 2, 3) present the factors related to the database
construction and white points (points 4, 5, 6) present the
factors related to the data analysis method.

1) Effectiveness of stimulation: In game context, game
scenario varies for each subject, the stimulation cannot be
pre-determined, thus making the emotion induction difficult
to be controlled. This is an unavoidable choice in analysing
self-assessed emotion in dynamic game context, so that the
performance may suffer from drawbacks of cognitive error and
imprecision of the recalled memory. In future work, efforts can
be made to design more controllable game stimulation with
a collaborative work of game design company, psychologist,
and machine learning practitioner. Moreover, the physiological
signals are taken all along the experiment and the timetable of
each phase during the experiment (music, gameplay, question-
naire and annotation) is also available. It could be interesting
for the researchers who want to perform context detection
using physiological signals (pervasive computing [39]).

2) Capacity of objective modalities: The main modality we
use in this study is the peripheral physiological signals. In the
literature, peripheral physiological signals are mostly used for
recognition activation level using long time window (almost 1
min or more) [36]. Psychophysiological responses within short
time-window on game event have rarely been addressed [40],
[41]. The effectiveness of PPS still needs to be verified by a
more detailed study.

3) Effectiveness of subjective modalities: Subjective eval-
uation is notorious for the noise it may produce due to the
cognitive bias. In individual gameplay context, expressive
modalities are less presented, so that evaluation by an observer
is less evident. The proposed self-reported annotations reflect
the participants’ emotional state, but suffer from the problems
such as cognitive bias, or memory issues. In future work,
Besides the self-reported assessment, game event log, the
observer/expert’s annotation can still serve as a reference.

4) Signal representation - feature: The objective of the
feature extraction is to try to reduce the dimension of the input.
Different features can be extracted, such as statistical features
on the time and frequency domain, entropy-based features,
morphological features, or a deep-learning framework can be
used to learn a multi-level representation. The choice of the
representation should be based on the validated segmentation
lengths, as different features of different signals may have
different effective length. Besides, the alignment of multi-
variant input may also influence the final result, especially
in the real-time dynamic context. The present work covers
some of the most common features used in the peripheral
physiological based affective computing. In future work, more
work can be dedicated to find new features extracted from
different feature extraction methods or different signal segment
lengths.

5) Label processing: Given the cognitive bias which may
happen during the subjective evaluation, the obtained labels
should be processed in order to reduce this bias. In this paper,
techniques such as the discretization of the dimensional evalu-
ation to form a binary classification is applied. In future work,
other discretization options, emotion recognition on specific
categorical emotions or working directly on dimensional label
can be tested.

6) Prediction: A general model cannot achieve good per-
formances on everyone. Due to the complex characteristics
of the physiological signals and the subjectiveness of the
self-reported assessment, there exists great variability among
individuals. In future work, more attention should be paid to
individual differences from the model view, for example by
investigating the similar subjects and creating models for them.

VI. CONCLUSIONS

This paper investigates the psychophysiological response
to events on an affective database in a game context. We
address some common challenges for physiological-based af-
fective model such as segmentation, normalization, or relevant
signals. For emotion detection task, we show that high arousal
emotions are more detectable than the low arousal ones. The
most relevant features for this tasks derive from the ACC and
EMG signals. Concerning the emotion recognition task, we
show that it is more difficult than emotion detection, the best
result is obtain with a segmentation length of 14 or 20s. The
most relevant features derive from EDA, ECG. In the end, we
also discuss the factors that influence the performance of the
affective models and the future works.

ACKNOWLEDGMENTS

This work was performed within the Labex SMART (ANR-
11-LABX-65) supported by French state funds managed by the
ANR within the Investissements d’Avenir programme under
reference ANR-11-IDEX-0004-02. The experiment has been
done thanks to the fund ”Soutien au démarrage d’études com-
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[15] G. Chanel, C. Rebetez, M. Bétrancourt, and T. Pun, “Boredom, engage-
ment and anxiety as indicators for adaptation to difficulty in games,” in
Proceedings of the 12th international conference on Entertainment and
media in the ubiquitous era. ACM, 2008, pp. 13–17.

[16] Z. O. Toups, R. Graeber, A. Kerne, L. Tassinary, S. Berry, K. Overby,
and M. Johnson, “A design for using physiological signals to affect team
game play,” Foundations of Augmented Cognition, pp. 134–139, 2006.

[17] P. A. Nogueira, R. Aguiar, R. A. Rodrigues, E. C. Oliveira, and L. Nacke,
“Fuzzy affective player models: A physiology-based hierarchical clus-
tering method.” in AIIDE, 2014.

[18] R. W. Picard et al., “Affective computing,” 1995.
[19] K. Karpouzis, G. N. Yannakakis, N. Shaker, and S. Asteriadis, “The

platformer experience dataset,” in Affective Computing and Intelligent
Interaction (ACII), 2015 International Conference on. IEEE, 2015, pp.
712–718.

[20] G. N. Yannakakis, H. P. Martı́nez, and A. Jhala, “Towards affective
camera control in games,” User Modeling and User-Adapted Interaction,
vol. 20, no. 4, pp. 313–340, 2010.

[21] S. H. Fairclough, “Fundamentals of physiological computing,” Interact-
ing with computers, vol. 21, no. 1-2, pp. 133–145, 2008.

[22] C. Liu, P. Agrawal, N. Sarkar, and S. Chen, “Dynamic difficulty
adjustment in computer games through real-time anxiety-based affec-
tive feedback,” International Journal of Human-Computer Interaction,
vol. 25, no. 6, pp. 506–529, 2009.

[23] A. Parnandi and R. Gutierrez-Osuna, “A comparative study of game
mechanics and control laws for an adaptive physiological game,” Journal
on Multimodal User Interfaces, vol. 9, no. 1, pp. 31–42, 2015.

[24] A. Dekker and E. Champion, “Please biofeed the zombies: Enhancing
the gameplay and display of a horror game using biofeedback.” in
DiGRA Conference, 2007.

[25] L. E. Nacke, M. Kalyn, C. Lough, and R. L. Mandryk, “Biofeedback
game design: using direct and indirect physiological control to enhance
game interaction,” in Proceedings of the SIGCHI conference on human
factors in computing systems. ACM, 2011, pp. 103–112.

[26] P. A. Nogueira, R. Rodrigues, and E. Oliveira, “Real-time psychophys-
iological emotional state estimation in digital gameplay scenarios,”
in International Conference on Engineering Applications of Neural
Networks. Springer, 2013, pp. 243–252.

[27] M. Csikszentmihalyi, “Das flow-erlebnis,” Jenseits von Angst und
Langeweile: im Tun aufgehen. Stuttgart, 1985.

[28] S. Fairclough and K. Gilleade, “Construction of the biocybernetic loop:
a case study,” in Proceedings of the 14th ACM international conference
on Multimodal interaction. ACM, 2012, pp. 571–578.

[29] L.-D. Liao, C.-Y. Chen, I.-J. Wang, S.-F. Chen, S.-Y. Li, B.-W. Chen, J.-
Y. Chang, and C.-T. Lin, “Gaming control using a wearable and wireless
eeg-based brain-computer interface device with novel dry foam-based
sensors,” Journal of neuroengineering and rehabilitation, vol. 9, no. 1,
p. 5, 2012.

[30] S. Tognetti, M. Garbarino, A. Bonarini, and M. Matteucci, “Modeling
enjoyment preference from physiological responses in a car racing
game,” in Computational Intelligence and Games (CIG), 2010 IEEE
Symposium on. IEEE, 2010, pp. 321–328.

[31] J. A. Russell, “A circumplex model of affect.” Journal of personality
and social psychology, vol. 39, p. 1161, 1980.

[32] S. Koelstra, C. Muhl, M. Soleymani, J. S. Lee, A. Yazdani, T. Ebrahimi,
T. Pun, A. Nijholt, and I. Patras, “DEAP: A database for emotion
analysis ;using physiological signals,” IEEE Transactions on Affective
Computing, vol. 3, pp. 18–31, Jan 2012.

[33] M. Soleymani, J. Lichtenauer, T. Pun, and M. Pantic, “A multimodal
database for affect recognition and implicit tagging,” IEEE Transactions
on Affective Computing, vol. 3, pp. 42–55, Jan 2012.

[34] M. K. Abadi, R. Subramanian, S. M. Kia, P. Avesani, I. Patras, and
N. Sebe, “Decaf: Meg-based multimodal database for decoding affective
physiological responses,” IEEE Transactions on Affective Computing,
vol. 6, pp. 209–222, July 2015.

[35] F. Ringeval, A. Sonderegger, J. Sauer, and D. Lalanne, “Introducing
the recola multimodal corpus of remote collaborative and affective
interactions,” in 2013 10th IEEE Intl. Conf. and Workshops on Automatic
Face and Gesture Recognition (FG), April 2013, pp. 1–8.

[36] S. D. Kreibig, “Autonomic nervous system activity in emotion: A
review,” Biological psychology, vol. 84, no. 3, pp. 394–421, 2010.

[37] I. B. Mauss and M. D. Robinson, “Measures of emotion: A review,”
Cognition and emotion, vol. 23, no. 2, pp. 209–237, 2009.

[38] F. Ringeval, F. Eyben, E. Kroupi, A. Yuce, J.-P. Thiran, T. Ebrahimi,
D. Lalanne, and B. Schuller, “Prediction of asynchronous dimensional
emotion ratings from audiovisual and physiological data,” Pattern
Recogn. Lett., vol. 66, pp. 22–30, Nov. 2015.

[39] J. Ye, S. Dobson, and S. McKeever, “Situation identification techniques
in pervasive computing: A review,” Pervasive and mobile computing,
vol. 8, no. 1, pp. 36–66, 2012.

[40] N. Ravaja, M. Turpeinen, T. Saari, S. Puttonen, and L. Keltikangas-
Järvinen, “The psychophysiology of james bond: Phasic emotional
responses to violent video game events.” Emotion, vol. 8, no. 1, p. 114,
2008.

[41] N. Ravaja, T. Saari, M. Salminen, J. Laarni, and K. Kallinen, “Pha-
sic emotional reactions to video game events: A psychophysiological
investigation,” Media Psychology, vol. 8, no. 4, pp. 343–367, 2006.


