Design, synthesis and biological evaluation of water-soluble per- O -methylated cyclodextrin-C 60 conjugates as anti-influenza virus agents

Xiaolei Zhu, Sulong Xiao, Demin Zhou, Matthieu Sollogoub, Yongmin Zhang

To cite this version:

Xiaolei Zhu, Sulong Xiao, Demin Zhou, Matthieu Sollogoub, Yongmin Zhang. Design, synthesis and biological evaluation of water-soluble per- O -methylated cyclodextrin-C 60 conjugates as anti-influenza virus agents. European Journal of Medicinal Chemistry, 2018, 146, pp.194-205. 10.1016/j.ejmech.2018.01.040 . hal-01787121

HAL Id: hal-01787121

https://hal.sorbonne-universite.fr/hal-01787121

Submitted on 7 May 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Design, synthesis and biological evaluation of water-soluble per- \boldsymbol{O}-methylated cyclodextrin- C_{60} conjugates as anti-influenza virus agents

Xiaolei Zhu ${ }^{\text {a }}$, Sulong Xiao ${ }^{\text {c }}$, Demin Zhou c, Matthieu Sollogoub ${ }^{\text {a }}$, Yongmin Zhang ${ }^{\text {ab, }, *}$
${ }^{\text {a }}$ Sorbonne Universités, UPMC Univ Paris 06, Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, 4 place Jussieu, 75005 Paris, France
${ }^{\mathrm{b}}$ Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, 430056 Wuhan, China
${ }^{\text {c }}$ State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
* Corresponding author.
E-mail: yongmin.zhang@upmc.fr

Abstract

:

The most common fullerene member C_{60} displays many biological applications, such as, anticancer, human immunodeficiency virus and hepatitis C virus inhibitors, O_{2} uptake inhibitor and vectors for drug and DNA. Nevertheless, the innate hydrophobicity of C_{60} constrains its further development. We introduced cyclodextrins to enhance the water-solubility of C_{60}. Nine cyclodextrin- C_{60} conjugates, including seven α-cyclodextrin- C_{60} conjugates and two γ-cyclodextrin- C_{60} conjugates, were designed and synthesized. All of these conjugates did not show obvious cytotoxicity. The anti-influenza virus activity of nine conjugates was assessed. Two γ -cyclodextrin- C_{60} conjugates, which were relatively more water-soluble, exerted higher inhibition with IC_{50} values of $87.73 \mu \mathrm{M}$ and $75.06 \mu \mathrm{M}$, respectively, than seven α-cyclodextrin- C_{60} conjugates.

Keywords: Anti-influenza virus; Synthesis; Cyclodextrin- C_{60} conjugates; Water-soluble

1. Introduction

Influenza is a common disease to both humans and animals. The respiratory diseases and secondary bacterial infection caused by influenza virus increase the lifethreatening risk, especially for elder people [1]. There are three types of influenza viruses, which are A, B and C. Influenza virus A is the major one to cause morbidity and mortality. Currently, two classes of anti-influenza drugs (neuraminidase inhibitors and M2 ion channel protein inhibitors) have been approved by the FDA for the interruption of specific processes in influenza infection. However, the emergence of drug-resistant influenza viruses has limited the use of those drugs, illustrating the urgent need to develop novel anti-influenza drugs $[2,3]$.
C_{60} serves as radical scavenger, reactive oxygen species (ROS) producer under irradiation, human immunodeficiency virus (HIV) and hepatitis C virus (HCV) inhibitors, O_{2} uptake inhibitor, drug and DNA vectors [4,5]. Nevertheless, its poor water-solubility limits the further development of C_{60}. The functionalization of C_{60} not only ameliorates the water-solubility of C_{60}, but also gives a possibility to discover new application of C_{60} in biology. Bis(phenethylamincuccinate) $\mathrm{C}_{60}(\mathbf{C 1})$ is firstly reported to inhibit HIV through interaction with the large hydrophobic pocket of HIV aspartic protease (Figure 1) [6]. Further study has shown that the modified C_{60} s with amino acid group ($\mathbf{C} 2$ and $\mathbf{C 3}$) inhibit HIV reverse transcriptase and C_{60} derivatives with quaternary ammonium salts ($\mathbf{C 4}$ and $\mathbf{C 5}$) have HCV RNA-dependent RNA polymerase inhibition activities [7]. Fmoc protected C_{60} derivative (\mathbf{C}) exhibits potent HIV aspartic protease inhibition [8]. Echegoyen, Llano et al. have characterized the mechanism of C_{60} derivatives with quaternary ammonium salts in HIV inhibition. These derivatives prevent HIV-1 maturation with protease-independent way [25]. Even though some progress has been made by the aforementioned researches, the C_{60} derivatives with structural novelty and their mechanism in virus inhibition are still open issues. Based on these studies, we choose cyclodextrins (CDs) as functionalization groups to enhance the water-solubility of C_{60} and conduct research on other virus inhibition.

CDs, composed of 6,7 and 8 saccharides ($\alpha-\mathrm{CD}, \beta-\mathrm{CD}$ and $\gamma-\mathrm{CD}$, respectively), are ideal candidates to improve the water-solubility of C_{60}. Because of the relatively easy synthesis of β-CD derivatives, a lot of work was focused on β-CD- C_{60} conjugates and $\beta-\mathrm{CD} / \mathrm{C}_{60}$ micelle, which displayed photodynamic activity on DNA cleavage and HeLa cells inhibition [9-12, 15]. γ-CD with the largest cavity is capable to encapsulate $\mathrm{C}_{60}[13,16] . \gamma-\mathrm{CD} / \mathrm{C}_{60}$ complexes serve as photosensitizers and two γ-CD-C C_{60} conjugates generate the highest singlet oxygen compared to other $\mathrm{CD}^{-\mathrm{C}_{60}}$ conjugates [14, 16-19].

There is few studies on α-CD- C_{60} conjugates and their biological applications in the literature. We previously reported that α-CD-C C_{60} conjugate (C7) inhibits HCV entry into the host cells with IC_{50} value of $0.17 \mu \mathrm{M}$ [5]. In order to increase the family of α-CD-C C_{60} conjugates, we designed and synthesized seven α-CD-C C_{60} conjugates (Figure 2). However, these $\alpha-\mathrm{CD}^{2} \mathrm{C}_{60}$ conjugates did not display the promising inhibitory activity against HCV (unpublished data). Here we evaluated the anti-influenza A/WSN/33 (H1N1) virus activity of seven α-CD-C 60 $_{60}$ conjugates and two reported γ-CD- C_{60} conjugates (Figure 2) [19].

Figure 1. The reported antiviral C_{60} derivatives

Figure 2. Nine CD- C_{60} conjugates

2. Results and discussion

2.1 Chemistry

5a, $\mathrm{n}=17(\alpha-\mathrm{CD}) \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)$
83\%

$$
\begin{array}{lll}
\text { 7a, } n=17(\alpha-C D) & R_{1}=R_{2}=\left(\mathrm{CH}_{2}\right)_{6} & 75 \% \\
7 b, n=17(\alpha-C D) & R_{1}=\left(\mathrm{CH}_{2}\right)_{12}, R_{2}=\left(\mathrm{CH}_{2}\right)_{11} & 69 \%
\end{array}
$$

$$
\begin{array}{lll}
\text { 6a, } n=17(\alpha-C D) & R_{1}=\left(\mathrm{CH}_{2}\right)_{6} & \text { quantitative } \\
6 \mathbf{b}, \mathrm{n}=17(\alpha-\mathrm{CD}) & \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{12} & \text { quantitative } \\
\mathbf{6 d}, \mathrm{n}=23(\gamma-\mathrm{CD}) & \mathrm{R}_{1}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} & \text { quantitative }
\end{array}
$$

1a, $\mathrm{n}=17(\alpha-\mathrm{CD}) \mathrm{R}_{1}=\mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{6} \quad 9 \%$
1b, $n=17(\alpha-C D) R_{1}=\left(\mathrm{CH}_{2}\right)_{12}, \mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{11} 41 \%$
7d, $n=23(\gamma-C D) \quad R_{1}=R_{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \quad 67 \%$
1d, $n=23(\gamma-\mathrm{CD}) \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} \quad 36 \%$

$$
\begin{array}{lll}
\text { 2a, } n=17(\alpha-C D) & R_{1}=R_{2}=\left(\mathrm{CH}_{2}\right)_{6} & 20 \% \\
\text { 2b, } n=17(\alpha-C D) & R_{1}=\left(\mathrm{CH}_{2}\right)_{12}, \mathrm{R}_{2}=\left(\mathrm{CH}_{2}\right)_{11} & 26 \% \\
\text { 2c, } n=17(\alpha-C D) & R_{1}=R_{2}=\left(\mathrm{CH}_{2}\right)_{2} \mathrm{O}\left(\mathrm{CH}_{2}\right)_{2} & 39 \%
\end{array}
$$

Scheme 1. Synthetic routes of CD-C C_{60} conjugates 1 and 2. Reagents and conditions: (i) $\mathrm{N}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OTs}$ or $\mathrm{N}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{OTs}$ or $\mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH} 2 \mathrm{CH}_{2} \mathrm{OTs}, \mathrm{NaH}^{2}$, dry DMF^{2},
$80{ }^{\circ} \mathrm{C}, 72 \mathrm{~h}$; (ii) $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, dry $\mathrm{Et}_{3} \mathrm{~N}$, dry MeOH , r.t., 7 d; (iii) $\left(\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OCO}\right)_{2} \mathrm{CH}_{2}$ or $\left(\mathrm{HOOC}^{\left.\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OCO}\right)_{2} \mathrm{CH}_{2} \text { or }\left(\mathrm{HOOCCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OCO}\right)_{2} \mathrm{CH}_{2} \text {, }}\right.$ EDC $\mathrm{HCl}, \mathrm{HOBt}$, dry DCM, r.t.; (iv) CBr_{4} (or I_{2}), DBU, C_{60}, dry PhMe, r.t.; (v) $\mathrm{N}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OTs}$ or $\mathrm{N}_{3}\left(\mathrm{CH}_{2}\right)_{12} \mathrm{OTs}^{\text {or }} \mathrm{N}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{OTs}$, NaH , dry DMF, r.t., 6 ; (vi) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{NaH}$, dry DMF , r.t., overnight; $\mathrm{HS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH}$, dry $\mathrm{Et}_{3} \mathrm{~N}$, dry MeOH , r.t., 7 d .

As shown in Scheme 1, monol and diol of per- O-methylated CDs [20] were alkylated to obtain $\mathbf{5}$ and $\mathbf{8}$, respectively. Because -OH at position 2 is more acidic than position 6 and position 3, the alkylation condition of diol per- O-methylated CDs is milder than that of monol of per- O-methylated CDs . The remaining OH group of compound $\mathbf{8}$ was methylated to give compound 9 quantitatively. The alkylated compounds were converted to amino CD derivatives $\mathbf{6}$ and 9 . Then, 6 and 9 were coupled with $\left(\mathrm{HOOCR}_{2} \mathrm{OCO}\right)_{2} \mathrm{CH}_{2}$, which gave dimer $\mathbf{7}$ and $\mathbf{1 0}$, respectively. $\mathbf{7}$ and $\mathbf{1 0}$ were attached to C_{60}, yielding $\mathbf{1}$ and $\mathbf{2}$ via Bingel-Hirsch cyclopropanation.

The α-CD- C_{60} conjugates 3 and 4 with one α-CD moiety were synthesized through the same methodology (Scheme 2). Since the condensed compounds $\mathbf{1 1 a}$ and 13a with -OH groups could not be attached to C_{60} directly, the free -OH groups of $\mathbf{1 1 a}$ and $\mathbf{1 3} \mathbf{a}$ were first methylated, before C_{60} was conjugated with $\mathbf{1 2 a}$ and $\mathbf{1 4 a}$ to afford 3 and 4, respectively.

Scheme 2. Synthetic routes of $\mathrm{CD}-\mathrm{C}_{60}$ conjugates 3 and 4. Reagents and conditions: (i) $\left(\mathrm{HOOC}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{OCO}\right)_{2} \mathrm{CH}_{2}(1.0$ eq.), EDC HCl, HOBt, dry DCM, r.t., overnight; (ii) $\mathrm{CH}_{3} \mathrm{I}, \mathrm{NaH}$, dry DMF, $4 \AA$ M.S., r.t., overnight; (iii) CBr_{4}, $\mathrm{DBU}, \mathrm{C}_{60}$, dry PhMe, r.t.

We estimated visually the water-solubility of nine conjugates at r.t., which was: $\mathbf{2 d}>\mathbf{1 d}>\mathbf{2 c}>\mathbf{2 a}>\mathbf{2 b}>\mathbf{1 a}>\mathbf{1 b}, \mathbf{3}, \mathbf{4}$. It was obviously inferred that γ-CD is a better water-solubilizing reagent than $\alpha-\mathrm{CD}$ and the hydrophilic linker at the secondary rim is beneficial to give water-soluble conjugate.

2.2 SAR of anti-influenza A/WSN/33 (H1N1) virus activity

As part of our biological profiling [21], a cytopathic effect (CPE) reduction assay and a CellTiter-Glo assay were utilized in parallel to evaluate the antiviral activity of nine CD- $_{60}$ conjugates ($\mathbf{1 a - 1 b}, \mathbf{1 d}, \mathbf{2 a}-\mathbf{2 d}, \mathbf{3}, \mathbf{4}$) against the influenza A/WSN/33 (H1N1) virus that was propagated in MDCK cells [22]. Firstly, the CellTiter-Glo assay displayed that all tested compounds had no obvious cytotoxicity against uninfected MDCK cells at a concentration of $100 \mu \mathrm{M}$ (SI Figure 1). Then, the CPE reduction assay was carried out to screen the antiviral activity. All the conjugates were preliminarily tested at one concentration ($100 \mu \mathrm{M}$) and oseltamivir (OSV), an inhibitor of influenza neuraminidase, was used as a positive control. As shown in Figure 3, all the α-CD- C $_{60}$ conjugates had no anti-influenza virus activity at the concentration of $100 \mu \mathrm{M}$, except for compounds $\mathbf{1 d}$ and $\mathbf{2 d}$. These two γ-CD-C Con $_{60}$ conjugates $\mathbf{1 d}$ and $\mathbf{2 d}$ displayed significant anti-influenza virus activity (58.5 and 66.9%, respectively) at $100 \mu \mathrm{M}$, which suggested that the C_{60} conjugates with γ-CD moieties were more effective than that with α-CD moieties. Interestingly, 1 d and 2d had also higher water-solubility than seven α-CD- C_{60} conjugates, indicating that the anti-influenza activity of CD-C C_{60} conjugates may relate to the watersolubility of the conjugates. Moreover, compared to α-CD- C_{60} conjugates, γ-CD- C_{60} conjugates displayed much less aggregation in aqueous solution, which was evaluated by the generation of singlet oxygen species [19, 26]. The further work will focus on the design and synthesis of water-soluble CD-C C_{60} conjugates with less aggregation.

After the preliminary screening at one concentration, conjugates $\mathbf{1 d}$ and $\mathbf{2 d}$ were selected to undergo dose response assays. The concentrations of compounds $\mathbf{1 d}$ and $\mathbf{2 d}$ required to inhibit viral replication by $50 \%\left(\mathrm{IC}_{50}\right)$ are summarized in Table 1. Although conjugates $\mathbf{1 d}$ and $\mathbf{2 d}$ showed about half potent anti-influenza activity than that of OSV ($\mathrm{IC}_{50}: 87.73$ and $75.06 \mu \mathrm{M}$ vs $33.6 \mu \mathrm{M}$, respectively), they can be used as new lead compounds of anti-influenza inhibitor for further structural modification.

Figure 3. Cytopathic effect-based screening of nine CD-C Con $_{60}$ conjugates. 0.5% DMSO (final concentration) was used as the negative; oseltamivir was utilized as a positive control. Error bars indicate standard deviations of triplicate experiments.

Table 1. In vitro anti-influenza virus activity of the active CD-C60 conjugates

Compound	$\mathbf{I C}_{\mathbf{5 0}}(\boldsymbol{\mu M})^{\mathrm{a}}$
$\mathbf{1 d}$	87.73 ± 6.9
2d	75.06 ± 5.1
OSV	$33.6 \pm 2.2[21]$

${ }^{a}$ Concentration inhibiting viral replication by 50%. The values are means of at least three independent determinations; the corresponding standard deviations are noted.

3. Conclusion

We designed and synthesized nine $\mathrm{CD}^{-\mathrm{C}_{60}}$ conjugates. Cyclodextrin moieties enhanced apparently the water-solubility of C_{60}. $\mathrm{CD}^{2} \mathrm{C}_{60}$ conjugates with γ - CD^{2} attachment and hydrophilic spacer of moderate length are the most water-soluble. Then, their anti-influenza A/WSN/33 (H1N1) virus activity in MDCK cells was evaluated. All of the conjugates did not show obvious cytotoxicity at the concentration of $100 \mu \mathrm{M}$. The most water-soluble conjugates $\mathbf{1 d}$ and $\mathbf{2 d}$ displayed the highest anti-influenza virus activity. Although the inhibitory efficiency of $\mathbf{1 d}$ and $\mathbf{2 d}$ was only half of that of OSV, C_{60} derivatives are firstly reported to exhibit anti-influenza virus activity. According to our previous study, one of the obvious differences between $\alpha-\mathrm{CD}-\mathrm{C}_{60}$ conjugates and γ-CD-C C_{60} conjugates could be the less aggregation in aqueous solution of γ-CD- C_{60} conjugates [19, 26]. Further studies along this line are currently ongoing.

4. Experimental section

4.1 Chemistry

General information

All of the reactants were purchased from commercial sources and used without further purification. DCM and PhMe were degassed, and dried on alumina using Pure SolvTM systems. DMF and NEt_{3} were dried over $4 \AA$ molecular sieve and stored under argon. HRMS were recorded on a Bruker microTOF spectrometer, using Agilent ESI-L Low Concentration Tuning-Mix as reference. NMR spectra were recorded on a Bruker AM-400 MHz or Bruker Avance II 600 MHz using the signal of the residual solvent as an internal reference. The NMR assignments were determined by COSY and HSQC experiments.

The synthetic protocols and the NMR assignments of γ-CD derivatives $\mathbf{1 d}$ and $\mathbf{2 d}$ were reported in our previous work [19].

4.1.1 6-azidoalkyl permethylated α-CD 5a

To a solution of 6^{A}-monol- $\alpha-\mathrm{CD}^{\mathrm{Me}}[23](218 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry DMF (4 mL), NaH ($22 \mathrm{mg}, 3.0$ eq., 0.54 mmol) was added at $0{ }^{\circ} \mathrm{C}$ under argon. The reaction mixture was stirred at r.t. for 1 h . Then 6 -azidohexyl 4-methylbenzenesulfonate ($107 \mathrm{mg}, 2.0$ eq., 0.36 mmol) in dry DMF (1 mL) was added. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ overnight. $\mathrm{CH}_{3} \mathrm{OH}$ was added dropwise to quench the reaction at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic layers were washed with brine $(3 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by flash chromatography (eluent: cyclohexane/acetone $4: 1$, then $3.5: 1$) to give the product $\mathbf{5 a}(172 \mathrm{mg}, 83 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.35(\mathrm{Cyclohexane} / \mathrm{Acetone}=1: 1)$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$,
$\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.31-1.39\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.51-1.65\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{11}\right), 3.16\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.23\left(\mathrm{t}, 2 \mathrm{H}, J=6.82 \mathrm{~Hz}, 2 \times \mathrm{H}_{12}\right), 3.38(\mathrm{~m}, 15 \mathrm{H}, 5 \times$ $\mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)$), $3.47\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right.$), $3.54\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.62\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.78\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 5.03\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right), 3.33-3.90(\mathrm{~m}$, $14 \mathrm{H}, 2 \times \mathrm{H}_{7}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}$) ppm; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 25.86,26.72,28.94,29.64\left(4 \mathrm{C}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}\right), 51.50\left(1 \mathrm{C}, \mathrm{C}_{12}\right), 57.94,57.97,58.00(6 \mathrm{C}$, $\left.6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.04,59.10,59.15\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.88,61.90,61.92\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 69.57\left(1 \mathrm{C}, \mathrm{C}_{7}\right), 71.31,71.34\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.41,71.58,71.62$, $71.67\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 81.37,81.42,81.44,82.29,82.33,82.39,82.41,82.48,82.58,82.61\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.21,100.24,100.25,100.30,100.35(6 \mathrm{C}, 6 \times$ C_{1}). HRMS (ESI): $m z$ calcd for $\mathrm{C}_{59} \mathrm{H}_{105} \mathrm{~N}_{3} \mathrm{O}_{30}[\mathrm{M}+\mathrm{Na}]^{+} 1358.6675$, found 1358.6666 (mass accuracy of 0.7 ppm).

4.1.2 6-aminoalkyl permethylated $\boldsymbol{\alpha}$-CD 6a

To a solution of compound $\mathbf{5 a}(268 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry $\mathrm{MeOH}(6 \mathrm{~mL})$ was added propane-1,3-dithiol ($0.91 \mathrm{~mL}, 45 \mathrm{eq} ., 9.0 \mathrm{mmol})$, dry $\mathrm{NEt}_{3}(1.3 \mathrm{~mL}, 45 \mathrm{eq} ., 9.0$ mmol) at r.t. under N_{2}. The reaction mixture was stirred at r.t. for 7 days. The solvent was removed by evaporation. The residue was subjected to flash chromatography (eluent: dichloromethane/methanol $30: 1$, then $3: 1$) to give the product $\mathbf{6 a}(234 \mathrm{mg}, 89 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.2(\mathrm{DCM} / \mathrm{MeOH}=4: 1) .{ }^{1} \mathbf{H} \mathbf{N M R}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.34\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.58\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 2.55\left(\mathrm{br}, 2 \mathrm{H},-\mathrm{NH}_{2}\right), 2.71\left(\mathrm{t}, 2 \mathrm{H}, J=6.82 \mathrm{~Hz}, 2 \times \mathrm{H}_{12}\right), 3.16$ $\left(\mathrm{m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right.$), $3.38\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.47\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.58\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.63\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.79\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right)$, $5.03\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right), 3.33-3.90\left(\mathrm{~m}, 14 \mathrm{H}, 2 \times \mathrm{H}_{7}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 26.06,26.80\left(2 \mathrm{C}, \mathrm{C}_{9}, \mathrm{C}_{10}\right), 29.83\left(1 \mathrm{C}, \mathrm{C}_{8}\right), 32.57(1 \mathrm{C}$, $\left.\mathrm{C}_{11}\right), 41.73\left(1 \mathrm{C}, \mathrm{C}_{12}\right), 57.96,57.98,58.02\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.06,59.12,59.17\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.91\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 69.56\left(1 \mathrm{C}, \mathrm{C}_{7}\right), 71.31,71.35(6 \mathrm{C}$, $\left.6 \times \mathrm{C}_{5}\right), 71.54,71.58,71.68\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 82.28,82.33,82.38,82.48,82.57,82.63\left(18 \mathrm{C}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}\right), 100.06,100.21,100.25,100.28,100.35\left(6 \mathrm{C}, \mathrm{C}_{1}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{59} \mathrm{H}_{108} \mathrm{NO}_{30}[\mathrm{M}+\mathrm{Na}]^{+} 1310.6951$, found 1310.6900 (mass accuracy of 3.9 ppm).

4.1.3 6-permethylated α-CD dimer 7a

To a solution of $7,7^{\prime}-($ malonylbis(oxy))diheptanoic acid ($23 \mathrm{mg}, 0.064 \mathrm{mmol}$) in dry DCM (10 mL) was added EDC $\mathrm{HCl}(37 \mathrm{mg}, 3 \mathrm{eq} ., 0.19 \mathrm{mmol}) \mathrm{and} \mathrm{HOBt}(29 \mathrm{mg}$, 3 eq., 0.19 mmol). After stirring at r.t. for 2 h , compound $\mathbf{6 a}(184 \mathrm{mg}, 2.2 \mathrm{eq} ., 0.14 \mathrm{mmol})$ was added. The reaction mixture was stirred at r.t. for 48 h . After washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, brine (3 mL), dried with MgSO_{4}, the solvent was removed by evaporation. The residue was subjected to flash chromatography (eluent: ethyl acetate/methanol 9:1, then 7:1) to give the product $\mathbf{7 a}(140 \mathrm{mg}, 75 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.1($ Cyclohexane/Acetone $=1: 3) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}): ~ \delta$ $1.31\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}\right), 1.34\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{17}\right), 1.35\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{16}\right), 1.44\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{11}\right), 1.58\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{8}\right), 1.62\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{15}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{18}\right)$, $2.14\left(\mathrm{t}, 4 \mathrm{H}, 4 \times \mathrm{H}_{14}\right), 3.13-3.22\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{2}\right), 3.21\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{12}\right), 3.35\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{COCH}_{2} \mathrm{CO}-\right), 3.39\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.44\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.48(\mathrm{~m}$, $36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)$), $3.54\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.63\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right.$), $3.82\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.62-3.94\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.12(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}$ $\left.=6.61 \mathrm{MHz}, 4 \times \mathrm{H}_{19}\right), 4.95\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{1}\right), 5.04\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 5.68(\mathrm{t}, 2 \mathrm{H}, 2 \times-\mathrm{NH}-) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.65,25.69,25.98$, $28.45,28.94,29.75,29.84,29.85\left(16 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{18}\right.$), $36.71\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 39.55\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 41.81(1 \mathrm{C},-$ $\left.\mathrm{COCH}_{2} \mathrm{CO}-\right), 57.96,57.98,58.01\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.09,59.16,59.22\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.93,61.96,61.98\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.60\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right)$, $71.24,71.29,71.31\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.50,71.53,71.57,71.63\left(12 \mathrm{C}, 12 \times \mathrm{C}_{6}\right), 69.45\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 81.36,81.41,81.44,82.27,82.32,82.33,82.38,82.41,82.59,82.61$, $82.64\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.10,100.23,100.27,100.33,100.38\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 166.81\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 172.93\left(2 \mathrm{C}, 2 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{135} \mathrm{H}_{238} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1494.7557$, found $1494.7640\left(\mathrm{z}=2^{+}\right.$, mass accuracy of $\left.-5.6 \mathrm{ppm}\right)$.

4.1.4 2:1 per- O-methylated $\boldsymbol{\alpha}$-CD- C_{60} conjugate 1a

To a solution of compound $7 \mathbf{7 a}(126 \mathrm{mg}, 0.043 \mathrm{mmol}), \mathrm{CBr}_{4}(35 \mathrm{mg}, 2.5 \mathrm{eq},. 0.11 \mathrm{mmol}), \mathrm{C}_{60}(154 \mathrm{mg}, 5 \mathrm{eq} ., 0.21 \mathrm{mmol})$ in dry $\mathrm{PhMe}(15 \mathrm{~mL})$, DBU was added under argon. The reaction mixture was stirred at r.t. for 24 h . The reaction mixture was directly chromatographed, eluting first with toluene to recover the excess of C_{60}, then cyclohexane/acetone $=1: 1$ to provide the product $\mathbf{1 a}(14 \mathrm{mg}, 9 \%)$ as a brown foam. $\mathbf{R}_{\mathbf{f}}=0.2($ Cyclohexane/Acetone $=1: 3) .[\alpha]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+123.5\left(\mathrm{CHCl}_{3}, c=0.02\right) .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 1.25-1.45\left(\mathrm{~m}, 16 \mathrm{H}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{17}, 4 \times \mathrm{H}_{16}\right), 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{11}\right), 1.58\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{8}\right), 1.66\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{15}\right), 1.84(\mathrm{~m}$, $4 \mathrm{H}, 4 \times \mathrm{H}_{18}$), $2.14\left(\mathrm{t}, 4 \mathrm{H}, 4 \times \mathrm{H}_{14}\right), 3.12-3.19\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{2}\right), 3.21\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{12}\right), 3.39\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.65,3.89\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.48(\mathrm{~m}, 36 \mathrm{H}, 12 \times$ $\mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)$), $3.54\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.63\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.82\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.41-3.86\left(\mathrm{~m}, 24 \mathrm{H}, 24 \times \mathrm{H}_{6}\right), 4.48\left(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=8 \mathrm{MHz}, 4 \times \mathrm{H}_{19}\right)$, $5.04\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{1}\right), 5.65(\mathrm{t}, 2 \mathrm{H}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.77,25.89,26.01,28.58,29.03,29.42,29.78,29.89\left(16 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}\right.$, $\left.2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{18}\right), 36.79\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 39.62\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 57.96,57.99,58.03\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.10,59.15,59.22(10 \mathrm{C}, 10 \times$ $\mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)$), $61.91,61.92,61.95\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 67.47\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right), 69.53\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.30,71.36\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.57,71.63,71.74\left(14 \mathrm{C}, 12 \times \mathrm{C}_{6}, 2 \times\right.$ $\left.\mathrm{sp}^{3}-\mathrm{C}_{60}\right), 71.78\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right), 81.38,81.43,81.46,82.29,82.34,82.41,82.60\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.10,100.23,100.27\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 139.12,141.10$, $142.04,142.34,143.13,143.18,143.25,144.03,144.75,144.78,144.84,145.04,145.30,145.34,145.41,145.47\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.78\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 173.00(2 \mathrm{C}$, $\left.2 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{195} \mathrm{H}_{236} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1853.7478$, found $1853.7431\left(\mathrm{z}=2^{+}\right.$, mass accuracy of 2.5 ppm$)$.

4.1.5 6-azidoalkyl permethylated $\boldsymbol{\alpha}$-CD 5b

To a solution of 6^{A}-monol- α - $\mathrm{CD}^{\mathrm{Me}}[23](200 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry DMF (5 mL) was added $\mathrm{NaH}\left(20 \mathrm{mg}, 3.0\right.$ eq., 0.50 mmol) at $0{ }^{\circ} \mathrm{C}$. After stirred at room temperature for $2 \mathrm{~h}, 12$-azidododecyl 4-methylbenzenesulfonate ($95 \mathrm{mg}, 1.5 \mathrm{eq} ., 0.25 \mathrm{mmol}$) in dry DMF (1 mL) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for $24 \mathrm{~h} . \mathrm{CH}_{3} \mathrm{OH}$ was added dropwise to quench the reaction at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 15 \mathrm{ml}$). The combined organic
layers were washed with brine $(3 \times 15 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by chromatography (eluent: cyclohexane/acetone 1:1) to afford the product $\mathbf{5 b}(137 \mathrm{mg}, 80 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.15$ (cyclohexane/acetone $\left.=1: 1\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.21-1.36(\mathrm{~m}, 16 \mathrm{H}, 2 \times$ $\mathrm{H}_{9}, 2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{12}, 2 \times \mathrm{H}_{13}, 2 \times \mathrm{H}_{14}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{16}$) $1.57\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{8}\right), 3.13-1.16\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.23\left(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \times \mathrm{H}_{18}\right), 3.37(\mathrm{~m}$, $15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)$), 3.46, $3.47\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.55\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.62\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right), 3.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{7 \mathrm{a}}\right), 3.76\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right)\right.$, $3.83\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{7 \mathrm{~b}}\right), 3.39-3.86\left(12 \mathrm{H}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 5.03\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 26.32,26.82,28.94,29.25,29.57,29.64$, 29.67, 29.69, 29.74, 29.82($10 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{12}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{14}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}$), $51.64\left(1 \mathrm{C}, 1 \times \mathrm{C}_{18}\right), 57.94,57.96,57.98(6 \mathrm{C}, 6 \times$ $\left.\mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.05,59.08,59.12\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.89\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 69.62\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.31,71.33\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.54,71.56,71.60,71.63\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right)$, 81.37, 81.43, 82.32, 82.37, 82.53, 82.58 ($18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}$) , 100.01, 100.19, 100.22, 100.26, $100.28\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right)$ ppm. HRMS (ESI): $m z \mathrm{calcd}$ for $\mathrm{C}_{65} \mathrm{H}_{117} \mathrm{~N}_{3} \mathrm{O}_{30}\left[\mathrm{M}+\mathrm{Na}^{+} 1442.7620\right.$, found 1442.7610 (mass accuracy of 0.7 ppm).

4.1.6 6-aminoalkyl permethylated α-CD 6b

To a solution of $\mathbf{5 b}(40 \mathrm{mg}, 0.028 \mathrm{mmol})$ in dry $\mathrm{MeOH}(2 \mathrm{~mL})$ was added propane-1,3-dithiol ($0.17 \mathrm{~mL}, 45$ eq., 1.26 mmol$)$ and dry triethylamine (0.17 mL , 44 eq., 1.23 mmol).The reaction mixture was stirred at r.t. for 7 days. The solvent was evaporated. The residue was subjected to flash chromatography (eluent: DCM/MeOH $30: 1$, then $5: 1)$ to give the product $\mathbf{6 b}(37 \mathrm{mg}, 95 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.3(\mathrm{DCM} / \mathrm{MeOH}=5: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}, 300 \mathrm{~K}\right): \delta 1.20-1.36\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}_{9}\right.$, $\left.2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{12}, 2 \times \mathrm{H}_{13}, 2 \times \mathrm{H}_{14}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{16}\right), 1.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 1.71\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{17}\right), 2.94\left(\mathrm{t}, 2 \mathrm{H}, J=7.7 \mathrm{~Hz}, 2 \times \mathrm{H}_{18}\right), 3.15\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.37$, $3.38\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.47\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.55\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.62,3.63\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.68\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{7 \mathrm{a}}\right), 3.76(\mathrm{~m}, 6 \mathrm{H}, 6$ $\left.\times \mathrm{H}_{5}\right), 3.84\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{7 \mathrm{~b}}\right), 3.40-3.81\left(12 \mathrm{H}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 5.03\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta 25.09\left(1 \mathrm{C}, 1 \times \mathrm{C}_{8}\right), 27.89(1 \mathrm{C}, 1 \times$ $\left.\mathrm{C}_{17}\right), 26.76,29.25,29.50,29.56,29.67,29.79,29.82,29.95\left(8 \mathrm{C}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{12}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{14}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}\right), 40.21\left(1 \mathrm{C}, 1 \times \mathrm{C}_{18}\right), 58.04,58.06$, $58.09\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.17,59.19,59.23\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.98,62.00\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 69.72\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.41,71.44\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.66,71.71$, $71.82\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 81.48,81.53,82.35,82.40,82.44,82.47,82.60,82.62,82.66\left(18 \mathrm{C}, 2 \times \mathrm{C}_{2}, 2 \times \mathrm{C}_{3}, 2 \times \mathrm{C}_{4}\right), 100.08,100.28,100.30,100.35,100.38(6 \mathrm{C}, 6 \times$ C_{1})ppm. HRMS (ESI): m / z calcd for $\mathrm{C}_{65} \mathrm{H}_{120} \mathrm{NO}_{30}[\mathrm{M}+\mathrm{H}]^{+} 1394.7890$, found 1394.7880 (mass accuracy of 0.7 ppm).

4.1.7 6-permethylated α-CD dimer 7b

To a solution of 12,12'-(malonylbis(oxy))didodecanoic acid ($43 \mathrm{mg}, 0.085 \mathrm{mmol}$) in dry DCM (4 mL) was added EDC HCl ($44 \mathrm{mg}, 3.0 \mathrm{eq} ., 0.23 \mathrm{mmol}$) and HOBt (35 $\mathrm{mg}, 3.0$ eq., 0.23 mmol). After the reaction mixture was stirred at r.t. for 2 h , compound $\mathbf{6 b}(215 \mathrm{mg}, 2.2$ eq., 0.15 mmol) was added. The reaction mixture was stirred for 48 h . After washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, brine $(1 \times 3 \mathrm{~mL})$, dried over MgSO_{4} and filtrated, the solvent was evaporated. The residue was purified by silica gel chromatography (eluent: cyclohexane/acetone $1.5: 1$) to give the product $7 \mathbf{7 b}(123 \mathrm{mg}, 49 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.3(\mathrm{Cyclohexane} / \mathrm{Acetone}=1: 1)$. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M} \mathbf{~} \mathbf{~ (~} 400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.50\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{17}\right), 1.61\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{21}\right), 1.62\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{29}\right), 1.20-1.70\left(\mathrm{~m}, 64 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{11}, 4 \times \mathrm{H}_{12}, 4 \times \mathrm{H}_{13}, 4 \times\right.$ $\left.\mathrm{H}_{14}, 4 \times \mathrm{H}_{15}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{22}, 4 \times \mathrm{H}_{23}, 4 \times \mathrm{H}_{24}, 4 \times \mathrm{H}_{25}, 4 \times \mathrm{H}_{26}, 4 \times \mathrm{H}_{27}, 4 \times \mathrm{H}_{28}\right), 2.14\left(\mathrm{t}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{20}\right), 3.16\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{18}\right)$, $3.35\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{32}\right), 3.38,3.39\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.48\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.56\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.63,3.64\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.69$, $3.85\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.80\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.42-3.86\left(\mathrm{~m}, 24 \mathrm{H}, 24 \times \mathrm{H}_{6}\right), 4.12\left(\mathrm{t}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{30}\right), 5.04\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{1}\right), 5.47(\mathrm{br}, 2 \mathrm{H}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.92,25.96,26.36,27.09,28.60,29.32,29.47,29.49,29.59,29.64,29.71,29.75,29.77,29.81,29.86\left(38 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times\right.$ $\left.\mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{12}, 2 \times \mathrm{C}_{13}, 2 \times \mathrm{C}_{14}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{21}, 2 \times \mathrm{C}_{22}, 2 \times \mathrm{C}_{23}, 2 \times \mathrm{C}_{24}, 2 \times \mathrm{C}_{25}, 2 \times \mathrm{C}_{26}, 2 \times \mathrm{C}_{27}, 2 \times \mathrm{C}_{28}, 2 \times \mathrm{C}_{29}\right), 37.08\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 39.63$ $\left(2 \mathrm{C}, 2 \times \mathrm{C}_{18}\right), 41.85\left(1 \mathrm{C}, 1 \times \mathrm{C}_{32}\right), 57.96,57.98,58.01\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.09,59.12,59.16\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.92\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.84(2 \mathrm{C}, 2 \times$ $\left.\mathrm{C}_{30}\right), 69.61\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.34,71.36\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.57,71.63,71.72\left(12 \mathrm{C}, 12 \times \mathrm{C}_{6}\right), 81.39,81.45,82.30,82.35,82.39,82.42,82.56,82.61\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times\right.$ $\left.\mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.03,100.22,100.25,100.28,100.32\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 166.81\left(2 \mathrm{C}, 2 \times \mathrm{C}_{31}\right), 173.13\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right) \mathrm{ppm} . \mathbf{H R M S}(\mathbf{E S I}): m z \mathrm{calcd}$ for $\mathrm{C}_{157} \mathrm{H}_{282} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+$ $2 \mathrm{Na}]^{2+} 1648.9278$, found $1648.9256\left(\mathrm{z}=2^{+}\right.$, mass accuracy of 1.3 ppm$)$.

4.1.8 2:1 6-permethylated α-CD- C_{60} conjugate 1b

To a solution of $\mathrm{C}_{60}(10 \mathrm{mg}, 0.014 \mathrm{mmol})$ in 8 mL dry PhMe was added the solution of $7 \mathbf{b}(44 \mathrm{mg}, 1.0 \mathrm{eq} ., 0.014 \mathrm{mmol}) \mathrm{in} \mathrm{dry} \mathrm{PhMe}(2 \mathrm{~mL})$ under Ar . $\mathrm{I}_{2}(4 \mathrm{mg}, 1.23$ eq., 0.017 mmol$)$ was added. $\mathrm{DBU}(4.5 \mu \mathrm{~L}, 2.23$ eq., 0.030 mmol$)$ was added to the reaction mixture at $0{ }^{\circ} \mathrm{C}$. After stirred for 2 h at room temperature, the reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$. After washed with brine $(3 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was subjected to flash chromatography (eluent: toluene, then cyclohexane/acetone $1.5: 1$) to give the product $\mathbf{1 b}$ as a brown foam ($27 \mathrm{mg}, 53 \%$). $\mathbf{R}_{\mathbf{f}}=0.4(\mathrm{cyclohexane} / \mathrm{acetone}=1: 1)$. $[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{\mathbf{2 0}}$ $=+91.6\left(\mathrm{CHCl}_{3}, c=0.025\right) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.46\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{17}\right), 1.61\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{21}\right), 1.18-1.65\left(\mathrm{~m}, \mathrm{~m}, 64 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times\right.$ $\left.\mathrm{H}_{11}, 4 \times \mathrm{H}_{12}, 4 \times \mathrm{H}_{13}, 4 \times \mathrm{H}_{14}, 4 \times \mathrm{H}_{15}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{22}, 4 \times \mathrm{H}_{23}, 4 \times \mathrm{H}_{24}, 4 \times \mathrm{H}_{25}, 4 \times \mathrm{H}_{26}, 4 \times \mathrm{H}_{27}, 4 \times \mathrm{H}_{28}\right), 1.82\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{29}\right), 2.13\left(\mathrm{t}, 4 \mathrm{H}, J=8 \mathrm{~Hz}, 4 \times \mathrm{H}_{20}\right), 3.15$ $\left(\mathrm{m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{18}\right), 3.37,3.38\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.27\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.62,3.63\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}\left(\mathrm{C}_{3}\right)\right), 3.50-3.64(24 \mathrm{H}$, $\left.12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.76\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.69,3.83\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.30-3.84\left(\mathrm{~m}, 24 \mathrm{H}, 24 \times \mathrm{H}_{6}\right), 4.48\left(\mathrm{t}, 4 \mathrm{H}, J=8.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{30}\right), 5.01-5.05\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{1}\right)$, $5.48(\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=4.0 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.96,26.12,26.35,27.04,27.09,28.73,29.35,29.41,29.46,29.50,29.53,29.64$, $29.68,29.75,29.77,29.81,29.86\left(38 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{12}, 2 \times \mathrm{C}_{13}, 2 \times \mathrm{C}_{14}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{21}, 2 \times \mathrm{C}_{22}, 2 \times \mathrm{C}_{23}, 2 \times \mathrm{C}_{24}, 2 \times \mathrm{C}_{25}, 2\right.$ $\left.\times \mathrm{C}_{26}, 2 \times \mathrm{C}_{27}, 2 \times \mathrm{C}_{28}, 2 \times \mathrm{C}_{29}\right), 37.04\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 39.64\left(2 \mathrm{C}, 2 \times \mathrm{C}_{18}\right), 57.95,57.97,58.00\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.08,59.11,59.15\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.92$, $67.59,69.61\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 67.59\left(2 \mathrm{C}, 2 \times \mathrm{C}_{30}\right), 67.61\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 77.31,77.34\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.84\left(1 \mathrm{C}, 1 \times \mathrm{C}_{32}\right), 71.54,71.57,71.58,71.61,71.67,71.70$ $\left(14 \mathrm{C}, 12 \times \mathrm{C}_{6}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}\right), 81.37,81.43,82.33,82.37,82.54,82.59\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.02,100.21,100.24,100.27,100.31\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 139.10$,
$141.06,142.03,142.32,143.10,143.13,143.99,144.71,144.80,145.30,145.37,145.52\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.78\left(2 \mathrm{C}, 2 \times \mathrm{C}_{31}\right), 173.09\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right) \mathrm{ppm}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{217} \mathrm{H}_{280} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 2007.9200$, found $2007.9254(\mathrm{z}=2$, mass accuracy of $-2.7 \mathrm{ppm})$.

4.1.9 2-azidoalkyl $\boldsymbol{\alpha}$-CD 8a

To a solution of $2^{\mathrm{A}}, 3^{\mathrm{B}}$-diol- α - $\mathrm{CD}^{\mathrm{Me}}[23](238 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry DMF, $\mathrm{NaH}(16 \mathrm{mg}, 2.0$ eq., 0.40 mmol$)$ was added $0^{\circ} \mathrm{C}$ under Ar. Then the reaction mixture was stirred at r.t. for 1 h . Then 6 -azidohexyl 4-methylbenzenesulfonate ($94 \mathrm{mg}, 1.6 \mathrm{eq} ., 0.32 \mathrm{mmol}$) in dry DMF (1 mL) was added. The reaction mixture was stirred at r.t. for $6 \mathrm{~h} . \mathrm{CH}_{3} \mathrm{OH}$ was added dropwise to quench the reaction at $0^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate ($3 \times 10 \mathrm{ml}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$, brine (10 mL), dried with MgSO_{4}, filtrated and the solvent was removed by evaporation. The residue was subjected to flash chromatography (eluent: cyclohexane/acetone 4:1, then $3.5: 1$) to give the product $\mathbf{8 a}(168 \mathrm{mg}, 64 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.15$ (cyclohexane/acetone $=2: 1$). ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.33\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.55\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.63\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 3.13\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{2}^{\mathrm{B}}\right), 3.22(\mathrm{t}, 2 \mathrm{H}, J=$ $\left.6.7 \mathrm{~Hz}, 2 \times \mathrm{H}_{12}\right), 3.27\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{2}^{\mathrm{A}}\right), 3.37,3.38\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.44,3.45,3.51\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.58,3.60\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.44-3.62$ $\left(\mathrm{m}, 11 \mathrm{H}, 5 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.58-3.89\left(20 \mathrm{H}, 12 \times \mathrm{H}_{6}, 6 \times \mathrm{H}_{5}, 2 \times \mathrm{H}_{7}\right), 4.03\left(\mathrm{t}, 1 \mathrm{H}, J_{1}=9.2 \mathrm{~Hz}, J_{2}=9.6 \mathrm{~Hz}, 1 \times \mathrm{H}_{3}{ }^{\mathrm{B}}\right), 4.91\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 4.98(\mathrm{~d}, 1 \mathrm{H}, J=$ $\left.4.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}\right), 5.00\left(\mathrm{~m}, 3 \mathrm{H}, 3 \times \mathrm{H}_{1}\right), 5.06\left(\mathrm{~d}, 1 \mathrm{H}, J=4.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}{ }^{\mathrm{B}}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.25,26.36\left(2 \mathrm{C}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}\right), 28.74(1 \mathrm{C}, 1 \times$ $\left.\mathrm{C}_{11}\right), 29.55\left(1 \mathrm{C}, 1 \times \mathrm{C}_{8}\right), 51.34\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 57.74,57.78\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right.$), 57.94, $57.98\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right.$), 59.04, 59.08, 59.11, $59.14,59.19(5 \mathrm{C}, 5 \times$ $\left.\mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 70.02,71.15,71.20,71.30,71.36,71.59,71.78\left(7 \mathrm{C}, 6 \times \mathrm{C}_{5}, 1 \times \mathrm{C}_{3}{ }^{\mathrm{B}}\right), 71.17,71.25,71.43,71.45,71.67\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 72.71\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 81.01,81.19$, $81.27,81.38,82.24,82.29,82.32,82.39,82.45,82.50,82.57,82.67,82.91,83.80\left(17 \mathrm{C}, 6 \times \mathrm{C}_{2}, 5 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.12,100.17,100.38,100.41,101.46(6 \mathrm{C}, 6 \times$ C_{1})ppm. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{58} \mathrm{H}_{103} \mathrm{~N}_{3} \mathrm{O}_{30}[\mathrm{M}+\mathrm{Na}]^{+} 1344.6519$, found 1344.6551 (mass accuracy of -2.4 ppm).

4.1.10 2-aminoalkyl permethylated $\boldsymbol{\alpha}$-CD 9a

To a solution of $\mathbf{8 a}(249 \mathrm{mg}, 0.19 \mathrm{mmol})$ in dry $\mathrm{DMF}(4 \mathrm{~mL})$ was added $\mathrm{NaH}(23 \mathrm{mg}, 3.0 \mathrm{eq} ., 0.57 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirred at r.t. for $2 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{I}(0.037 \mathrm{~mL}, 3.0 \mathrm{eq}$., 0.57 mmol) was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at r.t. overnight. The excess NaH was quenched by MeOH. The reaction mixture was diluted with ethyl acetate (20 mL), washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})$, brine $(3 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was used for further reaction without purification. Dry methanol (4 mL) dissolved the residue. Propane-1,3-dithiol ($0.86 \mathrm{~mL}, 45$ eq., 8.6 mmol) and dry triethylamine ($0.86 \mathrm{~mL}, 34 \mathrm{eq} ., 6.4 \mathrm{mmol}$) were added at r.t. under N_{2}. The reaction mixture was stirred at r.t. for 7 days. The solvent was removed by evaporation. The residue was purified by silica gel chromatography (eluent: $\mathrm{DCM} / \mathrm{MeOH} 30: 1$, then $3: 1$) to give the product $9 \mathrm{a}(167 \mathrm{mg}, 67 \%)$ as a white foam. $\mathbf{R}_{\mathrm{f}}=0.5(\mathrm{DCM} / \mathrm{MeOH}=3: 1)$. ${ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.35\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.51\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 2.72\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{12}\right), 3.15\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.21\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=\right.$ $\left.3.3 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, 1 \times \mathrm{H}_{2}\right), 3.38\left(\mathrm{~m}, 20 \mathrm{H}, 2 \times \mathrm{H}_{7}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right.$), $3.47,3.48\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.54\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.60,3.61,3.62,3.63(\mathrm{~m}, 18 \mathrm{H}$, $6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)$), $3.77\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 3.62-3.90\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{6}\right), 4.95\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=3.3 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}\right), 5.03\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta$ $25.82,26.79\left(2 \mathrm{C}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}\right), 30.11\left(1 \mathrm{C}, 1 \times \mathrm{C}_{8}\right), 32.21\left(1 \mathrm{C}, 1 \times \mathrm{C}_{11}\right), 41.51\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 57.93,57.99,58.04,58.22\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.04,59.05,59.09$ $\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.73,61.86,61.91,61.94,62.28\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 70.68\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.23,71.27,71.30,71.35\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.55,71.59,71.64,71.68(6 \mathrm{C}$, $\left.6 \times \mathrm{C}_{6}\right), 81.27,81.31,81.37,81.40,82.02,82.30,82.36,82.42,82.49,82.57,82.60,82.67\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.17,100.23,100.38,100.50,100.57(6 \mathrm{C}, 6$ $\times \mathrm{C}_{1}$)ppm. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{59} \mathrm{H}_{108} \mathrm{NO}_{30}[\mathrm{M}+\mathrm{H}]^{+} 1310.6951$, found 1310.6949 (mass accuracy of 0.1 ppm).

4.1.11 2-permethylated $\boldsymbol{\alpha}$-CD dimer 10a

To a solution of $7,7^{\prime}-($ malonylbis(oxy))diheptanoic acid ($14 \mathrm{mg}, 0.038 \mathrm{mmol}$) in dry $\mathrm{DCM}(8 \mathrm{~mL})$ was added $\mathrm{EDC} \mathrm{HCl}(22 \mathrm{mg}, 3.0 \mathrm{eq} ., 0.11 \mathrm{mmol}) \mathrm{and} \mathrm{HOBt}(18 \mathrm{mg}$, 3 eq., 0.11 mmol). After stirring at r.t. for 2 h , compound $9 \mathbf{a}(104 \mathrm{mg}, 2.1 \mathrm{eq} ., 0.79 \mathrm{mmol})$ was added. The reaction mixture was stirred at r.t. for 24 h . After washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, brine $(1 \times 3 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent: EtOAc/MeOH $15: 1$, then $10: 1)$ to give the product $\mathbf{1 0 a}(74 \mathrm{mg}, 66 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.1($ Cyclohexane/Acetone $=1: 1) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}, 300 \mathrm{~K}\right): ~ \delta{ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{M}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right) \delta 1.30-1.42\left(\mathrm{~m}, 20 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{17}\right), 1.46\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{11}\right), 1.62\left(\mathrm{~m}, 8 \mathrm{H}, 4 \times \mathrm{H}_{18}, 4 \times \mathrm{H}_{15}\right), 2.14\left(\mathrm{t}, 4 \mathrm{H}, J=7.6 \mathrm{~Hz}, 4 \times \mathrm{H}_{14}\right)$, $3.14\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{H}_{12}, 2 \times \mathrm{H}_{2}\right), 3.34\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{21}\right), 3.38\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.40\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.47,3.48\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}\left(\mathrm{C}_{2}\right)\right)$, $3.53\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.60,3.62,3.63\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.77\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.61-3.92\left(\mathrm{~m}, 24 \mathrm{H}, 24 \times \mathrm{H}_{6}\right), 4.12\left(\mathrm{t}, 4 \mathrm{H}, J=6.7 \mathrm{~Hz}, 4 \times \mathrm{H}_{19}\right)$, $4.95\left(\mathrm{~d}, 2 \mathrm{H}, J=3.3 \mathrm{~Hz}, 2 \times \mathrm{H}_{1}\right), 5.03\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 5.70(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}, \mathrm{CDCl} 3,300 \mathrm{~K}): \delta 25.51,25.55,25.59,26.73$, $28.30,28.80,29.61,29.97\left(16 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{18}\right), 36.56\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 39.41\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 41.68\left(1 \mathrm{C}, 1 \times \mathrm{C}_{2} 1\right)$, $57.81,57.85,57.87,58.12\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 58.93,58.97\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.61,61.72,61.78,61.81,62.18\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.47\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right)$, $70.55\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.12,71.15,71.17,71.23\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.41,71.48,71.53\left(12 \mathrm{C}, 12 \times \mathrm{C}_{6}\right), 81.25,81.29,81.35,81.39,81.99,82.28,82.30,82.36,82.42,82.50$, $82.58,82.59,82.60,82.64\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.17,100.24,100.33,100.53,100.61\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 166.79\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 173.00\left(2 \mathrm{C}, 2 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{135} \mathrm{H}_{238} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1494.7557$, found $1494.7499\left(\mathrm{z}=2^{+}\right.$, mass accuracy of 3.9 ppm$)$.

4.1.12 2:1 2-permethylated α-CD-C C_{60} conjugate 2a

To a solution of compound $\mathbf{1 0 a}(90 \mathrm{mg}, 0.031 \mathrm{mmol}), \mathrm{CBr}_{4}(25 \mathrm{mg}, 2.5 \mathrm{eq} ., 0.072 \mathrm{mmol}), \mathrm{C}_{60}(110 \mathrm{mg}, 5.0 \mathrm{eq} ., 0.15 \mathrm{mmol})$ in dry PhMe (11 mL), DBU (0.011 mL , $2.5 \mathrm{eq} ., 0.072 \mathrm{mmol}$) was added under argon. The reaction mixture was stirred at r.t. for 24 h . The reaction mixture was directly chromatographed, eluting first with
toluene to recover the excess of C_{60}, then cyclohexane/acetone $=1: 1$ to provide the product $\mathbf{2 a}(22 \mathrm{mg}, 20 \%)$ as a brown foam. $\mathbf{R}_{\mathbf{f}}=0.5$ (cyclohexane/acetone $\left.=1: 2\right)$. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) : $\delta 1.30-1.69\left(\mathrm{~m}, 28 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{11}, 4 \times \mathrm{H}_{15}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{17}\right), 1.84\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{18}\right), 2.17(\mathrm{t}, 4 \mathrm{H}, \mathrm{J}=7.6 \mathrm{~Hz}, 4$ $\left.\times \mathrm{H}_{14}\right), 3.14\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}_{2}, 4 \times \mathrm{H}_{12}\right), 3.39\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.40\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.48,3.49\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.55(\mathrm{~m}$, $\left.24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.60,3.62,3.63,3.64\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.78\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.62-3.92\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.48(\mathrm{t}, 4 \mathrm{H}, J=6.4 \mathrm{~Hz}, 4 \times$ $\left.\mathrm{H}_{19}\right), 4.96\left(\mathrm{~d}, 2 \mathrm{H}, J=3.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{1}\right), 5.04\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 5.72(\mathrm{t}, 2 \mathrm{H}, J=5.8 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 25.77,25.90,26.93$, $29.04,29.83,30.01,30.14\left(14 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}\right), 28.57\left(2 \mathrm{C}, 2 \times \mathrm{C}_{18}\right), 36.76\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 39.58\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 57.96,57.97$, $58.02,58.03,58.28\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.08,59.12,59.15\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.77,61.88,61.94,61.97,62.34\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 67.46\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right)$, $70.69\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.26,71.29,71.32,71.37,71.52\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.55,71.57,71.63,71.67,71.69\left(14 \mathrm{C}, 12 \times \mathrm{C}_{6}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}\right), 71.80\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right), 81.27,81.32$, $81.37,81.41,81.43,81.45,82.03,82.31,82.33,82.39,82.45,82.53,82.60,82.62,82.66,82.68\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.18,100.20100 .26,100.35$, $100.55,100.62\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 139.12,141.10,142.03,142.34,143.13,143.17,143.24,144.02,144.75,144.78,144.83,145.03,145.30,145.33,145.41,145.47(58 \mathrm{C}$, $58 \times$ sp $\left.^{2}-\mathrm{C}_{60}\right), 163.78\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 172.87\left(2 \mathrm{C}, 2 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{195} \mathrm{H}_{236} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1853.7478$, found $1853.7538\left(\mathrm{z}=2^{+}\right.$, mass accuracy of -3.2 ppm).

4.1.13 2-azidoalkyl $\boldsymbol{\alpha}$-CD 8b

To a solution of $2^{\mathrm{A}}, 3^{\mathrm{B}}$-diol- $\alpha-\mathrm{CD}^{\mathrm{Me}}$ ($252 \mathrm{mg}, 0.21 \mathrm{mmol}$) [23] in dry DMF (5 mL), $\mathrm{NaH}(25 \mathrm{mg}, 3.0$ eq., 0.64 mmol$)$ was added $0{ }^{\circ} \mathrm{C}$ under Ar. Then the reaction mixture was stirred at room temperature for 1 h . Then 12 -azidododecyl 4-methylbenzenesulfonate ($121 \mathrm{mg}, 1.5$ eq., 0.32 mmol) in dry DMF (1 mL) was added. The reaction mixture was stirred at room temperature for $6 \mathrm{~h} . \mathrm{CH}_{3} \mathrm{OH}$ was added dropwise to quench the reaction at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was extracted with ethyl acetate $(3 \times 20 \mathrm{ml})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 10 \mathrm{~mL})$, brine $(3 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent: cyclohexane/acetone $=4: 1$, then $3.5: 1$) to give the product $\mathbf{8 b}\left(193 \mathrm{mg}, 65 \%\right.$) as a white foam. $\mathbf{R}_{\mathbf{f}}=0.4$ (cyclohexane/acetone = 5:4). ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 1.21-1.40\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{12}, 2 \times \mathrm{H}_{13}, 2 \times \mathrm{H}_{14}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{16}\right), 1.58(\mathrm{~m}$, $2 \mathrm{H}, 2 \times \mathrm{H}_{17}$), $1.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 3.17\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{2}\right), 3.25\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}_{2}{ }^{\mathrm{B}}, 2 \times \mathrm{H}_{18}\right.$), $3.30\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{2}\right), 3.40,3.41\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.48,3.49,3.54(\mathrm{~m}$, $15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)$), $3.56\left(11 \mathrm{H}, 5 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.62,3.63,3.64\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right.$), $3.79\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 3.65-3.90\left(\mathrm{~m}, 14 \mathrm{H}, 2 \times \mathrm{H}_{7}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.07(\mathrm{t}$, $1 \mathrm{H}, J=9.2 \mathrm{~Hz}, 1 \times \mathrm{H}_{3}{ }^{\mathrm{B}}$) $4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}\right), 5.05\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{1}\right), 5.10\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}, 300 \mathrm{~K}\right): \delta 25.69$, $26.93,28.85,29.15,29.31,29.45,29.48,29.51,29.56,29.58,29.73\left(10 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{12}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{14}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}\right), 51.49(1 \mathrm{C}$, $\left.1 \times \mathrm{C}_{18}\right), 57.67,57.72,57.87,57.91\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 58.98,59.02,59.04,59.07,59.13\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right), 61.81,61.87,61.96\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 70.07,71.19\right.$, $71.25,71.31,71.63,71.80\left(7 \mathrm{C}, 6 \times \mathrm{C}_{5}, 1 \times \mathrm{C}_{7}\right), 71.40\left(1 \mathrm{C}, 1 \times \mathrm{C}_{3}{ }^{\mathrm{B}}\right), 71.22,71.34,71.48,71.71,73.05\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 80.95,81.14,81.21,81.26,81.32,82.18,82.22$, $82.27,82.34,82.39,82.52,82.61,82.84,83.73\left(17 \mathrm{C}, 6 \times \mathrm{C}_{2}, 5 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.06,100.11,100.31,100.34,101.46\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right) \mathrm{ppm}$. HRMS (ESI): $m z \mathrm{calcd}$ for $\mathrm{C}_{64} \mathrm{H}_{115} \mathrm{~N}_{3} \mathrm{O}_{30}\left[\mathrm{M}+\mathrm{Na}^{+} 1428.7458\right.$, found 1428.7502 (mass accuracy of -3.1 ppm).

4.1.14 2-aminoalkyl $\boldsymbol{\alpha}$-CD 9b

To a solution of $\mathbf{8 b}(163 \mathrm{mg}, 0.12 \mathrm{mmol})$ in dry DMF $(4 \mathrm{~mL})$ was added $\mathrm{NaH}(14 \mathrm{mg}, 3.0 \mathrm{eq} ., 0.35 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirred at r.t. for $2 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{I}(0.015 \mathrm{~mL}, 0.23$ mmol) was added at $0^{\circ} \mathrm{C}$. The reaction mixture was stirred at r.t. overnight. The excess NaH was quenched by MeOH . The reaction mixture was diluted with ethyl acetate (20 mL), washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})$, brine $(3 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was used for further reaction without purification. Dry methanol (7 mL) dissolved the residue. Propane-1,3-dithiol ($0.73 \mathrm{~mL}, 45.0 \mathrm{eq} ., 5.4 \mathrm{mmol}$) and dry $\mathrm{NEt}_{3}(0.75 \mathrm{~mL}, 45.0 \mathrm{eq}$., 5.4 mmol) were added at r.t. under nitrogen. The reaction mixture was stirred at r.t. for 7 days. The solvent was removed by evaporation. The residue was subjected to flash chromatography (eluent: $\mathrm{DCM} / \mathrm{MeOH} 30: 1$, then 5:1) to give the product $9 \mathrm{~b}(166 \mathrm{mg})$ quantitatively as a white foam. $\mathbf{R}_{\mathrm{f}}=0.5(\mathrm{DCM} / \mathrm{MeOH}=3: 1) .{ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $300 \mathrm{~K}): ~ \delta 1.20-1.40\left(\mathrm{~m}, 18 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{12}, 2 \times \mathrm{H}_{13}, 2 \times \mathrm{H}_{14}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{16}\right), 1.44\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{17}\right), 2.70\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{18}\right), 3.16$ $\left(\mathrm{m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.22\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.3 \mathrm{~Hz}, J_{2}=9.7 \mathrm{~Hz}, 1 \times \mathrm{H}_{2}\right), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.40\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.48,3.49\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.55(\mathrm{~m}, 12 \mathrm{H}$, $\left.6 \times \mathrm{H}_{3}, \times \mathrm{H}_{4}\right), 3.62,3.63,3.64,3.66\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.78\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 3.65-3.91\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.97\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}\right), 5.05(\mathrm{~m}, 5 \mathrm{H}$, $5 \times \mathrm{H}_{1}$) ppm ; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 26.12,27.02,29.62,29.68,29.81,30.25\left(10 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{12}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{14}, 1 \times \mathrm{C}_{15}, 1\right.$ $\left.\times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}\right), 42.17\left(1 \mathrm{C}, 1 \times \mathrm{C}_{18}\right), 57.97,57.97,58.03,58.08,58.25\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.10,59.14\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.76,61.91,61.96,61.99,62.33(6 \mathrm{C}, 6$ $\left.\times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 70.96\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.16,71.24,71.33,71.40\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.52,71.58,71.62,71.68,71.73\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 81.30,81.32,81.40,81.43,82.05,82.08$, $82.17,82.19,82.33,82.34,82.39,82.43,82.49,82.54,82.63,82.65,82.67,82.69,82.71\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.20,100.24,100.42,100.53,100.67(6 \mathrm{C}, 6 \times$ C_{1})ppm. HRMS (ESI): m / z calcd for $\mathrm{C}_{65} \mathrm{H}_{120} \mathrm{NO}_{30}[\mathrm{M}+\mathrm{H}]^{+} 1394.7890$, found 1394.7877 (mass accuracy of 0.9 ppm).

4.1.15 2-permethylated $\boldsymbol{\alpha}$-CD dimer 10b

To a solution of $12,12^{\prime}$-(malonylbis(oxy))didodecanoic acid ($23 \mathrm{mg}, 0.045 \mathrm{mmol}$) in dry DCM (5 mL) was added EDC HCl ($26 \mathrm{mg}, 3.0 \mathrm{eq} ., 0.14 \mathrm{mmol}$) and $\mathrm{HOBt}(21$ $\mathrm{mg}, 3.0$ eq., 0.14 mmol). After the reaction mixture was stirred for 2 h at r.t., compound $\mathbf{9 b}(126 \mathrm{mg}, 2 \mathrm{eq} ., 0.090 \mathrm{mmol})$ was added. The reaction mixture was stirred for 24 h . After washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL})$, brine (3 mL), dried over MgSO_{4}, the solvent was evaporated. The residue was purified by silica gel chromatography (eluent: cyclohexane/acetone 1:1) to give the product $\mathbf{1 0 b}(50 \mathrm{mg}, 34 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.2$ (cyclohexane/acetone $\left.=1: 1\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathrm{CDCl}, 300 \mathrm{~K}): ~ \delta$ $1.20-1.35\left(\mathrm{~m}, 64 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{11}, 4 \times \mathrm{H}_{12}, 4 \times \mathrm{H}_{13}, 4 \times \mathrm{H}_{14}, 4 \times \mathrm{H}_{15}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{22}, 4 \times \mathrm{H}_{23}, 4 \times \mathrm{H}_{24}, 4 \times \mathrm{H}_{25}, 4 \times \mathrm{H}_{26}, 4 \times \mathrm{H}_{27}, 4 \times \mathrm{H}_{28}\right), 1.45(\mathrm{~m}, 4 \mathrm{H}$, $\left.4 \times \mathrm{H}_{17}\right), 1.61\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{21}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{29}\right), 2.13\left(\mathrm{t}, 4 \mathrm{H}, J=7.5 \mathrm{~Hz}, 4 \times \mathrm{H}_{20}\right), 3.15\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{2}\right), 3.21\left(\mathrm{~m}, 6 \mathrm{H}, 4 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{2}\right), 3.34\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{32}\right)$,
$3.38\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.39\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{7}\right), 3.47,3.48\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.54\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.60,3.62,3.64\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right)$, $3.77\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.62-3.90\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.11\left(\mathrm{t}, 4 \mathrm{H}, J=6.6 \mathrm{~Hz}, 4 \times \mathrm{H}_{30}\right), 4.96\left(\mathrm{~d}, 2 \mathrm{H}, J=3.4 \mathrm{~Hz}, 2 \times \mathrm{H}_{1}\right), 5.03\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 5.48(\mathrm{t}, 2 \mathrm{H}$, $J=6.4 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 25.90,25.95,26.08,27.07,28.57,29.31,29.39,29.45,29.48,29.58,29.62,29.66,29.69,29.72$, 29.74, 29.79, 29.83, $30.20\left(38 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{12}, 2 \times \mathrm{C}_{13}, 2 \times \mathrm{C}_{14}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{21}, 2 \times \mathrm{C}_{22}, 2 \times \mathrm{C}_{23}, 2 \times \mathrm{C}_{24}, 2 \times \mathrm{C}_{25}, 2 \times \mathrm{C}_{26}, 2\right.$ $\left.\times \mathrm{C}_{27}, 2 \times \mathrm{C}_{28}, 2 \times \mathrm{C}_{29}\right), 37.03\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 39.64\left(2 \mathrm{C}, 2 \times \mathrm{C}_{18}\right), 41.84\left(1 \mathrm{C}, 1 \times \mathrm{C}_{32}\right), 57.92,57.97,58.01,58.20\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.07,59.11(12 \mathrm{C}, 12 \times$ $\left.\mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.73,61.88,61.93,61.96,62.31\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.76\left(2 \mathrm{C}, 2 \times \mathrm{C}_{30}\right), 70.88\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.21,71.27,71.35\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.53,71.58,71.62$, $71.68\left(12 \mathrm{C}, 12 \times \mathrm{C}_{6}\right), 81.23,81.28,81.33,81.38,82.00,82.28,82.34,82.39,82.49,82.58,82.62,82.66\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.16,100.22,100.37$, $100.49,100.64\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 166.81\left(2 \mathrm{C}, 2 \times \mathrm{C}_{31}\right), 173.12\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right) \mathrm{ppm}$. HRMS (ESI): m / z calcd for $\mathrm{C}_{157} \mathrm{H}_{282} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 1648.9284$, found 1648.9270 (mass accuracy of 0.8 ppm).

4.1.16 2:1 2-permethylated α-CD- C $_{60}$ conjugate 2b

To a solution of $\mathrm{C}_{60}(11 \mathrm{mg}, 0.015 \mathrm{mmol}), \mathbf{1 0 b}(50 \mathrm{mg}, 1.0 \mathrm{eq} ., 0.015 \mathrm{mmol})$ and $\mathrm{I}_{2}(5 \mathrm{mg}, 1.23 \mathrm{eq} ., 0.02 \mathrm{mmol})$ in 11 mL dry toluene was added DBU ($5.2 \mu \mathrm{~L}, 2.23$ eq., 0.035 mmol) at $0{ }^{\circ} \mathrm{C}$ under Ar. After stirred for 1.5 h at room temperature, the reaction mixture was purified by silica gel chromatography (eluent: toluene, then cyclohexane/acetone $=1: 1$) to give the product $\mathbf{2 b}$ as a brown foam ($17 \mathrm{mg}, 29 \%$). $\mathbf{R}_{\mathbf{f}}=0.3$ (cyclohexane/acetone $=1: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 1.20-$ $1.54\left(\mathrm{~m}, 68 \mathrm{H}, 4 \times \mathrm{H}_{8}, 4 \times \mathrm{H}_{9}, 4 \times \mathrm{H}_{10}, 4 \times \mathrm{H}_{11}, 4 \times \mathrm{H}_{12}, 4 \times \mathrm{H}_{13}, 4 \times \mathrm{H}_{14}, 4 \times \mathrm{H}_{15}, 4 \times \mathrm{H}_{16}, 4 \times \mathrm{H}_{17}, 4 \times \mathrm{H}_{22}, 4 \times \mathrm{H}_{23}, 4 \times \mathrm{H}_{24}, 4 \times \mathrm{H}_{25}, 4 \times \mathrm{H}_{26}, 4 \times \mathrm{H}_{27}, 4 \times \mathrm{H}_{28}\right), 1.62(\mathrm{~m}$, $\left.4 \mathrm{H}, 4 \times \mathrm{H}_{21}\right), 1.83\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{29}\right), 2.14\left(\mathrm{t}, 4 \mathrm{H}, 4 \times \mathrm{H}_{20}\right), 3.06-3.21\left(\mathrm{~m}, 16 \mathrm{H}, 12 \times \mathrm{H}_{2}, 4 \times \mathrm{H}_{18}\right), 3.33\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.42,3.43\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right)$, $3.50\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.55,3.57,3.58\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.72\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.37-3.85\left(\mathrm{~m}, 28 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}, 4 \times \mathrm{H}_{7}\right), 4.49(\mathrm{t}, 4 \mathrm{H}, J=$ $\left.6.5 \mathrm{~Hz}, 4 \times \mathrm{H}_{30}\right), 4.96\left(\mathrm{~d}, 2 \mathrm{H}, 2 \times \mathrm{H}_{1}\right), 5.06\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 5.47(\mathrm{br}, 2 \mathrm{H}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 28.89\left(2 \mathrm{C}, 2 \times \mathrm{C}_{29}\right), 26.10,26.27$ $27.25,29.49,29.61,29.65,29.77,29.82,29.84,29.95,30.02\left(36 \mathrm{C}, 2 \times \mathrm{C}_{8}, 2 \times \mathrm{C}_{9}, 2 \times \mathrm{C}_{10}, 2 \times \mathrm{C}_{11}, 2 \times \mathrm{C}_{12}, 2 \times \mathrm{C}_{13}, 2 \times \mathrm{C}_{14}, 2 \times \mathrm{C}_{15}, 2 \times \mathrm{C}_{16}, 2 \times \mathrm{C}_{17}, 2 \times \mathrm{C}_{21}, 2 \times \mathrm{C}_{22}, 2\right.$ $\left.\times \mathrm{C}_{23}, 2 \times \mathrm{C}_{24}, 2 \times \mathrm{C}_{25}, 2 \times \mathrm{C}_{26}, 2 \times \mathrm{C}_{27}, 2 \times \mathrm{C}_{28}\right), 37.20\left(2 \mathrm{C}, 2 \times \mathrm{C}_{20}\right), 39.78\left(2 \mathrm{C}, 2 \times \mathrm{C}_{18}\right), 58.10,58.16,58.22,58.38\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.16,59.20,59.23(12 \mathrm{C}$, $\left.12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.84,61.97,62.02,62.05,62.39\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 67.73\left(2 \mathrm{C}, 2 \times \mathrm{C}_{30}\right), 71.10,71.14,71.40,71.46,71.48,71.49,71.53,71.57,71.73,71.77$, $71.83,71.89,72.04\left(29 \mathrm{C}, 12 \times \mathrm{C}_{5}, 12 \times \mathrm{C}_{6}, 2 \times \mathrm{C}_{7}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}, 1 \times \mathrm{C}_{32}\right), 81.47,81.49,81.60,81.64,82.24,82.50,82.52,82.56,82.62,82.67,82.68,82.70,82.74$, $82.75,82.79,82.84\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.32,100.36,100.52,100.64,100.74\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 139.27,141.23,142.20,142.49,143.27,143.30,143.36$, $144.16,144.88,144.97,145.16,145.47,145.54,145.71\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.92\left(2 \mathrm{C}, 2 \times \mathrm{C}_{31}\right), 173.21\left(2 \mathrm{C}, 2 \times \mathrm{C}_{19}\right) \mathrm{ppm}$. HRMS (ESI): $m z \mathrm{calcd}$ for $\mathrm{C}_{217} \mathrm{H}_{280} \mathrm{~N}_{2} \mathrm{O}_{66}[\mathrm{M}+2 \mathrm{Na}]^{2+} 2007.9200$, found 2007.9271 (mass accuracy of -3.5 ppm).

4.1.17 2-azidoalkyl α-CD 8c

To a solution of $2^{\mathrm{A}}, 3^{\mathrm{B}}-$ diol $-\alpha-\mathrm{CD}^{\mathrm{Me}}(92 \mathrm{mg}, 0.079 \mathrm{mmol})[23]$ in dry DMF $(3 \mathrm{~mL})$ was added $\mathrm{NaH}(10 \mathrm{mg}, 3 \mathrm{eq} ., 0.24 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$. After stirred at r.t. for $2 \mathrm{~h}, 2-(2-$ azidoethoxy)ethyl 4-methylbenzenesulfonate ($33 \mathrm{mg}, 1.5 \mathrm{eq}$., 0.12 mmol) in dry DMF (1 mL) was added. The reaction mixture was stirred at r.t. for 6 h . MeOH was added dropwise to quench the reaction. The reaction mixture was extracted with EtOAc (30 mL), washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})$, brine ($3 \times 5 \mathrm{~mL}$), dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (cyclohexane/acetone $2.5: 1$) to give the product $\mathbf{8 c}(51 \mathrm{mg}, 49 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}$ $=0.3$ (cyclohexane/acetone $=1: 1) .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 3.14\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.1 \mathrm{~Hz}, J_{2}=10 \mathrm{~Hz}, 1 \times \mathrm{H}_{2}^{\mathrm{B}}\right), 3.38\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{10}\right)$, $3.37,3.38\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.40,3.54\left(\mathrm{~m}, 11 \mathrm{H}, 5 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.45,3.46,3.50\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.59,3.60,3.61,3.62\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right)$, $3.58-4.0\left(\mathrm{~m}, 18 \mathrm{H}, 2 \times \mathrm{H}_{7}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 6 \times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 3.77\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 4.04\left(\mathrm{t}, 1 \mathrm{H}, J=9.6 \mathrm{~Hz}, 1 \times \mathrm{H}_{3}{ }^{\mathrm{B}}\right), 5.01\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right), 5.07(\mathrm{~d}, 1 \mathrm{H}, J=3.3 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{H}_{1}{ }^{\mathrm{B}}\right) \mathrm{ppm} ;{ }^{13} \mathbf{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 50.59\left(1 \mathrm{C}, 1 \times \mathrm{C}_{10}\right), 57.82,57.84,57.94,57.96\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.05,59.09,59.13,59.17\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right)$, $61.89,61.94,61.98\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right), 69.95\left(1 \mathrm{C}, 1 \times \mathrm{C}_{8}\right), 70.59\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.34,71.44,71.48,71.54,71.72,71.77\left(7 \mathrm{C}, 6 \times \mathrm{C}_{6}, 1 \times \mathrm{C}_{9}\right), 70.16,71.26,71.30\right.$, $71.39,71.46,71.84\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.80\left(1 \mathrm{C}, 1 \times \mathrm{C}_{3}{ }^{\mathrm{B}}\right), 81.07,81.24,81.30,81.40,82.24,82.27,82.35,82.44,82.46,82.58,82.66,82.68,82.84,83.75\left(17 \mathrm{C}, 6 \times \mathrm{C}_{2}, 5 \times\right.$ $\left.\mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.05,100.15,100.20,100.36,100.42,101.47\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{56} \mathrm{H}_{99} \mathrm{~N}_{3} \mathrm{O}_{31}\left[\mathrm{M}+\mathrm{Na}^{+} 1332.6155\right.$, found 1332.6137 (mass accuracy of 1.3 ppm).

4.1.18 2-aminoalkyl permethylated $\boldsymbol{\alpha}$-CD 9c

To a solution of $\mathbf{8 c}(185 \mathrm{mg}, 0.14 \mathrm{mmol})$ in dry DMF (7 mL) was added $\mathrm{NaH}(17 \mathrm{mg}, 3 \mathrm{eq} ., 0.42 \mathrm{mmol})$. After stirred for $2 \mathrm{~h}, \mathrm{CH}_{3} \mathrm{I}(0.018 \mathrm{~mL}, 2 \mathrm{eq} ., 0.28 \mathrm{mmol})$ was added at $0{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at r.t. overnight. The excess NaH was quenched by MeOH . The reaction mixture was diluted with ethyl acetate (30 $\mathrm{mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(1 \times 5 \mathrm{~mL})$, brine $(3 \times 10 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was used for further reaction without purification. Dry methanol (9 mL) dissolved the residue. Propane-1,3-dithiol ($0.85 \mathrm{~mL}, 45 \mathrm{eq} ., 6.3 \mathrm{mmol}$) and dry triethylamine ($0.88 \mathrm{~mL}, 44$ eq., 6.3 mmol) were added at room temperature under N_{2}. The reaction mixture was stirred at room temperature for 7 days. The solvent was removed by evaporation. The residue was purified by silica gel chromatography (eluent: DCM/MeOH 30:1, then 3:1) to give the product $9 \mathrm{c}(165 \mathrm{mg}, 91 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.2(\mathrm{DCM} / \mathrm{MeOH}=5: 1) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 2.86\left(\mathrm{t}, 2 \mathrm{H}, J=5.3 \mathrm{~Hz}, 2 \times \mathrm{H}_{10}\right), 3.14\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.29\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{2}{ }^{\mathrm{A}}\right), 3.38\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.52\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.53(\mathrm{~m}, 12 \mathrm{H}, 6 \times$ $\left.\mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.62,3.63\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.47\left(\mathrm{~m}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.67\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.77\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{5}\right), 3.86\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 3.62-3.90(\mathrm{~m}, 12 \mathrm{H}, 6$ $\left.\times \mathrm{H}_{6 \mathrm{a}}, 6 \times \mathrm{H}_{6 \mathrm{~b}}\right), 4.99\left(\mathrm{~d}, 1 \mathrm{H}, J=3.0 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.03\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{M}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 41.87\left(1 \mathrm{C}, 1 \times \mathrm{C}_{10}\right), 57.94,57.99,58.03,58.15(5 \mathrm{C}, 5$ $\left.\times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.06,59.10\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.72,61.86,61.91,61.94,62.14\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 69.96\left(1 \mathrm{C}, 1 \times \mathrm{C}_{8}\right), 70.69\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.29,71.35(6 \mathrm{C}, 6 \times$ $\left.\mathrm{C}_{5}\right), 71.49,71.52,71.60,71.70\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 72.69\left(1 \mathrm{C}, 1 \times \mathrm{C}_{9}\right), 81.34,81.38,81.41,81.47,81.72,82.08,82.32,82.36,82.42,82.52,82.58,82.63,82.66\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}\right.$,
$\left.6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.19,100.25,100.37,100.45,100.68\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{57} \mathrm{H}_{104} \mathrm{NO}_{31}[\mathrm{M}+\mathrm{H}]^{+} 1298.6587$, found $1298.6595(\mathrm{mass}$ accuracy of -0.7 ppm).

4.1.19 2-permethylated $\boldsymbol{\alpha}$-CD dimer 10c

To a solution of 8,10-dioxo-4,7,11,14-tetraoxaheptadecanedioic acid ($17 \mathrm{mg}, 0.05 \mathrm{mmol}$) in dry DCM (5 mL) was added EDC HCl ($29 \mathrm{mg}, 3 \mathrm{eq} ., 0.15 \mathrm{mmol}$) and HOBt ($23 \mathrm{mg}, 3.0$ eq., 0.15 mmol). After stirred at r.t. for 2 h , compound $9 \mathrm{c}(129 \mathrm{mg}, 2 \mathrm{eq} ., 0.1 \mathrm{mmol})$ was added. The reaction mixture was stirred at r.t. overnight, then diluted with $\mathrm{DCM}(20 \mathrm{~mL})$, washed with $\mathrm{H}_{2} \mathrm{O}(5 \times 3 \mathrm{~mL})$, brine $(5 \times 1 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography ($\mathrm{DCM} / \mathrm{MeOH} 15: 1$) to afford the product $\mathbf{1 0 c}(95 \mathrm{mg}, 67 \%)$ as a white foam. $\mathbf{R}_{\mathrm{f}}=0.3(\mathrm{DCM} / \mathrm{MeOH}=10: 1) .{ }^{1} \mathbf{H} \mathbf{N M R}(400 \mathrm{MHz}, \mathrm{CDCl}, 300 \mathrm{~K}): \delta$ $2.46\left(\mathrm{t}, 4 \mathrm{H}, J=5.9 \mathrm{~Hz}, 4 \times \mathrm{H}_{12}\right), 3.13\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{2}\right), 3.29\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{2}{ }^{\mathrm{A}}\right), 3.37\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.42\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{17}\right), 3.46\left(\mathrm{~m}, 32 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right), 2\right.$ $\left.\times \mathrm{H}_{10 \mathrm{~b}}\right), 3.54\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.37\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{10 \mathrm{a}}\right), 3.60,3.61,3.62\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.65\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{14}\right), 3.73\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{13}\right), 3.76(\mathrm{~m}$, $\left.12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.82\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{8}\right), 3.52\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{9}\right), 3.48,3.90\left(\mathrm{~m}, 28 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}, 4 \times \mathrm{H}_{7}\right), 4.25\left(\mathrm{t}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{15}\right), 4.97(\mathrm{~d}, 2 \mathrm{H}, J=3.0 \mathrm{~Hz}, 2$ $\left.\times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.02\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{1}\right), 6.53(\mathrm{t}, 2 \mathrm{H}, J=5.4 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 36.92\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 39.42\left(2 \mathrm{C}, 2 \times \mathrm{C}_{10}\right), 41.32(1 \mathrm{C}, 1$ $\left.\times \mathrm{C}_{17}\right), 57.90,57.92,57.99,58.28\left(10 \mathrm{C}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.00,59.07,59.09\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.72,61.82,61.85,61.88,61.90,62.09\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right)$, $64.53\left(2 \mathrm{C}, 2 \times \mathrm{C}_{15}\right), 68.77\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 67.45\left(2 \mathrm{C}, 2 \times \mathrm{C}_{13}\right), 69.75\left(2 \mathrm{C}, 2 \times \mathrm{C}_{8}\right), 69.87\left(2 \mathrm{C}, 2 \times \mathrm{C}_{9}\right), 71.23,71.26,71.32,71.34,71.44\left(12 \mathrm{C}, 12 \times \mathrm{C}_{5}\right), 71.48,71.51$, $71.55,71.62\left(12 \mathrm{C}, 12 \times \mathrm{C}_{6}\right), 70.63\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 81.27,81.33,81.36,81.40,81.45,81.53,81.61,82.07,82.27,82.30,82.33,82.40,82.49,82.57,82.62\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}\right.$, $\left.12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.15,100.22,100.24,100.52,100.57\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right), 166.45\left(2 \mathrm{C}, 2 \times \mathrm{C}_{16}\right), 171.03\left(2 \mathrm{C}, 2 \times \mathrm{C}_{11}\right)$ ppm. HRMS (ESI): mz calcd for $\mathrm{C}_{127} \mathrm{H}_{222} \mathrm{~N}_{2} \mathrm{O}_{70}$ $[\mathrm{M}+\mathrm{Na}]^{+} 2918.3765$, found 2918.3753 (mass accuracy of 0.4 ppm).

4.1.20 2:1 2-permethylated α-CD-C C $_{60}$ conjugate 2c

To a solution of $\mathrm{C}_{60}(15 \mathrm{mg}, 0.020 \mathrm{mmol}), \mathbf{1 0 c}(59 \mathrm{mg}, 1$ eq., 0.020 mmol$)$ and $\mathrm{I}_{2}(6 \mathrm{mg}, 1.23 \mathrm{eq} ., 0.025 \mathrm{mmol})$ in 14 mL dry toluene was added DBU ($6.8 \mu \mathrm{~L}, 2.23 \mathrm{eq}$., 0.045 mmol) at $0{ }^{\circ} \mathrm{C}$ under argon. After stirred at r.t. for 1.5 h , the reaction mixture was subjected to flash chromatography (eluent: PhMe, then $\mathrm{DCM} / \mathrm{MeOH} 17: 1$) to give the product $\mathbf{2 c}$ as a brown foam $(28 \mathrm{mg}, 39 \%) . \mathbf{R}_{\mathbf{f}}=0.4(\mathrm{DCM} / \mathrm{MeOH}=10: 1) .[\boldsymbol{\alpha}]_{\mathbf{D}}{ }^{\mathbf{2 0}}=+40.8\left(\mathrm{CHCl}_{3}, c=0.012\right) .{ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}{ }_{3}, 300 \mathrm{~K}\right): \delta 2.47(\mathrm{t}$, $\left.4 \mathrm{H}, J=6.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{12}\right), 3.16\left(\mathrm{~m}, 10 \mathrm{H}, 10 \times \mathrm{H}_{2}\right), 3.30\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{2}{ }^{\mathrm{A}}\right), 3.38\left(\mathrm{~m}, 36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.41\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{10 \mathrm{a}}\right), 3.47,3.48\left(\mathrm{~m}, 30 \mathrm{H}, 10 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right)$, $3.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{10 \mathrm{~b}}\right), 3.54\left(\mathrm{~m}, 24 \mathrm{H}, 12 \times \mathrm{H}_{3}, 12 \times \mathrm{H}_{4}\right), 3.55\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{9}\right), 3.61,3.62,3.63\left(36 \mathrm{H}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.77\left(\mathrm{~m}, 12 \mathrm{H}, 12 \times \mathrm{H}_{5}\right), 3.82\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{13}\right)$, $3.84\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{H}_{14}\right), 3.60-3.93\left(\mathrm{~m}, 32 \mathrm{H}, 12 \times \mathrm{H}_{6 \mathrm{a}}, 12 \times \mathrm{H}_{6 \mathrm{~b}}, 4 \times \mathrm{H}_{7}, 4 \times \mathrm{H}_{8}\right), 4.62\left(\mathrm{t}, 4 \mathrm{H}, J=5.0 \mathrm{~Hz}, 4 \times \mathrm{H}_{15}\right), 4.98\left(\mathrm{~d}, 2 \mathrm{H}, J=3.0 \mathrm{~Hz}, 2 \times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.04(\mathrm{~m}, 10 \mathrm{H}, 10 \times$ $\left.\mathrm{H}_{1}\right), 6.50(\mathrm{t}, 2 \mathrm{H}, J=5.0 \mathrm{~Hz}, 2 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 37.02\left(2 \mathrm{C}, 2 \times \mathrm{C}_{12}\right), 39.50\left(2 \mathrm{C}, 2 \times \mathrm{C}_{10}\right), 57.96,58.03,58.32(10 \mathrm{C}, 10 \times$ $\left.\mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.06,59.11,59.15\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.77,61.87,61.91,61.92,61.95,62.15\left(12 \mathrm{C}, 12 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 66.22\left(2 \mathrm{C}, 2 \times \mathrm{C}_{15}\right), 67.56\left(2 \mathrm{C}, 2 \times \mathrm{C}_{13}\right), 68.70$ $\left(2 \mathrm{C}, 2 \times \mathrm{C}_{14}\right), 69.88\left(2 \mathrm{C}, 2 \times \mathrm{C}_{9}\right), 70.64\left(2 \mathrm{C}, 2 \times \mathrm{C}_{7}\right), 71.27,71.30,71.37,71.48,71.55,71.57,71.59,71.65,71.65\left(29 \mathrm{C}, 2 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{17}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}, 12 \times \mathrm{C}_{5}, 12 \times \mathrm{C}_{6}\right)$, $81.30,81.36,81.40,81.44,81.46,81.53,81.71,82.12,82.34,82.44,82.53,82.62\left(36 \mathrm{C}, 12 \times \mathrm{C}_{2}, 12 \times \mathrm{C}_{3}, 12 \times \mathrm{C}_{4}\right), 100.19,100.26,100.55,100.61\left(12 \mathrm{C}, 12 \times \mathrm{C}_{1}\right)$, $139.19,141.08,141.97,142.33,143.12,143.17,144.02,144.77,144.83,145.26,145.33,145.42\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.51\left(2 \mathrm{C}, 2 \times \mathrm{C}_{11}\right), 170.90\left(2 \mathrm{C}, 2 \times \mathrm{C}_{16}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{187} \mathrm{H}_{220} \mathrm{~N}_{2} \mathrm{O}_{70}[\mathrm{M}+\mathrm{Na}]^{+} 3638.3675$, found 3638.3726 (mass accuracy of -1.4 ppm).

4.1.21 6-alkyl $\boldsymbol{\alpha}$-CD 11a

To a solution of 7,7 -(malonylbis(oxy))diheptanoic acid ($42 \mathrm{mg}, 0.12 \mathrm{mmol}$) in dry DCM (7 mL) was added EDC $\mathrm{HCl}(22 \mathrm{mg}, 1.0 \mathrm{eq} ., 0.12 \mathrm{mmol})$ and $\mathrm{HOBt}(18 \mathrm{mg}$, 1.0 eq., 0.12 mmol). After stirred at r.t. for $1 \mathrm{~h}, \mathbf{6 a}(50 \mathrm{mg}, 0.33 \mathrm{eq} ., 0.038 \mathrm{mmol})$ was added. After stirred at r.t. overnight, the reaction mixture was diluted with 20 mL by DCM, washed with water ($2 \times 5 \mathrm{~mL}$), brine $(1 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent: $\mathrm{DCM} / \mathrm{MeOH} 15: 1$). The product $\mathbf{1 1 a}(41 \mathrm{mg}, 65 \%)$ was obtained as a white foam. $\mathbf{R}_{\mathbf{f}}=0.3$ (cyclohexane/acetone $=1: 1$). ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathbf{C D C l} \mathbf{l}_{3}, 300 \mathrm{~K}\right)$: $\delta 1.25-1.35\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.37\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{25}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{26}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.66\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{24}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{27}\right)$, $2.17\left(\mathrm{t}, 2 \mathrm{H}, J=7.26 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.31\left(\mathrm{t}, 2 \mathrm{H}, J=7.26 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.16\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.22\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{12}\right), 3.36\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{21}\right), 3.38,3.39(5 \times \mathrm{s}, 15 \mathrm{H}, 5 \times$ $\mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)$), $3.48\left(\mathrm{~m}, 20 \mathrm{H}, 2 \times \mathrm{H}_{7}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right.$), $3.49-3.61\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.63,3.64\left(\mathrm{~m}, 19 \mathrm{H}, 1 \times \mathrm{H}_{6 \mathrm{a}}{ }^{\mathrm{A}}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.66-3.87\left(\mathrm{~m}, 6 \times \mathrm{H}_{5}, 10 \times \mathrm{H}_{6}\right)$, $3.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.12 \mathrm{~Hz}, J_{2}=10.66 \mathrm{~Hz}, 1 \times \mathrm{H}_{6 \mathrm{~b}}{ }^{\mathrm{A}}\right), 4.13\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{19}, 2 \times \mathrm{H}_{23}\right), 5.03\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right), 5.65(\mathrm{t}, J=5.10 \mathrm{~Hz}, 1 \times-\mathrm{NH}-) \mathrm{ppm}$; ${ }^{13} \mathbf{C} \mathbf{N M R}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): ~ \delta 24.85,25.57,25.69,25.71,25.96,26.89,28.39,28.45,28.69,28.95,29.69\left(12 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{18}, 1\right.$ $\left.\times \mathrm{C}_{24}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 34.00\left(\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.75\left(\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right), 39.66\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 41.99\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right), 57.97,58.00,58.03\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.04\right.\right.$, $59.12,59.18\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.89,61.92,61.95\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.55,65.65\left(2 \mathrm{C}, 1 \times \mathrm{C}_{19}, 1 \times \mathrm{C}_{23}\right), 69.53\left(1 \mathrm{C}, 1 \times \mathrm{C}_{6}{ }^{\mathrm{A}}\right), 71.31,71.36\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.51$ $\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.60,71.70\left(5 \mathrm{C}, 5 \times \mathrm{C}_{6}\right), 81.40,81.48,81.50,82.25,82.33,82.38,82.57,82.59,82.62\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.06,100.21,100.25,100.31$, $100.35\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 166.74,166.76\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 173.60,176.02\left(2 \mathrm{C}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{29}\right)$ ppm. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{76} \mathrm{H}_{133} \mathrm{NO}_{37}[\mathrm{M}-\mathrm{H}]^{-} 1651.8620$, found 1651.8555 (mass accuracy of 3.9 ppm).
4.1.22 6-alkyl $\boldsymbol{\alpha}$-CD 12a

To a solution of $11 \mathbf{a}(64 \mathrm{mg}, 0.039 \mathrm{mmol})$ in dry DMF (3 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(11 \mathrm{mg}, 2$ eq., 0.078 mmol$)$ and $\mathrm{CH}_{3} \mathrm{I}(3 \mu \mathrm{~L}, 1.3$ eq., 0.05 mmol$)$. After stirred at r.t. overnight, the reaction mixture was diluted with $\mathrm{DCM}(20 \mathrm{~mL})$, washed with water $(1 \times 5 \mathrm{~mL})$, brine $(3 \times 5 \mathrm{~mL})$, dried with MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent: cyclohexane/acetone 2:1) to give the product $\mathbf{1 2 a}\left(42 \mathrm{mg}, 65 \%\right.$) as a white foam. $\mathbf{R}_{f}=0.5$ (cyclohexane: acetone $=1: 1.2) .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 1.32\left(\mathrm{~m}, 12 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{25}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{26}\right), 1.46\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.61\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}_{18}\right.$, $\left.2 \times \mathrm{H}_{24}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{27}\right), 2.11\left(\mathrm{t}, J=7.36 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.28\left(\mathrm{t}, J=7.36 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.13\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.19\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{12}\right), 3.33\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{21}\right), 3.35,3.36$ $\left(5 \times \mathrm{s}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right.$), $3.43\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.46\left(6 \times \mathrm{s}, 18 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.47-3.60\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{2}, 6 \times \mathrm{H}_{3}\right), 3.61\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.63(\mathrm{~s}, 3 \mathrm{H}$, $\left.3 \times \mathrm{H}_{30}\right), 3.64-3.85\left(\mathrm{~m}, 17 \mathrm{H}, 1 \times \mathrm{H}_{6 \mathrm{a}}{ }^{\mathrm{A}}, 6 \times \mathrm{H}_{5}, 10 \times \mathrm{H}_{6}\right), 3.87\left(\mathrm{dd}, 1 \mathrm{H}, 1 \times \mathrm{H}_{6 \mathrm{~b}}{ }^{\mathrm{A}}\right), 4.09\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{19}, 2 \times \mathrm{H}_{23}\right), 5.02\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right), 5.56(\mathrm{t}, 1 \mathrm{H}, J=5.83 \mathrm{~Hz}, 1 \times-$ NH-)ppm; ${ }^{13} \mathbf{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) : $\delta 24.84,25.54,25.56,25.59,25.92,26.99,28.38,28.76,28.83,29.68,29.75\left(12 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1\right.$ $\left.\times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{18}, 1 \times \mathrm{C}_{24}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 34.06\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.66\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right), 39.49\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 41.73\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right), 51.59(1 \mathrm{C}, 1 \times$ $\left.\mathrm{C}_{30}\right), 57.90,57.92,57.95\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.01,59.07,59.13\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.84,61.86,61.90\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.35,65.38\left(2 \mathrm{C}, 1 \times \mathrm{C}_{19}, 6 \times \mathrm{C}_{23}\right)$, $69.47\left(1 \mathrm{C}, 1 \times \mathrm{C}_{6}{ }^{\mathrm{A}}\right), 71.25,71.30\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.48,71.55,71.64\left(6 \mathrm{C}, 5 \times \mathrm{C}_{6}, 1 \times \mathrm{C}_{7}\right), 81.32,81.37,81.40,82.23,82.28,82.34,82.36,82.53,82.57\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times\right.$ $\left.\mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.02,100.15,100.20,100.25,100.31\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 170.21,170.30\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 172.83,174.15\left(2 \mathrm{C}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{29}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{77} \mathrm{H}_{135} \mathrm{NO}_{37}[\mathrm{M}+\mathrm{Na}]^{+} 1688.8605$, found 1688.8608 (mass accuracy of -0.1 ppm).

4.1.23 $\boldsymbol{\alpha}-\mathrm{CD}^{\mathrm{Me}}-\mathrm{C}_{60}$ conjugate 3

To a solution of 12a ($42 \mathrm{mg}, 0.025 \mathrm{mmol}$), $\mathrm{C}_{60}(91 \mathrm{mg}, 5$ eq., 0.13 mmol$), \mathrm{CBr}_{4}(21 \mathrm{mg}, 2.5$ eq., 0.65 mmol$)$ in dry toluene (8 mL) was added DBU ($9.4 \mu \mathrm{~L}$). The brown reaction mixture was stirred overnight, which was subjected to silica chromatography directly (eluent : toluene to remove the excess of C_{60}, then cyclohexane/acetone $2.5: 1$). The product $\mathbf{3}$ was obtained $(9 \mathrm{mg}, 15 \%)$ as a foam. $\mathbf{R}_{\mathrm{f}}=0.5$ (cyclohexane/acetone $\left.=1: 1\right) .[\alpha]_{\mathrm{D}}{ }^{20}=+56.3\left(\mathrm{CHCl}_{3}, c=0.024\right) .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$): $\delta 1.32-1.42\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}\right), 1.43\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{26}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{25}\right), 1.46\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right), 1.66\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{15}\right.$, $\left.2 \times \mathrm{H}_{27}\right), 1.85\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{24}\right), 2.14\left(\mathrm{t}, 2 \mathrm{H}, J=8.01 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.32\left(\mathrm{t}, 2 \mathrm{H}, J=7.72 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.16\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{2}\right), 3.23\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{12}\right), 3.38,3.39$, $3.40\left(5 \times \mathrm{s}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.48\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.49\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.51-3.61\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 2 \times \mathrm{H}_{4}\right), 3.64,3.65\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right)$, $3.66\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{6 \mathrm{a}}{ }^{\mathrm{A}}\right), 3.67\left(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{H}_{30}\right), 3.62-3.87\left(\mathrm{~m}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right), 6 \times \mathrm{H}_{5}, 10 \times \mathrm{H}_{6}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.60 \mathrm{~Hz}, J_{2}=11.39 \mathrm{~Hz}, 1 \times \mathrm{H}_{6 \mathrm{~b}}{ }^{\mathrm{A}}\right), 4.49\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{19}\right.$, $\left.2 \times \mathrm{H}_{23}\right), 5.05\left(\mathrm{~m}, 6 \mathrm{H}, 6 \times \mathrm{H}_{1}\right), 5.51(\mathrm{t}, 1 \mathrm{H}, J=5.34 \mathrm{~Hz}, 1 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 24.98,25.73,25.85,26.01,27.01,28.86,28.99,29.84$, $29.90\left(10 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 28.57\left(2 \mathrm{C}, 1 \times \mathrm{C}_{18}, 1 \times \mathrm{C}_{24}\right), 34.17\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.85\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right)$, $39.67\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 51.76\left(1 \mathrm{C}, 1 \times \mathrm{C}_{30}\right), 57.98,58.00,58.04\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right), 59.10,59.15,59.22\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.92,61.95,61.98\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right)\right.$, $67.52\left(2 \mathrm{C}, 1 \times \mathrm{C}_{19}, 1 \times \mathrm{C}_{23}\right), 69.61\left(1 \mathrm{C}, 1 \times \mathrm{C}_{6}{ }^{\mathrm{A}}\right), 71.32,71.33,71.38,71.57,71.62,71.72,71.73,71.81\left(16 \mathrm{C}, 6 \times \mathrm{C}_{5}, 5 \times \mathrm{C}_{6}, 1 \times \mathrm{C}_{21}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}, 1 \times \mathrm{C}_{7}\right), 81.39$, $81.40,81.45,81.47,82.31,82.35,82.44,82.49,82.62,82.65\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.10,100.24,100.28,100.34,100.40\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 139.10,139.14$, $141.10,141.13,142.04,142.35,143.14,143.18,143.25,144.04,144.78,144.85,145.04,145.29,145.32,145.34,145.42,145.49,145.49\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.77$, $163.81\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 172.78,174.17\left(2 \mathrm{C}, 1 \times \mathrm{C}_{13}, 1 \times \mathrm{C}_{29}\right)$ ppm. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{137} \mathrm{H}_{133} \mathrm{NO}_{37}[\mathrm{M}+\mathrm{Na}]^{2+} 1214.9170$, found $1214.9124\left(\mathrm{z}=2^{+}\right.$, mass accuracy of 3.8 ppm .

4.1.24 2-alkyl $\boldsymbol{\alpha}$-CD 13a

To a solution of $7,7^{\prime}-($ malonylbis(oxy))diheptanoic acid ($77 \mathrm{mg}, 0.21 \mathrm{mmol}$) in dry DCM (6 mL) was added EDC $\mathrm{HCl}(41 \mathrm{mg}, 1 \mathrm{eq} ., 0.21 \mathrm{mmol})$ and $\mathrm{HOBt}(33 \mathrm{mg}, 1$ eq., 0.21 mmol$)$. The reaction mixture was stirred at r.t. for 2 h and $\mathbf{9 a}(140 \mathrm{mg}, 0.5 \mathrm{eq} ., 0.11 \mathrm{mmol})$ was added. After stirred overnight at r.t., the reaction mixture was diluted with DCM (20 mL), washed with water $(2 \times 7 \mathrm{~mL})$, brine $(1 \times 5 \mathrm{~mL})$, dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent: DCM/MeOH $9: 1$) to give the product 13a ($106 \mathrm{mg}, 60 \%$) as a white foam. $\mathbf{R}_{\mathrm{f}}=0.2(\mathrm{DCM} / \mathrm{MeOH}=6: 1) .{ }^{1} \mathbf{H} \mathbf{N M R}$ ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $300 \mathrm{~K}): \delta 1.29-1.40\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{25}, 2 \times \mathrm{H}_{26}\right), 1.62\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{15}\right), 1.64\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{24}, 2 \times \mathrm{H}_{27}\right), 2.17(\mathrm{t}$, $\left.2 \mathrm{H}, J=7.22 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.31\left(\mathrm{t}, 2 \mathrm{H}, J=7.22 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.12-3.18\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.22\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}_{2}^{\mathrm{A}}, 2 \times \mathrm{H}_{12}\right), 3.35\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{21}\right), 3.39(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times$ $\mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)$), $3.41\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.48\left(\mathrm{~m}, 15 \mathrm{H}, 5 \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.49-3.60\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.61,3.63,3.64\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.65-3.86(\mathrm{~m}, 17 \mathrm{H}, 6$ $\left.\times \mathrm{H}_{5}, 11 \times \mathrm{H}_{6}\right), 3.91\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=10.88 \mathrm{~Hz}, J_{2}=3.81 \mathrm{~Hz}, 1 \times \mathrm{H}_{6}\right), 4.13\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{19}, 2 \times \mathrm{H}_{23}\right), 4.95\left(\mathrm{~d}, 1 \mathrm{H}, J=3.04 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.04\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right), 5.71(\mathrm{t}, 1 \mathrm{H}$, $J=5.53 \mathrm{~Hz}, 1 \times-\mathrm{NH}-) \mathrm{ppm}$; ${ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 22.81,24.85,25.57,25.68,25.72,28.39,28.45,28.69,28.94,29.48,29.60\left(12 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1\right.$ $\left.\times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{18}, 1 \times \mathrm{C}_{24}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 33.93\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.72\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right), 39.65\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 42.11\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right)$, $57.95,57.98,58.02,58.28\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.05,59.10,59.12\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.74,61.83,61.91,61.94,62.31\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 65.54,65.63(2 \mathrm{C}, 1 \times$ $\left.\mathrm{C}_{19}, 1 \times \mathrm{C}_{23}\right), 70.75\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.29,71.34,71.38\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.56,71.63,71.68\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 81.32,81.42,81.96,82.33,82.45,82.52,82.61\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times\right.$ $\left.\mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.18,100.25,100.31,100.53,100.53,100.59\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 166.73\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 173.59,176.03\left(2 \mathrm{C}, 1 \times \mathrm{C}_{29}, 1 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{76} \mathrm{H}_{133} \mathrm{NO}_{37}[\mathrm{M}+\mathrm{Na}]^{+} 1674.8449$, found 1674.8490 (mass accuracy of -2.5 ppm).

4.1.25 2-alkyl $\boldsymbol{\alpha}$-CD 14a

To a solution of $\mathbf{1 3 a}(55 \mathrm{mg}, 0.03 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(9 \mathrm{mg}, 2 \mathrm{eq} ., 0.06 \mathrm{mmol})$ in dry DMF (2 mL) was added MeI ($3 \mu \mathrm{~L}, 1.5$ eq., 0.045 mmol) at r.t. After stirred overnight, the reaction mixture was extracted with DCM (20 mL), washed with brine ($5 \times 5 \mathrm{~mL}$), dried over MgSO_{4}, filtrated and concentrated. The residue was purified by silica gel chromatography (eluent : cyclohexane/acetone $1.5: 1$) to give the product $\mathbf{1 4 a}(45 \mathrm{mg}, 81 \%)$ as a white foam. $\mathbf{R}_{\mathbf{f}}=0.5(\mathrm{DCM}: \mathrm{MeOH}=8: 1) .{ }^{\mathbf{1}} \mathbf{H}$

NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) : $\delta 1.29-1.54\left(\mathrm{~m}, 16 \mathrm{H}, 2 \times \mathrm{H}_{8}, 2 \times \mathrm{H}_{9}, 2 \times \mathrm{H}_{10}, 2 \times \mathrm{H}_{11}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{25}, 2 \times \mathrm{H}_{26}\right.$), $1.62\left(\mathrm{~m}, 8 \mathrm{H}, 2 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{24}, 2 \times \mathrm{H}_{15}, 2 \times\right.$ $\left.\mathrm{H}_{27}\right), 2.12\left(\mathrm{t}, 2 \mathrm{H}, J=7.78 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.28\left(\mathrm{t}, 2 \mathrm{H}, J=7.5 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.13\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right), 3.19\left(\mathrm{~m}, 1 \mathrm{H}, 1 \times \mathrm{H}_{2}{ }^{\mathrm{A}}\right), 3.20\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{12}\right), 3.33\left(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{H}_{21}\right), 3.37$ $\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.39\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.46,3.47\left(5 \times \mathrm{s}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.48-3.59\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.59-3.63\left(\mathrm{~m}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.64$ $\left(\mathrm{s}, 3 \mathrm{H}, 3 \times \mathrm{H}_{30}\right), 3.65-3.85\left(\mathrm{~m}, 17 \mathrm{H}, 6 \times \mathrm{H}_{5}, 11 \times \mathrm{H}_{6}\right), 3.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.54 \mathrm{~Hz}, J_{2}=10.64 \mathrm{~Hz}, 1 \times \mathrm{H}_{6}\right), 4.09\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{19}, 2 \times \mathrm{H}_{23}\right), 4.94(\mathrm{~d}, 1 \mathrm{H}, J=2.92 \mathrm{~Hz}, 1 \times$ $\left.\mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.02\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right), 5.61(\mathrm{t}, 1 \mathrm{H}, J=6.01 \mathrm{~Hz}, 1 \times-\mathrm{NH}-) \mathrm{ppm} ;{ }^{13} \mathbf{C} \mathbf{N M R}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 24.85,25.57,25.62,25.69,26.83,28.36,28.39,28.77$, $28.86\left(12 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{18}, 1 \times \mathrm{C}_{24}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 34.06\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.69\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right), 39.49(1 \mathrm{C}, 1 \times$ $\left.\mathrm{C}_{12}\right), 41.73\left(1 \mathrm{C}, 1 \times \mathrm{C}_{21}\right), 51.61\left(1 \mathrm{C}, 1 \times \mathrm{C}_{30}\right), 57.90,57.96,57.96,58.21\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.01,59.06\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.71,61.82,61.88,61.91,62.27(6 \mathrm{C}$, $6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)$), $65.48\left(2 \mathrm{C}, 1 \times \mathrm{C}_{19}, 1 \times \mathrm{C}_{23}\right), 70.65\left(1 \mathrm{C}, 1 \times \mathrm{C}_{7}\right), 71.21,71.24,71.27,71.33\left(6 \mathrm{C}, 6 \times \mathrm{C}_{5}\right), 71.51,71.57,71.61\left(6 \mathrm{C}, 6 \times \mathrm{C}_{6}\right), 81.22,81.26,81.32,81.37$, $81.41,81.97,82.25,82.28,82.33,82.39,82.47,82.54,82.56,82.61\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.13,100.20,100.30,100.49,100.57\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 170.22,170.31$ $\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 172.86\left(1 \mathrm{C}, 1 \times \mathrm{C}_{29}\right), 174.16\left(1 \mathrm{C}, 1 \times \mathrm{C}_{13}\right)$ ppm. HRMS $(\mathbf{E S I}): m / z$ calcd for $\mathrm{C}_{77} \mathrm{H}_{135} \mathrm{NO}_{37}[\mathrm{M}+\mathrm{Na}]^{+} 1688.8605$, found 1688.8654 (mass accuracy of -2.9 ppm).
4.1.26 $\boldsymbol{\alpha}-\mathrm{CD}^{\mathrm{Me}}-\mathrm{C}_{60}$ conjugate 4

To a solution of $\mathbf{1 4 a}(113 \mathrm{mg}, 0.068 \mathrm{mmol}), \mathrm{C}_{60}(244 \mathrm{mg}, 5$ eq., 0.34 mmol$)$ and $\mathrm{CBr}_{4}(113 \mathrm{mg}, 5$ eq., 0.34 mmol$)$ in dry toluene (21 mL) was added $\mathrm{DBU}(25 \mu \mathrm{~L}, 2.5$ eq., 0.17 mmol) at r.t. under Ar. After stirred for overnight, the brown reaction mixture was subjected to silica chromatography directly (toluene to remove the excess of C_{60}, then cyclohexane / acetone 2: 1) to give the product $\mathbf{4}(40 \mathrm{mg}, 25 \%)$ as a brown foam. $\mathbf{R}_{\mathbf{f}}=0.3$ (cyclohexane/acetone $\left.=1: 1\right)$. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}{ }^{20}=+51.69\left(\mathrm{CHCl}{ }_{3}, c=\right.$ $0.039) .{ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}$) : $\delta 1.41\left(\mathrm{~m}, 6 \mathrm{H}, 2 \times \mathrm{H}_{16}, 2 \times \mathrm{H}_{26}, 2 \times \mathrm{H}_{9}\right), 1.48\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{17}, 2 \times \mathrm{H}_{25}\right), 1.49\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{10}\right), 1.50\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{11}\right)$, $1.60\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{8}\right), 1.64\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{15}, 2 \times \mathrm{H}_{27}\right), 1.84\left(\mathrm{~m}, 4 \mathrm{H}, 2 \times \mathrm{H}_{18}, 2 \times \mathrm{H}_{24}\right), 2.16\left(\mathrm{t}, J=7.49 \mathrm{~Hz}, 2 \times \mathrm{H}_{14}\right), 2.32\left(\mathrm{t}, J=7.49 \mathrm{~Hz}, 2 \times \mathrm{H}_{28}\right), 3.15\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{2}\right)$, $3.21\left(\mathrm{~m}, 3 \mathrm{H}, 1 \times \mathrm{H}_{2}{ }^{\mathrm{A}}, 2 \times \mathrm{H}_{12}\right), 3.39\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 3.40\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{H}_{7}\right), 3.48\left(5 \times \mathrm{s}, 15 \mathrm{H}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 3.49-3.59\left(\mathrm{~m}, 12 \mathrm{H}, 6 \times \mathrm{H}_{3}, 6 \times \mathrm{H}_{4}\right), 3.60,3.61$, $3.62,3.63,3.64\left(6 \times \mathrm{s}, 18 \mathrm{H}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 3.66\left(\mathrm{~s}, 3 \mathrm{H}, 3 \times \mathrm{H}_{30}\right), 3.67-3.87\left(\mathrm{~m}, 17 \mathrm{H}, 6 \times \mathrm{H}_{5}, 11 \times \mathrm{H}_{6}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{1}=3.54 \mathrm{~Hz}, J_{2}=10.64 \mathrm{~Hz}, 1 \times \mathrm{H}_{6}\right), 4.48(\mathrm{~m}, 4 \mathrm{H}$, $\left.2 \times \mathrm{H}_{19}, 2 \times \mathrm{H}_{23}\right), 4.95\left(\mathrm{~d}, 1 \mathrm{H}, J=2.99 \mathrm{~Hz}, 1 \times \mathrm{H}_{1}{ }^{\mathrm{A}}\right), 5.04\left(\mathrm{~m}, 5 \mathrm{H}, 5 \times \mathrm{H}_{1}\right), 5.56(\mathrm{t}, 1 \mathrm{H}, J=5.60 \mathrm{~Hz}) \mathrm{ppm},{ }^{13} \mathbf{C} \mathbf{N M R}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}, 300 \mathrm{~K}\right): \delta 24.97,25.73,25.76$, 25.83 , 25.84, 26.91, 28.85, 28.98, $30.12\left(10 \mathrm{C}, 1 \times \mathrm{C}_{8}, 1 \times \mathrm{C}_{9}, 1 \times \mathrm{C}_{10}, 1 \times \mathrm{C}_{11}, 1 \times \mathrm{C}_{15}, 1 \times \mathrm{C}_{16}, 1 \times \mathrm{C}_{17}, 1 \times \mathrm{C}_{25}, 1 \times \mathrm{C}_{26}, 1 \times \mathrm{C}_{27}\right), 28.59\left(2 \mathrm{C}, 1 \times \mathrm{C}_{18}, 1 \times \mathrm{C}_{24}\right), 34.09$ $\left(1 \mathrm{C}, 1 \times \mathrm{C}_{28}\right), 36.79\left(1 \mathrm{C}, 1 \times \mathrm{C}_{14}\right), 39.55\left(1 \mathrm{C}, 1 \times \mathrm{C}_{12}\right), 51.72\left(1 \mathrm{C}, 1 \times \mathrm{C}_{30}\right), 57.96,58.02,58.27\left(5 \mathrm{C}, 5 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{2}\right)\right), 59.07,59.11,59.14\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{6}\right)\right), 61.76$, $61.87,61.93,61.96,62.32\left(6 \mathrm{C}, 6 \times \mathrm{OCH}_{3}\left(\mathrm{C}_{3}\right)\right), 67.42\left(2 \mathrm{C}, 1 \times \mathrm{C}_{19}, 1 \times \mathrm{C}_{23}\right), 71.26,71.29,71.32,71.37,71.41,71.53,71.56,71.62,71.66,71.68,71.79\left(15 \mathrm{C}, 6 \times \mathrm{C}_{5}\right.$, $\left.6 \times \mathrm{C}_{6}, 2 \times \mathrm{sp}^{3}-\mathrm{C}_{60}, 1 \times \mathrm{C}_{21}\right), 81.26,81.31,81.36,81.38,81.40,81.42,81.45,82.01,82.29,82.32,82.37,82.40,82.43,82.46,82.51,82.55,82.58,82.61,82.64,82.67$ $\left(18 \mathrm{C}, 6 \times \mathrm{C}_{2}, 6 \times \mathrm{C}_{3}, 6 \times \mathrm{C}_{4}\right), 100.16,100.18,100.24,100.33,100.53,100.61\left(6 \mathrm{C}, 6 \times \mathrm{C}_{1}\right), 139.08,139.13,141.08,141.10,142.03,142.33,143.12,143.16,143.23$, $144.01,144.74,144.76,144.78,144.82,145.02,145.28,145.30,145.32,145.40,145.47\left(58 \mathrm{C}, 58 \times \mathrm{sp}^{2}-\mathrm{C}_{60}\right), 163.75,163.79\left(2 \mathrm{C}, 1 \times \mathrm{C}_{20}, 1 \times \mathrm{C}_{22}\right), 172.80(1 \mathrm{C}, 1 \times$ C_{29}), $174.16\left(1 \mathrm{C}, 1 \times \mathrm{C}_{13}\right) \mathrm{ppm}$. HRMS (ESI): $m z$ calcd for $\mathrm{C}_{137} \mathrm{H}_{133} \mathrm{NO}_{37}[\mathrm{M}+\mathrm{Na}]^{+} 2406.8449$, found 2406.8508 (mass accuracy of -2.5 ppm).
4.2 Cytotoxicity test

Cells were seeded in 96 -well plates in DMEM supplemented with 10% FBS and cultured overnight at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$. Then the tested compounds were added and the cells were further incubated at $37{ }^{\circ} \mathrm{C}$ in $5 \% \mathrm{CO}_{2}$ for 40 hours. Cell viability was assessed using the CellTiter-Glo assay kit as recommended by the supplier, and the plates were read using a plate reader (Tecan Infinite M2000 PRO; Tecan Group Ltd., Mannedorf, Switzerland) Viability was calculated using the backgroundcorrected absorbance as follows:
Viability (\%) = A of experiment well/A of control well $\times 100 \%$.
4.3 Cytopathic effect (CPE) reduction assay

The assay was performed as reported by Noah et al. with some modifications [24]. MDCK cells were seeded into 96 -well plates, incubated overnight and infected with influenza virus $(M O I=0.1)$ suspended in DMEM supplemented with $1 \% \mathrm{FBS}$, containing $2 \mu \mathrm{~g} / \mathrm{mL}$ TPCK-treated trypsin and tested compound, with a final DMSO concentration of 1% in each well. After incubation for 40 h , CellTiterGlo reagent (Promega Corp., Madison, WI, USA) was added and the plates were read using a plate reader (Tecan Infinite M2000 PRO ${ }^{\text {TM }}$; Tecan Group Ltd., Mannedorf, Switzerland).

Acknowledgements

We sincerely thank the China Scholarship Council (CSC) for a Ph.D. fellowship to X.Z. Financial support from the Centre National de la Recherche Scientifique (CNRS) and the Sorbonne Universités, UPMC are gratefully acknowledged. The biological work was supported by the National Natural Science Foundation of China (Grants No. 81573269).

References

[1] A. Iwasaki, P.S. Pillai, Nat. Rev. Immunol. 14 (2014) 315 - 328.
[2] E. van der Vries, F.F. Stelma, C.A. Boucher, N. Engl. J. Med. 363 (2010) 1381 - 1382.
[3] A. Hurt, Curr. Opin. Virol. 8 (2014) $22-29$
[4] X. Zhu, M. Sollogoub, Y. Zhang, Eur. J. Med. Chem. 115 (2016) 438 - 452.
[5] S.L. Xiao, Q. Wang, F. Yu, Y.Y. Peng, M. Yang, M. Sollogoub, P. Sinaÿ, Y.M. Zhang, L.H. Zhang, D.M. Zhou, Bioorg. Med. Chem. 20 (2012) $5616-5622$.
[6] S.H. Friedman, D.L. Decamp, R.P. Sijbesma, G. Srdanov, F. Wudl, G.L. Kenyon, J. Am. Chem. Soc. 115 (1993) 6506 - 6509
[7] T. Mashino, K. Shimotohno, N. Ikegami, D. Nishikawa, K. Okuda, K. Takahashi, S. Nakamura, M. Mochizuki, Bioorg. Med. Chem. Lett. 15 (2005) 1107 - 1109.
[8] S. Durdagi, C.T. Supuran, T.A. Strom, N. Doostdar, M.K. Kumar, A.R. Barron, T. Mavromoustakos, M.G. Papadopoulos, J. Chem. Inf. Model 49 (2009) 1139 1143.
[9] S. Samal, K.E. Geckeler, Chem. Commun. 13 (2000) 1101 - 1102.
[10] Y. Liu, L.Y. Zhao, Y. Chen, P. Liang, L. Li, Tetrahedron Lett. 46 (2005) $2507-2511$.
[11] J.J. Wang, Z.H. Zhang, W. Wu, X.Q. Jiang, Chin. J. Chem. 32 (2014) $78-84$.
[12] D. Iohara, M. Hiratsuka, F. Hirayama, K. Takeshita, K. Motoyama, H. Arima, K. Uekama, J. Pharm. Sci. 101 (2012) 3390 - 3397.
[13] T. Andersson, K. Nilsson, M. Sundahl, G. Westman, O. Wennerström, J. Chem. Soc., Chem. Commun. 8 (1992) 604 - 606.
[14] A. Ikeda, T. Iizuka, N. Maekubo, R. Aono, J. Kikuchi, M. Akiyama, T. Konishi, T. Ogawa, N. Ishida-Kitagawa, H. Tatebe, K. Shiozaki, ACS Med. Chem. Lett. 4 (2013) 752 - 756.
[15] Y. Chen, Y.L. Wang, A. Rassat, P. Sinaÿ, Y. Zhao, Y.M. Zhang, Tetrahedron 62 (2006) 2045 - 2049.
[16] K. Nobusawa, M. Akiyama, A. Ikeda, M. Naito, J. Mater. Chem. 22 (2012) 22610 - 22613.
[17] B.Z. Zhao, Y.Y. He, P.J. Bilski, C.F. Chignell, Chem. Res. Toxicol. 21 (2008) 1056 - 1063
[18] B.Z. Zhao, Y.Y. He, C.F. Chignell, J.J. Yin, U. Andley, J.E. Roberts, Chem. Res. Toxicol. 22 (2009) 660 - 667.
[19] X. Zhu, A. Quaranta, R.V. Bensasson, M. Sollogoub, Y. Zhang, Chem. Eur. J. 23 (2017) 9462 - 9466.
[20] B. Roizel, J.P. Baltaze, P. Sinaÿ. Tetrahedron Lett. 43 (2002) 2372 - 2373.
[21] S. Wu, L. Yang, W. Sun, L. Si, S. Xiao, Q. Wang, L. Dechoux, S. Thorimbert, M, Sollogoub, D. Zhou, Y. Zhang, Eur. J. Med. Chem. 130 (2017) 308 - 319.
[22] J. Yang, M. Li, X. Shen, S. Liu. Viruses 5 (2013) 352 - 373
[23] S. Xiao, D. Zhou, M. Yang, P. Sinaÿ, M. Sollogoub, Y. Zhang, Tetrahedron Lett. 52 (2011) 5273 - 5276.
[24] J.W. Noah, W. Severson, D.L. Noah, L. Rasmussen, E.L. White, C.B. Jonsson, Antivir. Res. 73 (2007) $50-59$.
[25] Z.S. Martinez, E. Castro, C. Seong, M.R. Cerón, L. Echegoyen, M. Llano, Antimicrob. Agents Chemother. 60 (2016) 5731 - 5741.
[26] A. Quaranta, Y. Zhang, S. Filippone, J. Yang, P. Sinaÿ, A. Rassat, R. Edge, S. Navaratnam, D.J. McGarvey, E. J. Land, M. Brettreich, A. Hirsch, R.V. Bensasson. Chem. Phys. 325 (2006) $397-403$.

