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Quaternion-Based Texture Analysis of Multiband 
Satellite Images: Application to the Estimation 
of Aboveground Biomass in the East Region 
of Cameroon

Cedrigue Boris Djiongo Kenfack1,3 · Olivier Monga2,3  · Serge Moto Mpong1 · 
René Ndoundam1

Abstract Within the last decade, several approaches using quaternion numbers to 
handle and model multiband images in a holistic manner were introduced. The qua-
ternion Fourier transform can be efficiently used to model texture in multidimen-
sional data such as color images. For practical application, multispectral satellite 
data appear as a primary source for measuring past trends and monitoring changes 
in forest carbon stocks. In this work, we propose a texture-color descriptor based 
on the quaternion Fourier transform to extract relevant information from multiband 
satellite images. We propose a new multiband image texture model extraction, called 
FOTO++, in order to address biomass estimation issues. The first stage consists in 
removing noise from the multispectral data while preserving the edges of canopies. 
Afterward, color texture descriptors are extracted thanks to a discrete form of the 
quaternion Fourier transform, and finally the support vector regression method is 
used to deduce biomass estimation from texture indices. Our texture features are 
modeled using a vector composed with the radial spectrum coming from the ampli-
tude of the quaternion Fourier transform. We conduct several experiments in order 
to study the sensitivity of our model to acquisition parameters. We also assess its 
performance both on synthetic images and on real multispectral images of Cameroo-
nian forest. The results show that our model is more robust to acquisition parameters 
than the classical Fourier Texture Ordination model (FOTO). Our scheme is also 
more accurate for aboveground biomass estimation. We stress that a similar method-
ology could be implemented using quaternion wavelets. These results highlight the 
potential of the quaternion-based approach to study multispectral satellite images.
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1 Introduction

The growth of emissions of carbon dioxide constitutes a prime contributor to global 
warming, which is nowadays a key ecological issue. Natural factors, particularly 
those linked to the forests, can play an important role to reduce these emissions. The 
main reason is that forests constitute one of the biggest carbon pools, which explains 
that mapping and monitoring biomass in tropical regions have attracted a great 
deal of attention within past decades (Goetz et al. 2009; Verhegghen et al. 2012). 
Therefore, estimating the amount of forest biomass becomes nowadays a major envi-
ronmental challenge. Indeed, it is still an open issue for the tropical and the sub-
tropical regions. Forest biomass represents living mass such as trees, roots, shrubs, 
and the dead mass of fine and coarse litter associated with soil (Dengsheng 2006). 
Forest biomass is often split in two parts: the aboveground and the belowground. 
As most research works coping with forest biomass, the present study deals with 
aboveground biomass estimation. Traditional methods (such as destructive sampling 
and allometric equations) based on forest survey data constitute the most accurate 
way to estimate the biomass of a specific area, but they remain time-consuming and 
labor intensive (Ketterings et al. 2001; Chave et al. 2004, 2014; Basuki et al. 2009; 
Saatchi et  al. 2011; Feldpausch et  al. 2012; Vieilledent et  al. 2012; Fayolle et  al. 
2013; Hunter et al. 2013; Kearsley et al. 2013; Mitchard et al. 2013; Ekoungoulou 
et al. 2014, 2015; Picard et al. 2014; Gaia et al. 2014; Re et al. 2015). However, they 
fail in yielding accurate spatial distributions of biomass for large extents. Within 
this context, remote sensing represents an opportunity to fix this task and to moni-
tor large forests attributes with reasonable accuracy levels. The data provided by 
remote sensing instruments appear therefore as a primary source for measuring past 
trends and monitoring forest biomass changes. Two main approaches are available 
to extract relevant information from remote sensing data for aboveground biomass 
estimation: the reflectance-based approach and the image texture-based approach. 
The main idea of the reflectance-based approach consists in establishing a relation-
ship between reflectance values of satellite images and forest structure parameters. 
Hence, (Roy and Shirish 1996) proposed a linear regression model aiming to estab-
lish a linear relationship between biomass and vegetation indices, such as the wet-
ness or the Normalized Difference Vegetation Index (NDVI), derived from satellite 
images. Thenkabail et al. (2004) assessed the ability to predict biomass and other 
structural stand parameters for the Cameroonian rainforest from vegetation indi-
ces derived from hyperspectral and hyperspatial satellite images. They reached to 
the conclusion that vegetation indices from hyperspatial satellite images, such as 
IKONOS or Landsat ETM+, underestimate the biomass. Hence, these vegetation 
indices provided by reflection-based approaches are not well-adapted to derive accu-
rate biomass estimations in rainforests, where higher biomass values are encoun-
tered. The biomass estimation model proposed by Gong et  al. (2014) constitutes 
an alternative to address this issue. It is a simple linear model of prediction that 



combines the Leaf Area Index (LAI), extracted from high spatial resolution images 
of the Landsat Thematic Mapper sensor, with canopy maximum height information 
provided by the Geoscience Laser Altimeter System sensor. This simple parametric 
model provided good results in the case of the Canadian forest, but is found to be 
not scale-invariant. One major limitation encountered in the reflectance-based analy-
sis of satellite image data is due to the fact that a reflectance is always saturated 
when a forest has a high value of biomass. Texture-based approaches constitute an 
interesting alternative to deal with this issue. These methods rely on the assumption 
that estimating biomass from satellite data can be tackled by image texture classi-
fication. Most texture-based approaches consist in extracting canopy properties of 
trees from one spectral band. A spectral band represents the electromagnetic energy 
reflected or emitted by the vegetation for a limited range of wavelengths. One of 
the most popular methods to address aboveground forest biomass estimation is the 
FOurier-based Texture Ordination (FOTO) (Couteron 2002; Couteron et al. 2005). 
The basic principle of FOTO is to link canopy granularity to image texture features 
derived from Fourier spectrum analysis. It allows ordering canopy images according 
to a monochromatic (panchromatic satellite data) image coarseness-finesses texture 
gradient in a way congruent with the visual appraisal (Couteron et al. 2005; Barbier 
et al. 2010, 2012; Ploton et al. 2012; Proisy et al. 2007). Monochromatic data, as 
those processed by FOTO, are usually the panchromatic products yielded by satellite 
sensors. The panchromatic band is a single band recorded over a large spectral band. 
Nevertheless, satellite images often have more than one spectral band. Thus, using 
the total multiband information can improve the assessment of biomass estimation 
and other structural forest parameters, such as quadratic mean tree diameter or tree 
density. Despite of numerous works dealing with multiband image processing, only 
few methods based on multispectral satellite image analysis have been proposed to 
address biomass issues.

In recent years, the first approaches using quaternion numbers to handle and 
model multispectral images in a holistic manner as a compact entity were introduced 
(Sangwine 1996; Shi and Funt 2005). Thanks to the use of the quaternion Fourier 
transform, up to four bands of multispectral satellite images can be efficiently and 
easily processed.

In this work, we are dealing with multispectral satellite data acquired using pas-
sive sensors. Our method, called FOTO++, starts by removing noise from multi-
spectral data while preserving edges. Then, color texture indices are extracted using 
the discrete form of the quaternion Fourier transform, and finally the support vector 
regression method (SVR) is used to derive the biomass estimation.

The paper is organized as follows. Section  2 presents the texture-based image 
analysis approach to estimate biomass called FOTO, which has been introduced by 
Couteron (2002). Section 3 deals with quaternion algebra tools which are useful for 
multiband image processing. We also present a brief review of color texture analy-
sis. The fourth section is devoted to the FOTO++ model description. The fifth sec-
tion investigates the validation of FOTO++ on synthetic and real data. Section  6 
gives future perspectives.



2  Texture-Based Analysis Image for Forest Biomass Estimation: The 
FOTO Method

FOurier-based Texture Ordination (FOTO) is an aboveground biomass estimation 
method performed on data obtained from monochromatic satellite canopy image 
texture analysis. The basic principle is to link canopy grain to image texture features 
derived from Fourier spectrum analysis. This section deals with the presentation of 
the method and its limitations.

2.1  Description of the Method

The FOTO method proposed by Couteron (2002) orders canopy images according to 
a coarseness-fineness texture gradient, in a way congruent with the visual appraisal 
(Couteron et al. 2005; Barbier et al. 2010). It shows promising results for the charac-
terization and measurement of canopies and for biomass estimation in tropical rain-
forests (Proisy et al. 2007). The FOTO method is summarized in Fig. 1 and detailed 
below. 

• Image splitting The first step consists in splitting the initial image into sub-
images representing a sample unit measured in the field. For instance, it can be
one hectare as in this work. This process depends on the image size and the split-
ting size.

• Feature extraction Afterward, for each sub-image, 2D Fourier transform peri-
odograms are calculated to characterize textural image properties. It takes into
account the spatial frequency information contained in each sub-image and pro-
vides the so-called R-spectrum. The R-spectrum is taken from the polar repre-
sentation of the sub-image’s Fourier coefficients by averaging the coefficients
having the same radius value in the polar space. For each sub-image, the R-spec-
trum represents the breakdown of variance accounted for by successive intervals
of spatial frequencies (Barbier et al. 2010). The R-spectra values are standard-
ized and ordinated using Principal Component Analysis (PCA) in order to iden-

Fig. 1  The FOTO method algorithm



tify the main gradients of the canopy textural variation. The PCA score of the 
most prominent axes is used as texture index for feature extractions.

• Biomass estimation model Texture indices are used as predictors in a simple
regression model where biomass is a dependent variable. The biomass values of
the field are used during this step to build an estimation model.

2.2  Limitation of the Method

The FOTO method has shown promising results in the case of mangrove forests 
(Proisy et al. 2007), and for linking canopy images to forest structural parameters 
(Barbier et al. 2012). Nevertheless, the FOTO method can handle only monochro-
matic (panchromatic data) images for texture analysis, although multispectral infor-
mation (e.g. visible colors combined with infrared) can be of great importance. 
Indeed, multispectral data contain more precise spectral reflectance signatures than 
panchromatic data. These spectral signatures can be used to detect fundamental veg-
etation properties such as phenology, canopy structure, vegetation stand structure, 
and physiological characteristics that link physical properties to ecological theory 
(Ustin and Gamon 2010). In addition, the feature extraction process and the clas-
sification scheme (regression model) of the FOTO method can be improved by using 
more robust and powerful non-linear statistical tools (Tapamo et al. 2014).

These limitations can be reduced using advanced techniques of color image 
processing. Indeed, when the spectral bands are pooled together, they provide one 
multispectral image that needs to be addressed using multiband image processing 
methods. In the last decade, some approaches using quaternion numbers to handle 
and model multiband images were introduced (Sangwine 1996; Shi and Funt 2005). 
These numbers allow processing up to four multispectral images in a holistic man-
ner as a compact entity. Furthermore, the choice of an appropriate color space can 
improve significantly the quality of the image processing methods.

3  Color Images Processing and Quaternion Algebra

This section presents useful concepts on color image processing and quaternion 
algebra. We also present a brief state of the art of color image modeling.

3.1  Color Spaces

A color is the way that the human vision system (HVS) perceives the light in the vis-
ible region of the electromagnetic radiation. The HVS uses colors to sense environ-
ment, recognize objects and convey information. These colors are perceived through 
a set of detectors of which each is sensitive to a specific spectral wavelength of the 
electromagnetic radiation (Fernandez-Maloigne et al. 2012). For color sensation, at 
least two detectors with different sensitivities are needed. The HVS embeds three 
types of color detectors, named cell cones, that are sensitive to the red (R), the green 



(G) and the blue (B) wavelengths (Noor et  al. 2012; Shuy and Parkkinen 2012). 
Hence, these three colors constitute the three primary color channels used by the 
HVS for color representation.

The set of all the colors obtained from the primary ones (red, green and blue) 
forms the RGB color space. The main drawback of the RGB color space is the high 
correlation between its components. Other color representations can be derived from 
the RGB color space using either linear or non-linear transformations. One of them 
is the HSI (hue-saturation-intensity) color space which is more intuitive to human 
vision. The HSI system separates specific color information in an image accord-
ing to its intensities. There exist some variants of this color space such as the HSB 
(hue-saturation-brightness), the HSL (hue-saturation-lightness) and the HSV (hue-
saturation-value) color spaces. In these color spaces, the hue and the saturation com-
ponents represent the color information, while the intensity component describes 
either the amount of light (the brightness and the value component) or the amount 
of white (the lightness component) of the image. In the HSI system, the hue compo-
nent denotes the dominant wavelength in the spectral distribution of light. It repre-
sents the basic color such as yellow, blue or black. The saturation component corre-
sponds to a measure of the purity of the color. Also, the Commission Internationale 
de l’Éclairage (CIE) proposed the Lab color space, which meets the psychological 
perception of colors by a human observer. Color is described in this space by using 
three components: L, a and b. The component L denotes the lightness or the inten-
sity of the color while components a and b describe the color information. The main 
feature of the Lab color space is that it is a perceptually equal space, in which a 
Euclidian distance between two colors is strongly correlated with the human’s per-
ceptual difference of these colors (Cheng et al. 2001). It means that the difference 
between two color coordinates in the Lab color space has the same meaning as in 
the way a human perceives it. “Appendices 2a and b” respectively present how to 
compute the Lab and HSV components from the RGB color space. Figure 2 presents 
the HSV and the Lab color spaces as described in Noor et al. (2012).

Like the HVS, a sensory satellite is commonly used to sense and study environ-
ment phenomena. It embeds many detectors, each one being sensitive to one spectral 
wavelength of the electromagnetic spectrum. These detectors, also called sensors, 
are able to detect and record the signal intensity over a large range of the electromag-
netic spectrum rather than the small visible part that HVS can handle. Satellites pro-
duce generally two types of images: panchromatic images and multispectral images. 
Panchromatic images consist in only one band recorded over a large range of spectral 
bands with a higher spatial resolution as compared to multispectral images, and is 
usually viewed as a gray scale image or a monochromatic image. The multispectral 
images are constituted of several bands of data having a small spectral range with a 
relatively low spatial resolution. Depending on the chosen spectral bands, multispec-
tral images can be viewed as true color images, pseudo-natural color images or color 
composite images. True color images are obtained by putting multispectral satellite 
images in the RGB color space with the red, the green and the blue bands assigned 
to red, green and blue channels respectively. In the case where the near infrared 
(NIR) band is used jointly with the red and the green bands and are assigned to the 
red, the green and the blue channels respectively, we have a pseudo-natural color 



image. Here, near infrared refers to the near infrared wavelength band. In the case 
of IKONOS satellite images, the near infrared band is acquired by a sensor within 
the spectral range of 780–920 nm. In all other cases, images obtained are said to be 
color composite images. Depending on the specific spectral characteristics of the 
features under study, spectral bands can be selected and rendered as color images to 
enhance these features. Figure 3 shows canopy images of a forest in the South-west 
region of Cameroon, acquired using the IKONOS sensors, represented in RGB and 
HSV color spaces. The RGB color image provided here is a pseudo-natural color 
representation of IKONOS images. We get the near infrared spectral band coded in 
the red channel, the red spectral band coded in the green channel and the green spec-
tral band coded in the blue channel.

In this paper, as we deal with vegetation and know that their reflectance values 
are greater on the NIR, red and green wavelengths than in other wavelengths, we 
retained these bands from satellite products and processed the resulting images as 
pseudo-color images. Furthermore, we choose among the existing color spaces the 
RGB, HSV and Lab color spaces to represent color. Indeed, none of the proposed 
spaces dominates the others, for various kinds of color images, so selecting the best 
one remains a main difficulty in color image processing.

3.2  Color and Texture Features Extraction

Image contents are usually described using color and texture features. Texture is 
an image feature that represents the local spatial organization of spatially varying 
spectral values that extend to a region of larger spatial scale (Chen et al. 1998). 
Thus, the perception of texture is a function of spatial and radiometric scales. 
Texture analysis is a major step in the texture classification task, which aims to 
extract relevant attributes for a specific application from color images (Fernan-
dez-Maloigne et al. 2012). Within the last decades, color has become a necessity 

Fig. 2  Color spaces. The left figure corresponds to the HSV color space and the right figure presents the 
Lab color space



to address pattern recognition and computer vision problems. Because acquisi-
tion and processing hardware for color images has also become more accessible 
to deal with the computational complexity of the high-dimensional color space, 
color features extraction becomes more effective. The simultaneous use of color 
and texture information as color-texture features can improve significantly the per-
formance of image analysis (Luccheseyz and Mitray 2001; Fernandez-Maloigne 
et al. 2012). Classically, three main approaches are used to extract color and tex-
ture features: the statistical approach, the stochastic model approach and the spa-
tio-frequential approach. The statistical-based approach defines texture features 
regarding to its color variation, and gives the relationship between a pixel and its 
neighbors. The stochastic model-based approaches aim to describe spatial depend-
encies from a probabilistic point of view by means of a Markov random field. 
The spatio-frequential approach consists in characterizing the texture in terms of 
number of transitions per unit area (spatial domain), or in terms of transitions per 
unit wavelength (frequency domain), or both. It is possible to transform an image 
into a frequency domain by means of a Fourier transform and manipulate this fre-
quency domain representation for information extraction. The spatio-frequential 
approaches aim to characterize the color and texture of multiband images in the 

Fig. 3  IKONOS images of canopies in the Korup forest (South-west region of Cameroon). The spatial 
resolution is 4 m. Each image has a dimension of 200 × 200 pixels which corresponds to 16 ha in the 
field. a RGB color representation of Korup. The color image provided here is a pseudo-color image with 
the near infrared band coded in the red channel, the red band coded in the green channel and the green 
band coded in the blue channel. b Image in HSV color space viewed as a RGB color image. c The hue 
component. d The saturation component, and e the value component. (Color figure online)



frequency domain because it is possible to express all the information present in 
the image using just a small number of coefficients. Within a spatial domain, a 
color image is represented as a matrix of three-dimensional vectors (R, G, B). 
However, in the frequency domain a monochromatic image is represented by its 
spatial frequencies having each a magnitude and a phase. The classical Fourier 
transform is not well adapted to multispectral images of dimension greater than 2 
(color images, multiband images, hyperspectral images), because complex num-
bers have only two components. The quaternion numbers can be used to overcome 
this drawback.

3.3  The Quaternion Algebra

Quaternion algebra, generally denoted by ℍ , was introduced by Hamilton in 1843 
as an extension of complex algebra (Hamilton 1866). Quaternion algebra is a non-
commutative algebra (Hamilton 1866; Meister and Schaeben 2005; Ell et al. 2014) 
in which a quaternion q ∈ ℍ is a four-dimensional hypercomplex number having one 
real part and three imaginary parts. Its Cartesian form is given by

where q0, q1, q2, q3 are real numbers. The three imaginary units i, j, k are square 
roots of − 1 and obey to the following rules:

The Cartesian form of a quaternion represents its expression in a specific 4D 
basis of the algebra ℍ , namely in the basis {1, i, j, k} . We present below some prop-
erties of quaternion numbers that are useful to understand our work.

1. (Scalar and vector parts) Any quaternion q = q0 + q1i + q2j + q3k can be decom-
posed into a scalar part S(q) and a vector part V(q) as:

where S(q) = q0 and V(q) = q1i + q2j + q3k.
2. (Pure quaternion) If the scalar part of a quaternion q is equal to zero, that is

S(q) = 0, then q is said to be a pure quaternion.
3. (Conjugate) The conjugate of quaternion q = q0 + q1i + q2j + q3k, denoted by q̄ ,

is given by Eq. 3.4:

4. Let p = p0 + p1i + p2j + p3k and q = q0 + q1i + q2j + q3k be two quaternion numbers,
then:

(3.1)q = q0 + q1i + q2j + q3k,

(3.2)
⎧
⎪
⎨
⎪⎩

i2 = j2 = k2 = −1,
ij = −ji = k,
jk = −kj = i,
ki = −ik = j.

(3.3)q = S(q) + V(q),

(3.4)q̄ = q0 − q1i − q2j − q3k.



(a) (Sum) The sum p + q of p and q is: 

(b) (Product) The product of p and q , denoted as p·q or pq, is:

where × denotes the cross-product:

5. (Modulus) The modulus |q| of a quaternion q = q0 + q1i + q2j + q3k is given by
Eq. 3.8:

6. (Norm) The norm ‖q‖ of quaternion q = q0 + q1i + q2j + q3k is given by expres-
sion 3.9:

7. (Unit quaternion) If ‖q‖ = 1 , then q is called a unit quaternion.
8. (Inverse) Any non-zero quaternion has an inverse given by Eq. 3.10:

If q is a unit quaternion, then its inverse is equal to q−1 = q̄

9. (Orthogonality) Two quaternions p and q are said to be orthogonal, denoted by
p ⊥ q, if the product pq̄ is a pure quaternion.

 10. (Polar form) In addition to the Cartesian form, any quaternion q ≠ 0 can also be
written in the polar form using Euler’s formula, as shown in Eq. 3.11:

In Eq. 3.11, |q| is the modulus, μq a unit vector called axis, and ϕq is the phase 
of the quaternion q, and are determined by expression 3.12. From this expres-
sion it follows that these only exist for those q for which both S(q) ≠ 0 and 
V(q) ≠ 0. In “Appendix 1” we present Euler’s formula for those q ≠ 0 for which 
either S(q) = 0 or V(q) = 0. 

(3.5)p + q = (p0 + q0) + (p1 + q1)i +
(
p2 + q2

)
j + (p3 + q3)k.

(3.6)
p ⋅ q = p0q0 −

(
p1q1 + p2q2 + p3q3

)
+ p0V(q) + q0V(p) + V(p) × V(q),

(3.7)
V(p) × V(q) =

(
p2q3 − p3q2

)
i +

(
p3q1 − p1q3

)
j +

(
p1q2 − p2q1

)
k.

(3.8)|q| =
√

q2
0
+ q2

1
+ q2

2
+ q2

3
.

(3.9)‖q‖ =
√

q2
0
+ q2

1
+ q2

2
+ q2

3
.

(3.10)q−1 =
q̄

‖‖q2‖‖
.

(3.11)q = |q|(cos!q + "q sin!q

)
= |q|e"q!q .



 11. (Symplectic form) Another representation of quaternions is obtained using the
symplectic form. Consider the basis {1, !, ", !"} of ℍ , where μ and η are two
orthogonal unit pure quaternions. Then, any quaternion q = a + bi + cj + dk can
be written as:

where 

The symplectic form is useful for practical calculations of the quaternion Fou-
rier transform using the classical Fourier transform code (Sangwine 1996).

4  Texture-Based Analysis of Color Images for Biomass Estimation: The 
FOTO++ Method

The FOTO++ method consists in an extension of the FOTO method for handling 
multispectral data. We propose to represent multiband images by means of quater-
nion matrices. Indeed, in recent years several approaches using quaternion num-
bers to process color images in a holistic manner have been introduced. Pei and 
Cheng (1996) have presented one of the very first works using quaternion numbers 
to model color images. Powerful tools for multiband images processing have fol-
lowed: Quaternion Fourier Transform (Sangwine 1996; Sangwine and Ell 1999; 
Pei et al. 2001; Ell and Sangwine 2007), Auto-correlation (Sangwine and Ell 1999; 
Moxey et al. 2003), Cross-correlation (Sangwine and Ell 1999), Convolution (Pei 
et al. 2001), Color Texture analysis (Shi and Funt 2005). The aim of FOTO++ is 

(3.12)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

|q| =
√

q2
0
+ q2

1
+ q2

2
+ q2

3
,

!q =
q1i+q2j+q3k√

q2
1
+q2

2
+q2

3

,

"q = arctan

(√
q2
1
+q2

2
+q2

3

q0

)
∈
]
− #

2
, #
2

[
.

(3.13)q =
(
a′ + b′!

)
+
(
c′ + d′!

)
",

⎧
⎪
⎪
⎨
⎪
⎪⎩

a′ = S(q),

b′ = − 1

2
(V(q)! + !V(q)),

c′ = − 1

2
(V(q)" + "V(q)),

d′ = − 1

2
(V(q)!" + !"V(q)).



to model texture in multiband images thanks to Quaternion Fourier Transform. We 
present within the following subsections the principal outlines of FOTO++.

4.1  Image Preprocessing: Nagao–Matsuyama and Median Combined Filter

The Nagao–Matsuyama filter, proposed by Nagao and Matsuyama (1979), is a sim-
ple non-linear image filtering method designed to remove image noise. First, this 
preprocessing technique defines local directional neighborhoods of a pixel for vari-
ous orientations. Afterward, the pixel’s gray level is replaced by the average of the 
gray levels of the pixels of the neighborhood having the least standard deviation. We 

Fig. 4  Nagao neighborhoods. The black square corresponds to the pixel of interest (central pixel) of the 
neighborhood. The shaded squares represent the neighborhoods of the central pixel

Fig. 5  Combined Nagao-median filtering of color image. We observe a homogeneous distribution of 
color and texture, with enhanced edges. a Forest scene without filtering, b The filtered image yielded by 
the combined Nagao-median filter applied five times



use a variant of this method by introducing a median filtering touch. The median fil-
ter is a non-linear filter. Its principle consists in calculating the median value within 
a specified neighborhood in an image and puts this value in the output image. This 
is accomplished by collecting and sorting the pixel values in the neighborhood of a 
pixel. The median value lies in the middle of the sorted list. The median filter has 
many properties such as edge preserving and impulse noise removing.

Indeed, we replace the pixel’s gray level by the median value of the neighbor-
hood instead of the mean value. Figure 4 presents the neighborhoods used by the 
Nagao–Matsuyama filter. The main effect of this filter is the reduction of the smooth-
ing of edges. It yields relatively homogeneous regions while preserving edges.

Our combination of median and Nagao filters gives a new filtering scheme with 
good edge-filtered response while removing noises (see Fig. 5). This non-linear fil-
tering scheme is particularly adapted to satellite images of forests where linear filter-
ing performs generally not well. In this paper we apply on each image band succes-
sively a Nagao “median” filter with a mask of size 5 × 5 pixels. This process (median 
filtering + Nagao filter) is repeated until convergence is reached, as in the classical 
Nagao filter. Convergence here is defined as idempotency, which means that the 
result obtained by the process of filtering does not change anymore if the filtering 
process is applied once more. When applied on a high spatial resolution multiband 
image, it yields a canopy image with homogeneous regions and well-delimited 
edges. This operation improves the feature extraction stage of the FOTO++ method. 
Figure 5 presents a result of this filtering stage on a real multispectral image. The 
result is an image where features are now well distinguishable.

4.2  Multiband Texture-Based Quaternion Features Using Discrete Quaternion 
Fourier Transform

Pei and Cheng (1996) were among the first to introduce quaternion numbers to 
model color images in a holistic manner. They proposed to encode the three color 
components into the vector part of a quaternion number, leaving the scalar part 
equal to zero. Thus, a color image, disregarding the color space used, is described by 
a matrix of pure quaternions. This scheme has enabled the development of powerful 
tools for multiband image processing. Indeed, a color image can then be processed 
as a single and unique entity using the algebraic properties of the quaternion set ℍ.

Table 1  Quaternion Fourier transforms

The quaternion numbers !, !1 and μ2 are pure unit quaternion square roots of −  1, f is a quaternion-
valued function, (x, y) represents the coordinates in the spatial domain, and (u, v) the coordinates in the 
frequential domain. We recall that the quaternionic product is not commutative

Left Right Sandwich

Single-axis ∫
ℝ2

e−!(ux+"y)f (x, y)dxdy ∫
ℝ2

f (x, y)e−!(ux+"y)dxdy ∫
ℝ2

e−!uxf (x, y)e−!"ydxdy

Dual-axis ∫
ℝ2

e−(!1ux+!2"y)f (x, y)dxdy ∫
ℝ2

f (x, y)e−(!1ux+!2"y)dxdy

Factored ∫
ℝ2

e−!1uxe−!2"yf (x, y)dxdy ∫
ℝ2

f (x, y)e−!1uxe−!2"ydxdy ∫
ℝ2

e−!1uxf (x, y)e−!2"ydxdy



The quaternion Fourier transform treats the signals as vector fields, and general-
izes the conventional Fourier transform. Following the classical convention, we pre-
sent (x, y) as spatial variables, and (u, v) as frequencies. Then, the image of spatial 
variables under a Fourier transform are interpreted as frequencies. A classical way 
to extend the two-dimensional Fourier transform to quaternion images consists in 
replacing the complex number i with a pure quaternion square root of − 1, denoted 
by μ. Due to the non-commutative property of the quaternion multiplication, and to 
the expression of the quaternion square root of − 1, there are eight different types 
of quaternion Fourier transforms (QFT). Table 1 presents each QFT type. Ell et al. 
(2014) proposed an interesting discussion about these quaternion Fourier trans-
forms, and a way to derive one formulation from the others. In the present work, we 
choose the left single-axis form of the quaternion Fourier transform and its discrete 
form as proposed by Sangwine (1996) for color image processing. The left single-
axis form of the quaternion Fourier transform was selected because it allows the 
QFT to be decomposed into two complex Fourier transforms. Under this particu-
lar form, the QFT can be performed using existing efficient implementations of the 
complex fast Fourier transform, as shown in Ell et al. (2014) and in Sangwine and 
Le Bihan (2013), rather than a custom-written code.

In the sequel, we express the equations using the RGB color space, but our 
scheme can be applied directly for other color spaces (HSV, Lab). In the RGB color 
space, a color image I is represented as a three-dimensional vector matrix. There-
fore, image I is a (M × N) × 3-matrix where M is the number of lines, N refers to the 
number of columns and 3 is the number of bands. Thus, to each pixel with coor-
dinates (m, n) (with (0 ≤ m ≤ M − 1) and (0 ≤ n ≤ N − 1) ) of I is attached a 
three-dimensional color vector (R(m, n), G(m, n), B(m, n)). Let f be a quaternion-
valued function of the color image I . For any pixel of I with coordinates (m, n) , its 
corresponding quaternion representation f(m, n) is given by Eq. 4.1:

where i, j, k satisfy Eq. 3.2, and where R(m, n), G(m, n) and B(m, n) are the color 
components in the RGB color space.

The quaternion Fourier transform of f is:

with ! = i+j+k√
3
.

The quaternion Fourier inverse transform is:

(4.1)f (m, n) = R(m, n)i + G(m, n)j + B(m, n)k,

(4.2)F(u, v) =
1√
MN

M−1∑
m=0

N−1∑
n=0

e
−!2"

(
mu

M
+ nv

N

)
f (m, n),

(4.3)f (m, n) =

M−1∑
u=0

N−1∑
v=0

e
!2"

(
mu

M
+ nv

N

)
F(u, v).



Equation  4.2 can be expressed in the symplectic form (see Eq.  3.13) using three 
orthogonal unit quaternion numbers !1, !2 and !3 (see Eq. 4.4 for the expression of 
these orthogonal unit quaternions). The symplectic form allows the use of existing 
discrete complex Fourier transform codes to implement the discrete quaternion Fou-
rier transform (DQFT).

The sympletic form of f (m, n), using the three orthogonal axes given by Eq. 4.4, is: 
f (m, n) = c1(m, n) + c2(m, n)!2 , with c1(m, n) = a′ + b′!1 and c2(m, n) = c′ + d′!1 . 
For the calculation of a′, b′, c′, d′ one can refer to Eq. 3.13. By using the symplectic 
form of f(m, n) in Eq. 4.2 it becomes:

where

Algorithm  1, described below, presents the discrete quaternion Fourier transform 
(DQFT) obtained using the classical Fourier transform from the symplectic form 
of the DQFT as proposed by Sangwine and Le Bihan (2013). The quaternion Fou-
rier transform of multiband images is a matrix of full quaternion values q, each of 
which satisfies S(q) ≠ 0 and V(q) ≠ 0 (see Eq. 3.3). The arrangement of coefficients 
within the quaternion spectrum follows the same layout as the one within the com-
plex Fourier transform spectrum (Ell and Sangwine 2007). The quaternion Fourier 
spectrum, as in the complex Fourier transform, can be divided into four quadrants, 
and in each quadrant the coordinates correspond to exactly one of the four com-
binations of positive and negative horizontal and vertical spatial frequencies. The 
quaternion spectrum can be represented in the quaternion polar form using Euler’s 
formula (see Eqs. 3.11, 3.12). This representation yields three components: modu-
lus, phase and axis. The modulus and the phase component are both scalar values. 

(4.4)
⎧
⎪
⎨
⎪⎩

!1 = (i + j + k)∕
√
3,

!2 = (j − k)∕
√
2,

!3 = !1!2.

(4.5)F(u, v) =
1√
MN

M−1∑
m=0

N−1∑
n=0

e
−!12"

(
mu

M
+ nv

N

)(
c1(m, n) + c2(m, n)!2

)

=
1√
MN

(
M−1∑
m=0

N−1∑
n=0

e
−!12"

(
mu

M
+ nv

N

)
c1(m, n) +

M−1∑
m=0

N−1∑
n=0

e
−!12"

(
mu

M
+ nv

N

)
c2(m, n)!2

)

= F1[u, v] + F2[u, v]!2,

(4.6)Fi[u, v] =
1√
MN

M−1∑
m=0

N−1∑
n=0

e
−!12"

(
mu

m
+ nv

N

)
ci(m, n), i = 1, 2.



Their distributions can be visualized as a gray level image (see Fig. 6). The axis can 
be displayed as a color image (see Fig. 6).

To estimate the texture features, a periodogram analysis is performed using the 
quaternion Fourier transform of function f  . Periodograms are calculated from the 
moduli of the Fourier transform of f. Periodograms analysis enables to identify the 
dominant cyclical behavior that might explain the variation pattern (color and tex-
ture) within the observed data. In this work we apply the zero-padding process to 
function f before taking the quaternion Fourier transform to deal with image border 
issues. The zero-padding process aims to obtain a square quaternion matrix from f 
by extending the matrix with lines and/or columns containing only zeros (Hamey 
Leonord 2015). The polar representation of the DQFT spectrum of f allows to 
define the R-spectrum, phase spectrum, and axis spectrum. As in Eq. 3.11, it can be 
expressed as:

where R = |FDQFT[R, μ, θ]| is the DQFT modulus, μ the axis, θ the phase and (u, v) 
are coordinates in the frequency domain.

Let S be the number of lines of the image that we obtain thanks to the application 
of the zero-padding process to f  . We characterize the scale texture pattern of f by 
means of the R-spectrum. We compute the mean values of the periodogram on con-
centric circles of radii r (with 0 ≤ r ≤

S

2
) , as described in Couteron (2002). Indeed, 

we characterize the color image texture pattern by performing a periodogram analy-
sis of the DQFT spectrum as delineated by Mugglestone and Renshaw (1996) for 
the classical Fourier transform. Periodograms corresponds to the number of Fourier 
spatial frequencies repetitions over a given distance, (generally the image’s size). If 
this distance is equal to 100m then it is expressed in cycles∕hectometer(cycles/hm) . 
Periodograms obtained from the DQFT modulus hold in a holistic manner all three 
data bands. R-spectra values are given by Eq. 4.8.

(4.7)FDQFT [R,!, "](u, v) = R(u, v)e!(u,v)"(u,v),

(4.8)kR(r) =
1

nr

r+b∑
r′=r

2!∑
"=0

|||FDQFT

[
r′,#, "

]|||,

Fig. 6  DQFT of canopy forest image. a Original image, b modulus part, c axis part and d phase part of 
DQFT



where the summation is over the nr periodograms indexed by r′, with r′ ∈ [r, r + b] , 
b is the length between two consecutives concentric circles, and ! ∈ [0, 2"] . In this 
paper we choose b = 1 when binning the radius in polar coordinates, and in each 
interval bin we sum the periodograms for all orientations on concentric rings.

Indeed, the R-spectrum is a vector such that each component corresponds to the 
average value of the amplitudes of frequencies lying between the concentric cir-
cles of radius r and r + b with r ∈ {0, 1, 2,…} . The value of one component of the 
R-spectrum is given by Eq. 4.8.

Algorithm 1: computation of the DQFT from a 2D quaternion function (Sangwine 1996)
Input: image f ,
!1 = (i + j + k)∕

√
3,

!2 = (j − k)∕
√
2.

Output: DQFT of f.
Begin
 Step 1: Decomposition of image f(m, n) in symplectic form using equation 3.13:
f (m, n) = f1(m, n) + f2(m, n)!2,

 Step 2: Expand symplectic components:
f1(m, n) = h1,1(m, n) + h1,2(m, n)!1,

f2(m, n) = h2,1(m, n) + h2,2(m, n)!1,

 Step 3: Construction of equivalent complex images:
f ′
1
(m, n) = h1,1(m, n) + h1,2(m, n)i,

f ′
2
(m, n) = h2,1(m, n) + h2,2(m, n)i,

 Step 4: Perform 2D Fast Fourier transform of f1′ (m, n) and f2′ (m, n):
F′
1
[u, v] = H1,1(m, n) + H1,2(m, n)i,

F′
2
[u, v] = H2,1(m, n) + H2,2(m, n)i,

 Step 5: Construction of simplex and perplex parts of Fourier transform:
F1(u, v) = H1,1(m, n) + H1,2(m, n)!1,

F2(u, v) = H2,1(m, n) + H2,2(m, n)!1,

 Step 6: Construction of symplectic form of the DQFT:
F[u, v] = F1(u, v) + F2[u, v]!2,

 Step 7: Reconstruction of the DQFT in Cartesian form:
F[u, v] = G0(u, v) + G1(u, v)i + G2(u, v)j + G3(u, v)k.

End

4.3  Support Vector Machine: Non-linear Learning Tool to Handle 
Color-Texture Indices

Nowadays, machine learning is becoming a major field of artificial intelligence. This 
domain aims to permit computers to acquire knowledge from the real world. Its final 
goal is to establish a learning computational theory in order to build systems that can 
perform in various application areas. The support vector machine proposed by Vap-
nik (1995) is one of such methods widely used in artificial intelligence. It exists of 
two types of support vector machines: the support vector machine for classification 



(SVC) and the support vector machine for regression (SVR). SVC aims at classify-
ing new unknown variables into one or more categories. SVR attempts to predict 
a real-valued output given a set of input variable data, as in our specific case. The 
SVR method consists in minimizing a quadratic objective function within a convex 
domain. The objective function is given by the combination of a loss function with 
regularization terms (Smola and Schölkopf 1998). The loss function corresponds to 
the conventional least squares error criterion as used in traditional regression pro-
cedures. Thus, the SVR method attempts to minimize the generalized error bound 
to achieve a generalized performance rather than minimizing the observed training 
error. We begin this subsection with an overview of the linear SVR theory. We end it 
by taking into account the non-linearity properties of the phenomenon under study.

4.3.1  Principle of SVR

Let us consider the training sample set given by Eq. 4.9.

where 
(
xi, yi

)
∈ ! ×ℝ, i = 1… n;! is the input-space ( ! can for instance be equal

to ℝd , with d ∈ ℕ ), and yi, i = 1,… , n are the components of the predicted variable. 
We want to determine a function f from ! to ℝ which enables to predict the output 
values with a given precision ! ∈ ℝ with respect to training sample S and also as flat 
as possible. Then, for each input sample xi, we allow a deviation less than ! between 
the corresponding output sample yi and the predicted value f(xi) as stated in Eq. 4.10.

Imposing the flatness of the function allows to minimize the complexity of the 
model and enhances its performances regarding generalization. In this subsection 
we describe how to get a linear function for function f and in the next subsection we 
will show how to cope with non-linearity using the kernel concept.

In the linear function case, the expression of f is given by Eq. 4.11.

where ⟨., .⟩ denotes the dot product in ! , x ∈ ! is the input vector, ! ∈ ! represents 
the vector of parameters to be determined, b ∈ ℝ is an unknown bias term to be 
found and y is the predicted variable. Hence, both ω and b need to be determined in 
Eq. 4.11 in order to get the expression of f. To obtain a maximal flatness of function 
f, we need to seek the minimal value of the parameter norm ‖!‖ . Hence, we find f by 
resolving the convex optimization problem given by Eq. 4.12.

(4.9)S =
{(

x1, y1
)
,
(
x2, y2

)
,… ,

(
xnyn

)}
,

(4.10)|||yi − f
(
xi
)||| ≤ !, i = 1,… , n.

(4.11)f (x) = y = ⟨!, x⟩ + b,

(4.12)
{

minimize
1

2
‖‖!2‖‖

subject to
|||yi − f

(
xi
)||| ≤ ", i = 1,… , n.



In the SVR method, a minimal prediction error value is obtained through the con-
straints of the optimization problem. It supposes that the convex optimization prob-
lem is feasible, that is, there exist a function f that approximate the entire training 
sample with a precision !, but sometimes this is not always the case in practice. Gen-
erally, in the presence of important noise or outliers within the data, one can allow 
some errors using the concept of soft margin. The soft margin concept introduces 
two positives slack variables ηi

− and ηi
+ in Eq. 4.12 in order to cope with infeasi-

ble constraints of the convex optimization problem. The error function in this case 
is called an !-insensitive function, denoted by g! and given in Eq. 4.13. It can be 
graphically interpreted as a tube of insensitivity with a radius ! as shown by Fig. 7. 
Hence, if the predicted value is within the tube then the error value is zero, while if 
the predicted value is outside the tube then the error is equal the magnitude of the 
difference between the predicted value and the radius ! of the tube.

(4.13)g!((y − f (x)) =

{
0 if |y − f (x)| ≤ !,
y − f (x) − ! if |y − f (x)| > !.

Fig. 7  Regression with !-insensitive tube. The solid line represents the predicted function f(x), and the 
dotted lines the boundary of the tube of radius ! around the predicted function The y-axis corresponds 
to the dependent variable y, and the x-axis to the independent variable x, for the case where ! = ℝ . 
Any point lying inside this tube has a loss value of zero, while all other points, either above or under the 
tube boundary, are required to have a loss value of η+ or !− respectively. All points lying exactly on the 
boundaries are called the support vector



The slack variable ηi
+ represents the distance between a point 

(
xi, yi

)
 and the bor-

der above the tube and ηi
− the distance the distance between a point 

(
xi, yi

)
 and the

border below the tube. It can be noted that for the same point, these values do not 
exist simultaneously.

We rewrite Eq. 4.12 using the slack variables and obtain Eq. 4.14:

The constant C > 0 defines the trade-off between the flatness of f and the amount 
up to which deviations larger than ! are tolerated. The Eq. 4.14 is easily solved when 
expressed in its dual formulation. The key idea is to construct a Lagrange function 
from both the objective function and the corresponding constraints. This is achieved 
by introducing a dual set of variables. An objective function is an equation to be 
optimized given certain constraints. Vapnik et al. (1997) proceeds as follows:

where the Lagrange multipliers !+
i
, !−

i
, "+

i
and"−

i
, i = 1,… , n, satisfy the non-nega-

tivity constraints. Differentiating Eq. 4.12 with respect to b,!, "−
i
 and ηi

+and setting 
the derivatives to zero for optimality yields:

(4.14)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

minimize
1

2
‖‖!2‖‖ + C

n∑
i=1

(
"−
i
+ "+

i

)
,

subject to

⎧
⎪
⎨
⎪⎩

yi − ⟨!, xi⟩ − b ≤ # + "+
i
, i = 1,… , n,

⟨!, xi⟩ + b − yi ≤ # + "−
i
, i = 1,… , n,

"−
i
≥ 0, i = 1,… , n,

"+
i
≥ 0, i = 1,… , n.

(4.15)
L =

1

2

‖‖‖!
2‖‖‖ + C

n∑
i=1

(
"−
i
+ "+

i

)
−

n∑
i=1

#−
i

(
$ + "−

i
+ yi − ⟨!, xi⟩ − b

)

−

n∑
i=1

#+
i

(
$ + "+

i
− yi + ⟨!, xi⟩ + b

)
−

n∑
i=1

(
"−
i
%−
i
+ "+

i
%+
i

)
,

(4.16)!L

!b
=

n∑
i=1

("−
i
− "+

i
) = 0,

(4.17)!L

!"
= " −

n∑
i=1

(#−
i
− #+

i
)xi = 0,

(4.18)
!L

!"−
i

= C −
(
#−
i
+ $−

i

)
= 0,



Substituting Eqs. (4.16), (4.17), (4.18), (4.19) into Eq. (4.15) yields the dual optimi-
zation problem given by Eq. (4.20) (Xu et al. 2014):

Equation (4.17) can be rewritten as follows:

By substituting Eq. (4.21) in Eq. (4.11), we get for a new input x′ a new prediction y′ 
as follows:

From Eq. (4.21), we can see that ω can be completely described as a linear com-
bination of the training inputs xi, i = 1,… , n . Hence, the complexity of the SVR is 
independent of the dimensionality of the input space ! and depends only on the 
numbers of support vectors. That is one of the reasons why we choose !-SVR for the 
prediction step of FOTO++.

The expression of b can be obtained by exploiting the so-called 
Karush–Kuhn–Tucker (KKT) conditions, which state that for the optimal solution 
the product between dual variables and constraints has to vanish (Karush 1939; 
Kuhn and Tucker 1951). In the support vector case we get:

There are three useful conclusions that can be made from the KKT conditions. 
First of all, only samples (xi, yi) with corresponding αi

− = C or αi
+ = C lie outside 

(4.19)
!L

!"+
i

= C −
(
#+
i
+ $+

i

)
= 0.

(4.20)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

maximize
n∑
i=1

yi(!
+
i
− !−

i
) − 1

2

n∑
i,j=1

(
!+
i
− !−

i

)(
!+
j
− !−

j

)⟨
xi, xj

⟩
− "

n∑
i=1

(
!+
i
+ !−

i

)
,

subject to

⎧
⎪
⎨
⎪⎩

n∑
i=1

(
!+
i
− !−

i

)
= 0,

!+
i
, !−

i
∈ [0,C], i = 1,… , n.

(4.21)! =

n∑
i=1

("+
i
− "−

i
)xi.

(4.22)y′ = f
(
x′
)
= b +

n∑
i=1

(
!+
i
− !−

i

)⟨
xi, x

′
⟩
.

(4.23)
⎧
⎪
⎨
⎪⎩

!−
i

(
" + #−

i
+ yi − ⟨$, xi⟩ − b

)
= 0,

!+
i

(
" + #+

i
− yi + ⟨$, xi⟩ + b

)
= 0,

#−
i
%−
i
=
(
C − !−

i

)
#−
i
= 0,

#+
i
%+
i
=
(
C − !+

i

)
#+
i
= 0, i = 1,… , n.



the !-insensitive tube around f  . Secondly, there can never exist a set of dual vari-
ables !−

i
, !+

i
which are simultaneously non-zero, as this would require non-zero 

slacks in both directions. Finally, for αi
− ∈ (0, C) and !+

i
∈ (0,C) , we have !−

i
= 0 

and !+
i
= 0 . Hence, b can be computed as given by Eq. 4.24. Its value is unique for 

any αi
−, αi

+ such that 0 < !−
i
and !+

i
< C (Smola and Schölkopf 1998). The value 

of b is not unique only in the case where the optimality criteria are not hold that is 
when !−

i
or !+

i
 ly on the boundary values 0 or C (Keerthi et al. 2001).

From Eq.  (4.21) and the previous conclusions, it appears that ω does not need 
all the xi, i = 1,… , n in its expressions. The set of xi that come with non-zero coef-
ficients is called the set of Support Vectors.

4.3.2  Non-linear SVR for FOTO++

The non-linearity of training patterns xi, i = 1,… n is taken into account in a non-
linear support vector machine regression using a kernel (Smola and Schölkopf 
1998). The main idea consists in making a preprocessing of the inputs with a map 
Φ ∶ ! → "  into some feature space !  , and then to apply the standard linear sup-
port vector regression procedures as described above. This approach appears to be 
directly not tractable from a computational point of view (Smola and Schölkopf 
1998; Basak et  al. 2007). One solution is obtained by finding a kernel function 
k
(
xi, x

′
)
, i = 1,… , n that can replace the dot product in Eq. (4.22). We then get:

with !+
i
≥ 0, !−

i
≥ 0, i = 1,… , n, Φ ∶ ! → " , k

(
xi, x

′
)
=
⟨
"
(
xi

)
,"

(
x′
)⟩

, i = 1,

… , n, and

We also need to evaluate the value of b by replacing the dot product used in 
Eq. 4.24 by the kernel function. Our selection of the SVR model as a prediction tool 
is based on Tapamo et al. (2014), highlighting that it can provide promising results 
in biomass estimation and that it was the best one among other non-linear learning 
tools, such as random forest or k-nearest-neighbor. In this paper we used a non-lin-
ear SVR regression model with the popular radial kernel to estimate biomass values 
from color-texture features. The radial kernel expressions is given by Eq. (4.27).

(4.24)
{

b = yi − ⟨!, xi⟩ − " for #−
i
∈ (0,C) or

b = yi − ⟨!, xi⟩ + " for #+
i
∈ (0,C).

(4.25)! =

n∑
i=1

("+
i
− "−

i
)Φ

(
xi
)
,

(4.26)y′ = b +

n∑
i=1

(
!+
i
− !−

i

)
k
(
xi, x

′
)
.



where σ is a free parameter defining the kernel’s behavior, and ‖⋅‖ is the Euclidian 
norm.

4.4  The FOTO++ Model

FOTO++ is a quaternion-based texture analysis model to address biomass esti-
mation issues. FOTO++ characterizes multiband image textures directly in multi-
spectral space. Our multispectral space includes: near infrared (NIR), red (R) and 
green (G). Indeed, we consider the texture of spatial distribution of pure quaternions 
without separating gray level textures (NIR, G, R + G + B, etc.) and color informa-
tion. Therefore, our model merges in an elegant mathematical way classical texture 
properties and color information. We use the non-linear learning method (SVR) on 
multispectral space texture descriptors to infer biomass values. We notice that our 
methodology could be easily adapted to tackle other issues related to the analysis of 
multiband texture images. Algorithm 2 presents in details the texture image features 
computation, and Fig. 8 describes the corresponding flowchart. The biomass estima-
tion scheme is given in Algorithm 3, while Fig. 9 shows its flowchart.

(4.27)k
(
x′, x∗

)
= e

−
‖x′−x∗2‖

2!2 ,

Fig. 8  FOTO++: color-texture indices extraction

Fig. 9  FOTO++: biomass estimation model



Algorithm 2: Color Texture calculus
Input: Color image I(m, n)
Output: Vector of color texture indices
Begin
 Step 1: Filtering image I with combined Nagao and median filter,
 Step 2: Converting filtered image into color space (RGB, HSV or Lab). Let C1C2C3 be the result-

ing color image,
 Step 3: Construct the equivalent quaternion image:
Q(x, y) = C1(x, y)i + C2(x, y)j + C3(x, y)k,

 Step 4: Perform 2D Quaternion Fast Fourier Transform of Q(x, y) using Algorithm 1,
 Step 5: Compute the modulus of the 2D Quaternion Fast Fourier Transform obtained in Step 4 

and construct the R-spectra vector using equation 4.8,
 Step 6: Save R-spectra vector as color texture indices.

End

Algorithm 3: Biomass estimation model
Input:
A set M of multispectral satellite images, M = {M1, M2, …, Mn}.
A set B of biomass values sampled on the fields, B =

{
B1,B2,… ,Bn

}
. There exists one biomass value for

each image in M.
Output: non-linear model BiomassModel for biomass estimation.
Begin
 Step 1: For each multispectral image Mi i = 1,… , n, compute its color texture indices using Algo-

rithm 2,
 Step 2 Construct a table where each row corresponds to the color texture indices of one image,
 Step 3: Compute the non-linear learning model BiomassModel using SVR with the R-spectra table 

values as predictive variables and B as predictors.
End

Fig. 10  Allostand output. The figure displays some Allostand output generated from field data. We 
obtain a simple 3D forest model built using allometric equation and physical properties of tree stands



5  Experimental Results

This section presents experimental results for biomass estimation provided with 
FOTO++ on real data. We have implemented FOTO++ model on Matlab ® version 
2014a. We also use the Quaternion toolboxes release developed by Sangwine and Le 
Bihan (Sangwine and Le Bihan 2013).

We calibrate FOTO++ on synthetic data and validate it on high-resolution mul-
tispectral satellite images. A sensitivity analysis and a comparison with the classical 
FOTO method show the FOTO++ accuracy.

5.1  Data

5.1.1  Synthetic Multispectral Images

We produce one dataset of synthetic data using the Allostand and the DART frame-
works. Allostand framework was developed by Barbier et  al. (2012), as a Matlab 
script to provide simulated forest stands from tree dendrometric data. Allostand is 
a forest structure model that yields simplified 3D forest simulations from a class 
of trunk Diameter at the Breast Height (DBH). Figure 10 presents an example of 
3D forest images output from Allostand. DART software was developed in CES-
BIO which aims at simulating the interactions between scene components and 
electromagnetic signals of varying wavelengths, in different sun-scene-sensor 

Fig. 11  Multispectral images simulated using Allostand and Dart frameworks. Each row corresponds to 
the density factor of the largest DBH (here  DBHmax = 50 cm), and each column corresponds to various 
acquisition parameters (VA View Azimuth, VZ View Zenith) of the same simulated stand



configurations. It takes into account active and passive radiance sources, with or 
without topography (Gastellu-Etchegorry 2008). It constitutes a physically realis-
tic radiative transfer model reproducing full scene images. Thanks to Allostand and 
Dart frameworks, we have produced 1920 different multispectral images with 100 
pixels per row and per column. Each image was simulated at high spatial resolu-
tion with three spectral bands that are well known to be strongly correlated with 
the forest characteristics: the near-infrared (NIR) band, the red band (R) and the 
green band (G). In order to include variability in our dataset, we have chosen dif-
ferent maximum DBH values. Among these dominant trees, we set among all trees 
on the field unit, a different proportion value of trees in the maximum DBH class. 
Maximum DBH varied from 50 to 100 cm by steps of 10 cm. The proportion of 

Fig. 12  Sample of field where dendrometric values were collected. They are localized in the South and 
East region of Cameroon



trees in the maximum DBH values was set to 0.33, 0.5, 1 and 2, as used in Barbier 
et al. (2012) to study the bidirectional texture function of simulated forest canopy 
images. It represents the proportion of trees in the maximum DBH class among 
all the trees on the field unit. ( 1 ha in our experiments).We also produced synthetic 
images using different acquisition parameters. For the acquisition parameters, the 
view azimuth (VA) was set between 0° and 180° by steps of 20°, and the view zenith 
(VZ) between 5°and 40° by steps of 5°. Figure 11 shows some multiband images 
produced by DART, where we observe texture variability between images due to the 
variation of density maximum DBH values and acquisition parameter values.

5.1.2  Forest Surveys and Real Multispectral Satellite Data

Field stand structure measures of 12 plots located in Cameroonian forest were used 
to validate the FOTO++ method. Plots are located in the Cameroonian side of 
TRIDOM: three plots in the Kumu subdivision (district in Cameroon) within the 
South region, three plots in the Ngoila subdivision within the East region, and six 
plots in the Mindourou (Alpicam industry). The TRIDOM area is the tropical forest 
which lies in the Congo basin forest crossing Cameroon, Congo and Gabon. TRI-
DOM is delimited by the Dja, Odzala, and Minkébé protected areas representing 
141, 000 km2 area. Figure 12 shows the geographical localization of these plots. On 
each plot, the DBH of each tree greater or equal to 10 cm was measured, and the 
Chave’s allometric equation for wet forests was used to compute the aboveground 
biomass (Chave et al. 2014). Table 2 presents the biomass values of each plot.

We use three high spatial resolution IKONOS images covering these plots. The 
spectral bands processed by FOTO++ were Near InfraRed (NIR), Red (R) and Blue 
(B), and we tested FOTO on the panchromatic band as it was used in Couteron et al. 
(2005) and Ploton et al. (2012). In most papers, FOTO appears to be processed with 
this band, mainly because of its high spatial resolution.

Practically, we needed a pre-processing in order to use the IKONOS image data. 
Below follows the description of the pre-processing step used to convert IKONOS 
digital numbers to surface reflectance values more suitable for analysis. We use the 
conversion method proposed by Thenkabail et al. (2004).

• Step 1 Firstly, the 11-bit IKONOS digital numbers provided by satellite sensors
were converted to radiance values measured in watt per steradian per square
meter (W sr−1 m−2) using Eq. 5.1 (Dial et al. 2003).

• Step 2 Secondly, using Eq. 5.2, radiance values were converted to albedo (Dial
et al. 2003), a dimensionless number, and

• Step 3 Finally, these values were corrected, from atmospheric effects to provide
surface reflectance values.

where the i, k, 1 ≤ i ≤ MN , k = 1, 2, 3 , represent the band indices; M and N are 
the numbers of lines and columns respectively; Li,k and DNi,k are respectively the 

(5.1)Li,k = DNi,k × CalCoef −1
k



Ta
ble

 2 
 Ab

ov
eg

ro
un

d b
iom

as
s (

AG
B)

 va
lue

s o
f e

ac
h fi

eld
 si

te

Ch
av

e’s
 al

lom
etr

ic 
eq

ua
tio

n f
or

 tr
op

ica
l w

et 
fo

res
t (

Ch
av

e e
t a

l. 2
01

4)
 w

as
 us

ed
 to

 es
tim

ate
 th

e b
iom

as
s f

ro
m 

da
ta 

co
lle

cte
d o

n t
he

 fi
eld

Pl
ot

Ku
mu

Ng
oil

a
Al

pic
am

1
2

3
1

2
3

1
2

3
4

5
6

AG
B 

(t/
ha

)
31

7.2
1

33
1.2

7
14

5.2
3

30
6.2

5
41

9.3
6

20
8.9

7
46

9.4
2

39
7.5

3
25

2.8
7

44
2.5

8
14

5.9
1

44
1.9

2



in-band radiance at sensor aperture and the image product digital value of the ith 
pixel in the kth band; CalCoefk is the in-band radiance calibration coefficient for the 
band indicated by k. We have that k = 1 corresponds to band 1 (Green), k = 2 that 
corresponds to band 2 (Red) and k = 3 that corresponds to band 3 (NIR). The val-
ues of CalCoefk were 727 for band 1, 949 for band 2 and 843 for band 3 (Dial et al. 
2003).

with k = 1, 2, 3 the band indices; !k the at-satellite albedo of band k ; L!k the radiance 
of band k; d the earth to sun distance in astronomic unit at the acquisition date; Solλk 
is the solar flux of band k, and θs is the solar zenith angle.

Figures 13, 14 and 15 present satellite images of each plot in the Kumu, Ngoila 
and Alpicam field sites respectively, after pre-processing.

(5.2)!k = "L#kd
2 ×

(
Sol#k cos

(
$S
))−1

,

Fig. 13  IKONOS satellite images of field samples in the Kumu subdivision

Fig. 14  IKONOS satellite images of field samples in the Ngoila subdivision



5.2  Model-Performance Statistics

In order to precisely evaluate the contribution of the FOTO++ model in above-
ground biomass estimation, we calculated and compared the performances of the 
classical FOTO model, FOTO with SVR used as prediction tool model (Tapamo 
et al. 2014) and the FOTO++ model. The same parameters of SVR was used both 
for the synthetic multiband images and the satellite multiband images. We use 
! = 0.1 , C = 1 and the radial function as the kernel.

We investigated two model-performance statistics commonly found in litera-
ture. The first one is the root mean square error (RMSE) whose formula is given by 
Eq. 5.3:

wherein model-derived biomass estimates (BiomassPredi,  i = 1, 2, …, n) are com-
pared with the corresponding biomass field values (BiomassField, i = 1, 2,… , n) 
that are judged to be reliable.

RMSE is frequently used to measure the differences between values predicted by 
a model and the values actually observed. When evaluating model performances, the 

(5.3)RMSE =

√√√√ 1

N

N∑
i=1

(
BiomassPredi − BiomassFieldi

)2
,

Fig. 15  IKONOS satellite images of field samples in the Alpicam forest industry



smallest RMSE correspond to the best models. Thus, if the ratio between the RMSE 
of two models is less than 1, then the model with the RMSE in the numerator is the 
best. Otherwise, the model with the RMSE in the denominator is the best. Subtract-
ing this ratio from 1 yields the amount (in percentage) of improvement gained by 
the best model. Greater errors have a greater influence on the RMSE criterion when 
comparing models. We also used jointly another model performance index in order 
to get a more complete performance evaluation.

The second performance criterion we used in this work is the dimensionless 
refined index model dr proposed by Willmott (2012). It lies in the range [− 1, 1]. In 
order to compute this index, we calculated the mean absolute error (MAE) as given 
by Eq.  5.4 and the mean absolute deviation (MAD) given by Eq.  5.5. Willmott’s 
index formula is given by Eq. 5.6. The interpretation of this index as stated by Will-
mott et al. (2015) depends on the sign of the index. When the index value dr lies in 
the positive domain, it describes the proportion to which a set of model predictions 
is, on average, error free. In the other case, when the index value lies in the negative 
domain, it describes the proportions of the real data error that is underrepresented 
by the average-error magnitude of the model.

(5.4)MAE =
1

N

N∑
i=1

||BiomassPredi − BiomassFieldi
||,

(5.5)MAD =
1

N

N∑
i=1

|||BiomassFieldi − BiomassField
|||,

Fig. 16  Comparison of R-spectra using different acquisition parameters: x-axis represents R-spectra bins 
and y-axis represents the amplitude of the R-spectra. RGB’s graph, HSV’s graph and Lab’s graph are 
sketched using FOTO++ method where images are represented in RGB, HSV and Lab color spaces, 
respectively. Periodograms corresponds to the number of Fourier spatial frequencies repetitions over a 
given distance, (generally the image’s size). In our experiment, this distance is equal to 100 m and then it 
is expressed in cycles/hectometer (cycles/hm)



wherein model-derived biomass estimates 
(
BiomassPredi, i = 1, 2,… , n

)
 are com-

pared with the corresponding biomass field values 
(
BiomassFieldi, i = 1, 2,… , n

)
 

that are judged to be reliable, and BiomassField represents the mean of biomass 
field values. The MAD value of our dataset is equal to 93.8033 kg/ha.

5.3  Sensitivity of Acquisition Parameters Analysis

We have conducted a sensitivity analysis of the FOTO++ method according to 
acquisition parameters and canopy grains in order to study the influence of instru-
mental bias. We have computed the texture indices of each image of the simulated 
dataset by means of the FOTO++ model. The corresponding texture indices of the 
classical FOTO model were computed on the NIR spectral band of each image. We 
have compared R-spectra computed by FOTO++ and FOTO within their prediction 
steps. It appears that color-texture indices gave more information on images. Texture 
features provided by FOTO++ and FOTO are shown in Fig. 16 for several acqui-
sition parameters. We have observed that FOTO++ indices hold more variability 
(both color and texture) than FOTO indices. It seemed that using simultaneously 
color and texture information to describe image contents can be a valuable tool. This 
fact is confirmed when evaluating the RMSE produced by these models to estimate 
aboveground biomass. This allowed us to state that quaternionic R-spectra used as 
texture indices can be a valuable tool for texture analysis of multiband satellite data.

We evaluated the accuracy of FOTO++ regarding biomass estimation ver-
sus the FOTO improved method proposed by Tapamo et  al. (2014), called here 
FOTO + SVR. We trained our model on 1344 synthetic multiband images and 
assessed its performances on the remaining 576 synthetic multiband images. We 
report in Table 3 only the best accurate model based on the RMSE with respect to 
parameter acquisitions. 

We observed that the FOTO++ method performed better in 56.67% of the cases, 
and when it is not the case, its RMSE values are very close to those of FOTO + SVR, 
as shown on Figs. 17 and 18. These figures present the RMSE yielded for view azi-
muth angles respectively of 15° and 40°, and show the accuracy variations with 
respect to acquisition parameters. The fact that FOTO++ is sometimes equivalent 
to FOTO + SVR in terms of estimation of biomass was due to the fact that in some 
generated images, nearly all the structural and the color information were concen-
trated only in the NIR band. Colorless information in this experimental dataset did 
not allow us to point out the most suitable color space to encode color information. 
We will see in the next experiments on colorful real datasets that color can contrib-
ute significantly to the accuracy of biomass estimation methods.

(5.6)dr =

{
1 − MAE

2MAD
if MAE < 2MAD,

2MAD

MAE
− 1 if MAE > 2MAD.
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5.4  Biomass Model Comparison: FOTO versus FOTO++

In this subsection, we assess the performance of our model FOTO++ and also eval-
uate the contribution of each main steps of the model. This evaluation is conducted 
on ‘real’ multiband satellite images. We trained the model on 4 satellite images (1 
for the Kumu dataset, 1 for the Ngoila dataset and 2 for the Alpicam dataset) and 
investigated its performances on the remaining 8 satellite images. We present below 
the results obtained and their discussion.

Fig. 17  Comparison of RMSE using FOTO + SVR (green line) and FOTO++ (blue dots) on different 
azimuthal view angles for view zenith angle equal to 15°: x-axis represents azimuthal angles and the 
y-axis represents the RMSE. (Color figure online)

Fig. 18  Comparison of RMSE of FOTO + SVR (green line) and FOTO++ (blue dots) on different view 
azimuthal angles for view zenith angle equal to 40°: x-axis represents azimuthal angles and the y-axis 
represents the RMSE. (Color figure online)

Table 4  Non-linear statistical 
learning tools and biomass 
estimate accuracy

We evaluated RMSE and Willmott’s index dr for FOTO and 
FOTO + SVR. We tested these models on a real satellite dataset

FOTO FOTO + SVR

RMSE (kg) 92.998 58.826
MAE (kg) 75.851 40.175
dr 0.595 0.785



5.4.1  Contribution of Support Vector Machine for Regression in Biomass Estimate 
Accuracy

In this section we compare FOTO with FOTO + SVR as a prediction tool in order 
to assess the statement that using non-linear machine learning methods can improve 
the performance of FOTO, as stated in Tapamo et al. (2014). Table 4 presents the 
RMSE and Willmott’s model-performance indices. We observed that FOTO yields 
a RMSE of 92,998  kg, and that when SVR is used as prediction tool, its RMSE 
decreases down to 58,826 kg. The ratio RMSEFOTO+SVR/RMSEFOTO is then equal to 
0.632. Hence, FOTO + SVR model is better than the FOTO model, and the improve-
ment is about 36.8%. Willmott’s index of FOTO + SVR, getting a value of 78.5%, 
also showed that biomass values obtained by FOTO + SVR are on average 78.5% 
free of error. Biomass values given by FOTO are only on average 59.5% free of 
error. Hence SVR applied on FOTO texture indices yielded more accurate bio-
mass estimates. These results were in accordance with those found in Tapamo et al. 
(2014), and confirmed that machine learning tools can sensibly improve FOTO bio-
mass estimates. We needed also to evaluate which part of this improvement is due 
to the color-textures features extraction process using quaternions tools. The next 
subsection presents the evaluation of this contribution.

Table 5  Contribution of 
color-texture indices to biomass 
estimate accuracy

We evaluate the RMSE and the Willmott’s index dr of the 
FOTO + SVR and FOTO++ models. We tested these models on a 
real satellite dataset

FOTO + SVR FOTO++ without filtering step

RGB HSV Lab

RMSE (kg) 58.826 45.522 44.689 45.963
MAE (kg) 40.175 34.642 34.319 35.276
dr 0.785 0.8153 0.8170 0.8119

Table 6  Evaluation of filtering 
step contribution to biomass 
estimate accuracy

We have evaluated the RMSE and the Willmott’s dr indices of 
FOTO++ using non-filtered and filtered image data. We have con-
ducted these experiments on a real satellite image dataset

FOTO++ applied on non-
filtered data

FOTO++ applied on 
filtered data

RGB HSV Lab RGB HSV Lab

RMSE (kg) 45.522 44.689 45.852 42.624 42.331 43.366
MAE (kg) 34.642 34.319 35.276 31.756 31.675 33.997
dr 0.8153 0.8170 0.8119 0.8307 0.8311 0.8187



5.4.2  Contribution of Color-Texture in Biomass Estimate Accuracy

This subsection aims to evaluate the contribution of image indices derived from 
multiband images processed in a holistic way using the quaternion algebra tool. 
We used color-texture indices extracted from multiband satellite data by means of 
the discrete quaternion Fourier transform (Algorithm  1). We calculated and com-
pared RMSE values and Willmott’s model performance index of FOTO-SVR 
and FOTO++ without taking into account the filtering step. These experiments 
were conducted on a real satellite dataset. Table 5 summarizes these experiments. 
The ratio of RMSE values for the best FOTO++ without filtering and the one for 
FOTO + SVR is 0.7598. Thus, FOTO++ without filtering improved by 24.02% 
the accuracy of FOTO + SVR. Willmott’s performance index also confirmed the 
improvement of the precision using FOTO++ while getting 0.8170 instead of 0.785 
for FOTO + SVR. We can then conclude, based on these results, that color-texture 
indices extracted from multiband satellite data significantly improve biomass esti-
mates. As the FOTO++ complete method used an image filter in its first step, an 
assessment of its contribution to the final improvement of the method is required. 
The next subsection presents this evaluation.

5.4.3  Contribution of Filtering in Biomass Estimate Accuracy

In this last subsection, we evaluated how a filtering step using the Nagao-median 
filter contributes to biomass estimate accuracy in the FOTO++ model. We also 
assessed this evaluation according to color representations. Table  6 summarizes 
the results yielded by this scheme. We observed, based on RMSE, that a filtering 
step can be used to improve biomass estimate accuracy in both color representa-
tions. For our data, RMSE values of FOTO++ using the initial filtering step vary 
from 43.366 kg for the Lab color space, to 42,331 kg for the HSV color space. We 
calculated the amount of improvement obtained while filtering data in each color 
space and we found 6.36% for the RGB color space, 5.27% for the HSV color space 
and 5.42% for the Lab color space. Contrariwise, Willmott’s index showed that the 
Lab color space yielded a smallest performance model. It seems that a filtering 
step enhanced both color and texture information for our dataset. Our experiments 
showed that a filtering step does not change significantly the Euclidian distance of 
colors on both non-filtered and filtered data, but changes seemed to occur in percep-
tion of colors. According to this index, the HSV color space representation yielded 
the most adapted model for biomass estimates. We observed here that filtering data 
contributes effectively to the improvement the final performance of the model.

We can conclude, based on these experiments, that color-texture indices extracted 
with the quaternion Fourier transform combined with a machine learning tools and 
with the use of filtering techniques can significantly improve the accuracy of bio-
mass estimates compared with the classical FOTO model.



6  Conclusion

Satellite image data appear as a primary source for measuring past trends and moni-
toring changes in forest carbon stocks. Thus, the processing of these data represents 
a fundamental challenge. Image processing techniques applied on remote sensing 
data are valuable tools to fix this issue. The problem of estimating biomass from 
satellite data can be viewed as image texture analysis and classification. One such 
approach is the FOurier-based Texture Ordination (FOTO) method proposed by 
Couteron (2002) for aboveground forest biomass estimation. It ordered canopy 
images according to coarseness-finesses texture gradient and used a simple regres-
sion model to estimate aboveground biomass values. The limitation of this method 
lies on its inefficiency to process multiband satellite images. We note that classi-
cal image processing algorithms are not able to simultaneously deal with multiband 
satellite images. Instead, when dealing with these data, previous methods first sepa-
rate it into several channels and then apply traditional image processing algorithms 
to these channels. In recent years, some approaches using quaternion numbers to 
handle and model multiband images in a holistic manner were introduced. By intro-
ducing quaternions, quaternion Fourier transform allows multidimensional data such 
as multiband images to be processed efficiently and easily. In this paper we pro-
pose the FOTO++ model that takes into account in a compact elegant mathemati-
cal way all information hold in multiband satellite images. We used this informa-
tion to address aboveground biomass issues in tropical regions. FOTO++ starts by 
removing noises in multiband images while preserving the edges of objects. After 
this preprocessing stage, multiband texture indices were extracted using the discrete 
form of the quaternion Fourier transform, and finally the support vector regression 
method was used to derive biomass estimations from these multiband texture indi-
ces. We used quaternion-based tools to extract useful texture features from multi-
band satellite images. Texture features are represented by a vector composed by the 
radial spectrum obtained from the amplitude of the quaternion Fourier transform. 
The sensitivity analysis of the FOTO++ model yielded that it is often more effi-
cient with regards to the variation of acquisition parameters than the FOTO model. 
A comparative study between the two models based on model-performance statistics 
showed that FOTO++ is more accurate than FOTO + SVR. Color representation, 
the filtering step as well as machine learning seemed to be valuable tools to sig-
nificantly improve biomass estimates. We observed indeed that, over all, FOTO++ 
provided 54.49% of improvement compared with FOTO. Also, 82.11% of biomass 
values yielded was on average free of error (according to Willmott’s index), and bio-
mass values obtained using by FOTO + SVR was on average 59.5% free of error. We 
investigated in detail the contribution of each step of FOTO++ to this final improve-
ment and found that when using SVR, FOTO accuracy is improved by 36.8% with 
on average 78.5% of values free of error. When applying SVR on quaternion-based 
color-texture, an improvement of 24.02% is observed with on average 82.70% of 
biomass value free of error. The filtering step of FOTO++ contributed to 5.27% 
of the performance and yielded on average 83.11% of biomass values free of error. 



Hence, quaternion-based color-textured and filtering are valuable tools that can be 
used to improve biomass value estimates.

We also observed that whatever is the color space used, FOTO++ has more often 
a better performance than both FOTO and FOTO + SVR used as prediction tool. 
These results highlight the potential of the quaternion-based approach to classify 
multiband texture. We validated this approach on forest biomass estimation, both on 
simulated and real image data. Our methodological scheme can be further improved 
while handling other information derived from the DQFT, such as phase spectrum 
and the axis spectrum. A similar methodology could be investigated with quaternion 
wavelets and is currently being tackled to address multiband satellite texture clas-
sification issues. Also, other hypercomplex numbers such as octonions can be used 
to handle up to eight spectral bands, but from our knowledge the theoretical part of 
this algebra is not well advanced to derive such methods. On the other hand, Clif-
ford algebra can be used to process any number of spectral bands. Clifford algebra 
represents an opportunity to handle hyperspectral images with similar methodology 
as presented in this paper.
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Appendix 1

We present here a complete scheme to compute the polar form of any quaternion 
numbers.

In Sect. 3.3, when dealing with quaternion algebra, we have shown how to com-
pute the polar representation of a quaternion only in the case where it is non-equal 
to zero. We present here how to compute the polar form when either the scalar or the 
modulus of its vector part is equal to zero.

Let

with |q| ≠ 0 . The polar representation of the quaternion q can be expressed as:

where α is a pure quaternion with |V(!)| ≠ 0 . It follows that:
1. if S(q) = q0 = 0 then

• q = |q|e
(

!

2
+2k!

)
.
V(q)

|q| , for, k ≥ 0, k ∈ ℕ.

• q = |q|e−
(

3!

2
+2k!

)
V(q)

|q| , for, k ≥ 0, k ∈ ℕ.

(A.1)q = q0 + q1i + q2j + q3k,

(A.2)q = |q|e! ,



2.        then

a. if V(q) = 0 , then
i. if S(q) > 0 then

with S(!) = 0 and |V(!)| = 2"k, for k ≥ 1, k ∈ ℕ.
ii. if S(q) < 0 then

with S(!) = 0 and |V(!)| = (2k + 1)", for k ≥ 0, k ∈ ℕ.
b. if V(q) ≠ 0 then
i. if cos(|V(q)|) > 0 and sin(|V(q)|) > 0 then

with arctan
(

|V(q)|
S(q)

)
∈
(
2k!, !

2
+ 2k!

)
, k ≥ 0, k ∈ ℕ.

ii. If cos(|V(q)|) < 0 and sin (|V(q)|) > 0

with arctan
(

|V(q)|
S(q)

)
∈
(

!

2
+ 2k!, (2k + 1)!

)
, k ≥ 0, k ∈ ℕ.

iii. if cos (|V(q)|) < 0 and sin(|V(q)|) < 0

with arctan
(
− |V(q)|

S(q)

)
∈
(
! + 2k!, 3!

2
+ 2k!

)
, k ≥ 0, k ∈ ℕ.

iv. if cos (|V(q)|) > 0 and sin (|V(q)|) < 0

with arctan
(
− |V(q)|

S(q)

)
∈
(

3!

2
+ 2k!, 2(k + 1)!

)
, k ≥ 0, k ∈ ℕ.

Appendix 2a

We describe here below an algorithm to convert a RGB-color image to Lab color 
space.

if S(q) = q0 ≠ 0

(A.3)q = S(q) = |q|e! ,

(A.4)q = S(q) = |q|e! ,

(A.5)q = |q|earctan
(

V(q)

S(q)

)
⋅

V(q)

|q| ,

(A.6)q = |q|earctan
(

|V(q)|
S(q)

)
⋅

V(q)

|q| ,

(A.7)q = |q|earctan
(
−

|V(q)|
S(q)

)
⋅−

V(q)

|q| ,

(A.8)q = |q|earctan
(
−

|V(q)|
S(q)

)
⋅

V(q)

|q| ,





Appendix 2b

We present here an algorithm to convert a RGB-color image to HSV color space.
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