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13 Abstract 
 

14 Paleopiezometry provides an access to the past stress magnitude, key to better understand the 
 

15 behaviour of the earth’s crust over long period of time. This contribution presents a review of some 
 

16 paleopiezometric techniques that can be used in the diagenetic domain, in fold-and-thrust belts and 
 

17 sedimentary basins. Calcite twinning and stylolite roughness techniques have been selected and are 
 

18 presented through a critical description of their methodologies, along with approaches to further 
 

19 reconstruct the complete effective stress tensor. Major geological lessons learned over the past 
 

20 decades  from  published  studies  are  summarized  and  discussed  along  with  a  way  forward  to 
 

21 potential breakthroughs. 

 
22 

 

23 1.   Introduction 
 

24 The  implication  of  stress  in  geological  and  societal  phenomena  such  as  earthquake  tectonics, 
 

25 georesources  distribution  or  mechanical  behaviour  of  materials  involves  different  time  scales 
 

26 (Barton and Zoback, 1994; Mourgues et al., 2011; Sanderson and Zhang, 1999, 2004; Sibson, 1994; 
 

27 Zoback and Zoback, 1989). To complement current stress measurement unravelling the short-term 
 

28 mechanical behaviour of the upper crust (e.g., Cornet and Burlet, 1992), it is of prime  interest to 
 

29 characterize not only the orientation, but also the magnitude of stress - should it be of  tectonic, 
 

30 burial or hydrological origin - over long-term time scale (>million years). Past stress magnitude and 
 

31 its evolution during the geological history is however inherently extremely challenging to infer. 

32 
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33 Determination of past stress magnitude associated with the tectonic history of rock masses 
 

34 relies upon establishing a close relationship between the stress magnitude and the development of a 
 

35 conspicuous,  commonly  encountered  structural  feature  in  the  rock  itself,  and  calibrating  it 
 

36 experimentally. So-called paleopiezometry developed in the second half of the 20th  century as a 
 

37 response to the need of picturing the long-term evolution of crustal stress magnitude and of better 
 

38 constraining the mechanical behaviour of geological materials. A paleopiezometer is fundamentally 
 

39 different from the measurement of the instantaneous, local ambient stress in that it potentially 
 

40 records a longer, space- and time-averaged, ancient state of stress that prevailed locally or regionally 
 

41 in the rock during deformation (Lacombe, 2007). 
 

42 Numerous dynamic paleostress studies were dedicated to reconstruct the succession of past 
 

43 stress in various tectonic contexts using features the development of which could be linked to a 
 

44 stress tensor, with 3 orthonormal principal stresses characterised by orientations (usually one close 
 

45 to vertical) and magnitudes (1 ≥ 2 ≥ 3). This paper reviews the few paleopiezometers that (1) can 
 

46 be extensively applied to fold-and-thrust belts (FTBs) and sedimentary basins (SBs), (2) have been 
 

47 calibrated in the diagenetic (P,T) domain, and (3) yield the magnitude of the past stress -should the 
 

48 latter be the differential stress or the absolute magnitude of one or more of the principal stresses- 
 

49 along  with  information  on  the  orientation.  Our  review  therefore  excludes  paleopiezometric 
 

50 techniques that miss at least one of these criteria, such as dynamic recrystallization of calcite and 
 

51 quartz (Twiss, 1977), dislocation density in calcite (Pfiffner, 1982), crystal subgrain size of halite 
 

52 crystal (Carter  and  Hansen,  1983),  but  also  approaches  calculating  stress magnitude  from  joint 
 

53 interaction geometry (Dyer, 1988) or at the tip of heterogeneities (Gudmundsson, 2003; Olson and 
 

54 Pollard, 1991) or those reconstructing vein opening histories and pressures (Becker et al. 2010; Fall 
 

55 et al., 2016; English & Laubach, 2017). 
 

56 This  contribution  therefore  focuses  on  two  paleopiezometers:  calcite  twinning  inversion 
 

57 (Etchecopar, 1984) and stylolite roughness inversion (Schmittbuhl et al., 2004). Because the last 
 

58 reviews on calcite twinning and its potential in tectonic studies date back to Burkhard (1993) and 
 

59 Lacombe  (2010),  and  because  the  recent  developments  and  outcomes  of  stylolite  roughness 
 

60 inversion and the combined use of both techniques have never been critically discussed,  it is timely 
 

61 to present an overview of the principles and limitations of each of these paleopiezometers and how 
 

62 we can go further to reach principal stress magnitudes. We then illustrate what lessons were drawn 
 

63 from paleopiezometric reconstructions of compressional/strike-slip stress regimes as encountered in 
 

64 FTBs  and  SBs  over  the  past  decades,  and  further  discuss  the  next  steps  that  may  lead  to 
 

65 breakthroughs in the understanding of the upper crustal stress. 



66 2.   Paleopiezometers applying in the diagenetic domain 
 

67 2.1. Calcite twinning paleopiezometry 
 

68 Twinning of minerals depends on the magnitude of the applied shear stress. One can make 
 

69 use of this property for evaluating the stress which has been supported by a rock during its history 
 

70 (Tullis, 1980). Calcite is the most sensitive mineral for twinning and the most likely to record tectonic 
 

71 stress history in foreland settings where the outcropping formations are mainly sedimentary rocks. 
 

72 E-twinning is a low-temperature plastic deformation mechanism in calcite. Twinning occurs with a 
 

73 change of form of part of the host crystal by an approximation to simple shear in a particular sense 
 

74 and direction along specific crystallographic planes e {01-12}. The resulting twinned portion of the 
 

75 crystal bears a mirrored crystallographic orientation to the untwinned portion across the twin plane 
 

76 (Fig.2a-b).  Twinning  is  not  thermally  activated  and  is  poorly  sensitive  to  either  strain  rate  or 
 

77 confining pressure, and therefore fulfils most requirements for paleopiezometry. 
 

78 The basis of the widely used Jamison and Spang (1976) technique is that in a sample without 
 

79 any preferred crystallographic orientation, the relative percentages of grains twinned on 0, 1, 2 or 3 
 

80 twin   plane(s)   depend   on   the   applied   (1-3)   value.   Consequently,   knowing   these   relative 
 

81 percentages in a sample, and assuming a constant Critical Resolved Shear Stress (CRSS) value of 10 
 

82 MPa for twinning, the magnitude of (1-3) can be estimated. This technique does not take into 
 

83 account the grain size dependence of twinning and assumes uniaxial stress. The technique of Rowe 
 

84 and Rutter (1990) relies on the experimental observation that twinning incidence, twin volume 
 

85 fraction and twin density are sensitive to differential stress; the two first parameters also being 
 

86 grain-size dependent. Such a technique returns the differential stress in a range of temperature from 
 

87 200   to   800°C,   recently   extended   down   to   20°C   (Rybacki   et   al.,   2011).   None   of   these 
 

88 paleopiezometers provides the stress orientations and regimes, thus they do not check the mutual 
 

89 compatibility of measured twin systems that may result from a polyphase tectonic history. This 
 

90 limitation turns those techniques in providers of an arguably meaningful maximum bulk differential 
 

91 stress. 
 

92 Although new techniques of inversion of calcite twins for stress have recently been released 
 

93 (Parlangeau et al., 2018; Yamaji, 2015), the most widely used to date is the Calcite Stress Inversion 
 

94 Technique (CSIT, Etchecopar, 1984). This inversion process assumes that twin gliding  along the 
 

95 twinning direction within the twin plane is geometrically comparable to slip along a slickenside 
 

96 lineation within a fault plane (Fig. 1b), and that twinning occurs along a twin plane if the resolved 
 

97 shear stress was greater than the CRSS. The inversion provides the stress tensor that best fits the 
 

98 distribution of measured twinned and untwinned planes (Fig. 1c). The outcome is a reduced stress 
 

99 tensor, i.e. 4 parameters among the 6 of the absolute stress tensor: principal stress orientation and 
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stress ratio φ (defined as (2-3)/(1-3)), as well as a dimensionless differential stress. The access to 

the actual differential stress is provided by the knowledge of the actual value of the CRSS, 10 ± 4 

MPa, varying with grain size and strain hardening. The isotropic component of the tensor is not 

retuned with CSIT (Fig. 1d-e). CSIT has been successfully applied to experimentally and naturally 

deformed samples and has shown its ability to decipher superimposed twinning events (Lacombe 

and Laurent, 1996; Laurent et al., 2000; Lacombe, 2010 and references therein). Note that the timing 

of twinning events has only been inferred to date in the light of a (micro)structural sequence, by 

linking the reconstructed stress orientation to the documented fracture sets (e.g. Amrouch et al., 

2010). 

 
 

2.2. Stylolite roughness paleopiezometry 
 

Stylolites are rough surfaces of localized dissolution in the rock (Fig. 1f). The presence of 

oriented teeth supports genetic models where compaction-related (vertical) or tectonic-related 

(horizontal) maximum principal stress σ1  triggers dissolution of the surrounding rock (Alvarez et al., 

1978; Fletcher and Pollard, 1981; Merino et al., 1983). During dissolution the stylolite accumulates 

the less soluble portion of the host, typically clays, that can enhance the dissolution (Bjorkum, 1996; 

Renard et al., 2001). Stylolites are common features in carbonates where kilometre-length stylolites 

have been documented (Laronne Ben-Itzhak et al., 2014), but also exist in sandstones, marls and 

salts, and similar dissolution cleavage can be found in metamorphic rocks (Bell and Cuff, 1989). The 

typical roughness of a stylolite shows teeth parallel to the σ1  axis and results from the competition 

between roughening force, i.e. Zenner pinning where non-soluble heterogeneities (e.g. oxides) resist 

dissolution (Brouste et al., 2007; Ebner et al., 2010a; Koehn et al., 2007), and smoothening forces: 

the elastic energy at large-scale and the surface energy at small-scale (Schmittbuhl et al., 2004). 
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Empiric studies of single-trace stylolites show that stylolite roughness is a signal that displays 

self-affine properties, the log-log graphical representation of which returns two slopes, defined each 

by a specific roughness coefficient (Hurst Coefficient) that relates to the scale of observation (Fig. 1g, 

Schmittbuhl et al., 2004). The two distinct roughness coefficient are linked to the regimes of growth, 

dominated by the surface energy at small-scale (typically below 1 mm) and by the elastic energy at 

large-scale (above 1 mm)(Fig. 2b; Ebner et al., 2009ab; 2010b; Rolland et al., 2014; 2012; 

Schmittbuhl et al., 2004). Stylolite Roughness Inversion Technique (SRIT) builds on the spatial scale 

at which the roughness growth regime switches from elastic energy to surface energy dominated. 

This switch, or cross-over length (Lc), is related to chemical (surface energy at the solid-fluid interface) 

and mechanical (Poisson ratio and Young modulus) properties of the host, and to the applied 

differential and mean stresses (Schmittbuhl et al., 2004). 
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Sedimentary stylolites are used to quantify the principal stress closer to the vertical axis that 

is related to burial, assuming the stress is isotropic in the stylolite plane (e.g. Ebner et al., 2009a). 

Along tectonic stylolite planes, the stress is anisotropic and a periodic Lc is observed and can be 

reconstructed (Beaudoin et al., 2016; Ebner et al., 2010b). Then, if the vertical stress is known, 

tectonic stylolites yield principal stress orientations and absolute magnitudes of horizontal principal 

stresses. 
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The chemo-mechanical model assumed for SRIT considers that the dissolution occurs on a 

pressurized plane at the fluid-rock interface, making this paleopiezometer independent on 

surrounding fluid pressure, hence unable to constrain the complete effective stress tensor (Fig. 1h-i). 

Although the underlying growth model is independent on the kinetics of dissolution and on 

temperature (Schmittbuhl et al., 2004), SRIT relies upon strong mechanical assumptions, especially 

the Young modulus that can evolve during diagenesis. Some physical statistic studies of natural 

stylolite roughness show that  some stylolites do  not yield the self-affine properties (Karcz  and 

Scholz, 2003) predicted by the SRIT growth model. Yet, a recent study has shown that most of the 

stylolites of which the morphology belongs to classes 2 (seismogram pinning type) and 3 (suture and 

sharp peaks) of the latest classification (Koehn et al., 2016) are consistent with the SRIT growth 

model (Beaudoin et al., submitted). 
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3. Use of paleopiezometers for burial estimates 
 

Assessing the burial depth during deformation is a challenging but vital information to constrain 

depositional, thermal and tectonic histories of FTBs and SBs. In the literature, methods to assess the 

burial depth (e.g. thermochronology, vitrinite reflectance) and so the vertical stress rely on assuming 

the past geothermal gradient. Simpler approaches reconstruct the thickness of the past sedimentary 

column by assuming deformation timing, amount of rock compaction and thickness of eroded strata. 

Using fluid precipitation temperature reconstructed from Fluid Inclusion Microthermometry (FIM) 

on mode I microveins, one can assess the depth and timing of the related deformation providing a 

reliable burial model exists for the considered strata (Anders et al., 2014; Becker et al., 2010; English 

and Laubach, 2017; Fall et al., 2012; Lespinasse, 1999). Lacombe et al. (2009) used CSIT to estimate 

maximum burial depth under the assumptions that the LPS-related differential stress prevailed at 

the maximum burial depth and that the stress in the upper crust is in frictional equilibrium (see 

section 6.2). 

Alternatively, the application of SRIT on sedimentary stylolites in various settings (Jura 

Mountains: Schmittbuhl et al., 2004; Massif Central: Ebner et al., 2009b; Paris Basin: Rolland et al., 

2014; Apennines: Beaudoin et al., 2016; Potiguar Basin, Brazil: Bertotti et al., 2017) yielded σv values 

straightforwardly  converted  into  paleodepth  independently  from  the  past  geothermal  gradient. 
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Sedimentary stylolite grows as long as the maximum principal stress is vertical, and its roughness 

records the vertical stress prevailing at the time the growth stops, as it equilibrates with stress in 

about 200 years (Aharonov and Katsman, 2009). Growth can also halt either because of saturation of 

the stylolite plane, or because the maximum vertical stress was reached. Andrews and Railsback 

(1997) suggested that very serrate stylolites form earlier than others, and a recent study of a 

stylolite population in cores from the Paris basin supports that stylolites with localized, large 

amplitude peak, imprint a lower vertical stress than the stylolites where no such large-amplitude 

peak occurs and which tend to record the maximum burial vertical stress (Beaudoin et al., 

submitted). Those examples show that SRIT applied on single-trace sedimentary stylolites provides 

an accurate access to σv, with a potential to decipher a polyphase burial history when considering 

morphology. This is of prime interest to finer basin burial/uplift history reconstruction (Bertotti et 

al., 2017), and can also be used in FTBs to reconstruct the maximum depth prevailing before the 

magnitude of the horizontal stress overcomes the magnitude of the vertical stress (typically at the 

onset of LPS). It is also possible to distinguish sedimentary stylolites predating or postdating strata 

tilting, so to reconstruct steps of burial/uplift history at fold-scale. 

 
 

4. Reconstruction of the complete paleostress tensor 

 
As none of the paleopiezometers returns the effective magnitude of all principal stresses at once, 

it is important to find another way to access the complete stress tensor. A first way is to combine 

SRIT on coeval sedimentary  stylolites and tectonic stylolites, which provides the absolute 

magnitudes for σv, σH and σh. This combination implies either (1) that burial variation during the LPS 

phase remains negligible, as sedimentary stylolites may record the maximum burial depth until σ1 

switches from vertical to horizontal as a result of tectonic stress build-up ; or (2) that LPS-related 

tectonic stylolites developed at the very onset of the LPS phase. SRIT can further help reconstructing 

the effective stress tensor (σ’ = σ- Pf) if an independent estimate of fluid pressure, as derived from 

hydrocarbon bearing fluid inclusions, is available. 

An established approach to the reconstruction of the effective stress tensor  consists in  the 

combination of paleopiezometers with the mechanical properties of rocks that we propose to call 

the coupled Mohr approach. This approach (Fig. 2) is a graphical / analytical way to combine (1) data 

about magnitude of differential stress / magnitude of absolute stress / fluid pressure and (2) the 

orientation of faults / veins with the mechanics of the host rock, i.e. rupture and reactivation criteria 

derived from mechanical tests. The coupled Mohr approach has been first used on a population of 

coeval neoformed and reactived faults, the (1-3) Mohr circle fitting the failure curve at the point 

that corresponds to the angle between 1  and the neoformed fault plane, while reactivated fault 
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planes plot above the Byerlee’s friction line (Fig. 2a). This approach allowed reconstructing the 

absolute effective stress tensor at the Hoover Dam, USA (Angelier, 1989) and in the Gyeongsang 

Basin, Korea (Choi et al., 2013). Necessity of coeval neoformed and reactivated faults limits this 

approach, but one of the two fault populations can be substituted by the differential stress 

magnitude obtained from CSIT applied on features consistent with the faults (Fig. 2b). This 

combination returned the complete effective stress tensor in Burgundy, France (Lacombe and 

Laurent, 1992), in Taiwan (Lacombe, 2001) and in the Bighorn Basin, USA (Amrouch et al., 2011). The 

fluid pressure can even be derived if the burial depth at the time of twinning is known independently 

(Amrouch et al., 2011; Beaudoin et al., 2014b). Only one fault populations can be used if combined 

with the fluid pressure estimates from FIM on oriented tectonic microveins consistent with the 

faulting (Lespinasse et al., 1995). Fluid pressure estimate can also be combined to rock mechanics 

and to independent determination of stress orientation and regime to reconstruct the complete 

stress tensor prevailing during vein reopening (André et al., 2000). This method first uses the angular 

relationships between the reopened vein planes and the orientation of principal stresses that are 

assumed to trigger the reopening (θ on figure 2c) to represent the stress ratio φ. Measured angle θ 

(e.g. θ1, between average fracture plane and σ1) is represented as the angle between the 

intersection (σ1-σ3) Mohr circle and the value of the fluid pressure Pf (Upper blue point on Fig. 2c; 

Jolly and Sanderson, 1997). Second, the Mohr circle is scaled by respecting that the reopened vein 

poles plot either above the frictional reactivation curve (e.g. Byerlee, grey area on Fig. 2c) and/or 

that their corresponding normal stress is lower than the fluid pressure (blue area on Fig. 2c). Such a 

combination of faulting/fracturing, rock mechanics and FIM was used to assess the effective stress 

tensor in the Rhine graben, France (André et al., 2001) and in Dharwar craton, India (Lahiri and 

Mamtani, 2016). The use of FIM also potentially allows determination of the depth and relative 

timing of stress events (Anders et al., 2014; Becker et al., 2010; Fall et al., 2012; 2016). 

 
 

5. Lessons from paleopiezometry applied to fold-and-thrust belts and sedimentary basins 
 
 

 
5.1 Paleopiezometry at fold-and-thrust belt-scale: evidence of forelandward orogenic stress 

attenuation? 
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At the scale of an orogen, it is hard to document the way orogenic stresses are transmitted 

from the hinterland to the foreland. Yet stress magnitude is a key factor controlling fracture 

distribution hence large-scale geofluid migration (Beaudoin et al., 2014a). Calcite twinning 

paleopiezometry has been used in various ranges to quantify differential stress magnitude across the 

foreland,  either  deformed  (i.e.  FTB)  or  stable.  Several  studies  show  a  rapid  decrease  of  the 



237 
 

238 
 

239 
 

240 
 

241 
 

242 
 

243 
 

244 
 

245 
 

246 
 

247 
 

248 

differential stress magnitude  in the  first hundreds kilometres  forelandward from the 

hinterland/foreland boundary, as for instance in the Sevier and Appalachian forelands (Craddock et 

al., 1993; van der Pluijm et al., 1997), where the authors concluded that the similarity of stress 

patterns observed in different forelands supports that the range acts as a filter  for  the stress 

regardless of the tectonic style in the orogen. A decreasing trend of the differential stress is also 

documented in the Ouachita range across the Tennessee salient (Fig. 3a, Hnat and van der Pluijm, 

2011), in the Hellenides range (Xypolias and Koukouvelas, 2005; Fig.3c) and in the north Pyrenean 

foreland (Lacombe et al., 1996; Rocher et al., 2000). In the Zagros range, yet, differential stress was 

instead rather low and constant across the deformed foreland and in part of the hinterland (Fig. 3b, 

Lacombe et al., 2007), supporting 1- a regional decoupling between the basement and the 

sedimentary cover and fold development at very low differential stresses (buckling) and 2- that the 

differential stress attenuation observed in other orogenic forelands may not be a general rule. 

 

249 
 

250 

5.2 Paleopiezometry  at  the  fold-scale:  evidence  for  stress  compartmentalization  and 

horizontal stress anisotropy? 
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Long-term evolution of stress magnitudes and regimes during folding has been addressed 

through numerical modelling (Albertz and Sanz, 2012; Guiton et al., 2003; Sassi et al., 2012; Smart et 

al., 2012). Yet, there are few tectonic paleostress reconstructions on natural folds (Amrouch et al., 

2011; Arboit et al., 2017; Beaudoin et al., 2012; Lacombe, 2001). The application of CSIT and of the 

coupled Mohr approach in the well-constrained fracture history frame of  the Sheep  Mountain 

Anticline (USA) was pioneer in reconstructing the evolution of stress magnitudes during the 

Laramide tectonic history (Amrouch et al., 2011). The stress evolution highlights some local stress 

perturbation effects, such as at the tip of the propagating underlying basement thrust (Fig 4a). The 

study also shows how the coupled Mohr approach helps quantify past fluid (over) pressure 

(Beaudoin et al., 2014b), offering an alternative approach to classical barometric techniques such as 

FIM (e.g Hooker et al., 2015). The combination of CSIT on veins and SRIT on both sedimentary and 

tectonic stylolites from the Monte Nero Anticline (Central Apennines, Beaudoin et al., 2016) 

documents that stress may vary in a more complex way than previously documented (Fig. 4b). Upon 

the assumption that during a given tectonic stage (e.g. LPS), calcite twins and tectonic stylolites 

sharing a common orientation of σ1 developed in a sequence occurring at similar depth (fig. 4b), 

then the Monte Nero case shows an anisotropic variation of the stress in the horizontal plane during 

stress build-up, even prior to folding. The results also demonstrate how erosion and local sediment 

redistribution or structural burial in the overturned forelimb can locally switch the stress regime 

from contractional to extensional  (Fig.  4b). These two examples illustrate how powerful  is  the 

combination of paleopiezometers to better capture and understand the stress and burial history 
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during folding, but also raise questions about the timing and the significance of the stress record by 

the distinctive paleopiezometers. 
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6. Discussion and way forward 
 

6.1. Unlocking methodological limitations 
 

The paleopiezometers we presented are likely to improve by better constraining the process 

of stress record through monitored experiments, both in numerical or laboratory environments. As 

an example, CSIT is based on the assumption of a CRSS for twinning, which value has never been 

calibrated for a full range of grain size and is still a matter of debate (De Bresser et al., 1997, Ferrill, 

1998; Covey-Crump et al., 2017). Also, the extension of SRIT to multi-trace stylolites, or to 

anamostosis network, will be possible once the physical meaning behind these phenomena 

(merging, saturation, reactivation of stylolite planes) will be understood in a mechanical way. Recent 

imagery techniques, such as Electron Back Scatter Diffractometer or Xray  MicroComputed 

tomography, can slightly improve data acquisition, but they are mainly promising tools to observe 

the live deformation phenomenon under controlled conditions, paving the way to a better 

calibration of the stress-deformation relationship, reduction of uncertainty and possible separation 

of the various components of the recorded stress tensor. New paleopiezometers can also be 

developed, as illustrated by the recent study of rhythmically-spaced textures found in some 

dolostones (Zebra Dolomite), of which the banding spacing has been related to the applied σv and 

the permeability during crystallisation (Kelka et al., 2017). 

 

290 6.2. From local paleopiezometric record to long-term crustal rheology 
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Figure 5 presents a new compilation of differential stress estimates from orogenic contexts 

(horizontal σ1, strike-slip or compressional stress regimes) as a function of paleodepth of 

deformation, regardless of the paleopiezometers used and of their own limitations (Table S1); it is an 

update of the previous release by Lacombe (2007) and includes as such most of the stress estimates 

published over the last 10 years while widening the range of encompassed paleopiezometers. 
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At the first order, differential stress increases with depth, which supports a long-term frictional 

behavior of the upper crust, with higher stress, hence higher crustal strength, in compressional 

regime than in strike-slip regime. In addition, most differential stress data plot along, or close to, the 

stress-depth curves predicted for a critically stressed crust for a range of friction coefficients and 

pore pressure ratios, while only few reflect stress level beyond the frictional yield (Lacombe, 2007). 

This clear increase of differential stress with depth casts doubt onto the interpretation of 

forelandward orogenic stress attenuation (section 3.b) unless the reported magnitudes of 

differential stress have been properly normalized to the depth of deformation. If the decreasing 
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trend is true, it could well reflect a forelandward orogenic stress attenuation as proposed or, 

alternatively, a constant (intraplate) background stress level significantly disturbed by the stress 

accumulation near the crustal thrust at the hinterland-foreland boundary (Lacombe et al., 1996). 

This debate emphasizes the need for combining such data with new numerical modelling of how the 

stress is transmitted from the orogen to the (variably coupled) foreland. Also, it illustrates that 

assessing the depth at the time of the deformation is a key parameter in paleopiezometry. 

 

310 6.3. Timing and time-scale of the paleopiezometric record 
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A central point of discussion concerns the timing of paleopiezometric record. This point 

encompasses the time-scale at which the various paleopiezometers record stress (i.e., duration and 

rate, progressive vs instantaneous stress record), but also the timing of the stress event within the 

geological history (i.e., dating). 

Paleopiezometers such as CSIT and to a greater extent the coupled Mohr approach likely 

return a maximum stress value possibly following a long-lasting stress build-up during a given tectonic 

event. In contrast, SRIT grants a potential access to different time of deformation when applied 

to a population, as individual stylolites act as pseudo-snapshots of stress. The 

comparison/combination of the different paleopiezometers offers a glimpse of that access to stress 

to various time-scales, which can lead to a better recognition of the effect of transient phenomena 

on the recorded stress such as seepage forces (e.g., Cobbold and Rodrigues, 2007; Mourgues and 

Cobbold, 2003). 

Concerning the timing of the stress record - a blind spot for most present paleopiezometers- 
 

recent development in absolute dating of vein calcite cements using U/Pb technique (Hansman et 

al., 2018; Parrish et al., 2018) can well be one next breakthrough in paleostress studies. Indeed, 

absolute dating can be conducted on calcite cement from (1) veins from which stress magnitudes 

can be characterized using CSIT, and (2) veins developing at the tip of the coeval stylolites, likely 

from the deposition of the dissolved material. Such developments would be a major addition to the 

inference of deformation age by integrating cement precipitation temperature from FIM to burial 

models that rely on past geothermal gradient (Anders et al., 2014; Laubach et al., 2016). 
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Accessing the absolute timing of deformation would help solve some of the remaining 

questions, for example about the mechanical-based 4D models that govern stress distribution in 

reservoirs and at a larger scale in orogenic forelands, stress perturbations related to faults, or to 

discuss the paradigm of the averaged isotropic effect of the fluid pressure on the stress tensor. 

Future   breakthrough   should   come   with   the   multiplication   of   data   acquisition   combining 
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paleopiezometers,  with  the  coupling  to  absolute  dating,  and  with  a  better  calibration  and 

understanding of the microstructures paleopiezometry is based on. 
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Figure 1 – Summary of the selected paleopiezometers valid in the diagenetic domains. a-e) Calcite 

twinning inversion technique CSIT (Etchecopar, 1984): a) microphotograph of twinning in calcite 

crystals, black bar is 0.1 mm, b) sketch of a twin lamella (C/C’ : optical axis of host crystal/twin 

lamella, respectively), c) Distribution of twinned and untwinned planes measured in a calcite crystal 

population regarding the normalized resolved shear stress (RSS) vs the normal stress σn , RSS/CRSS : 

Resolved shear stress /Critical RSS, d) Outcome of CSIT in term of stress magnitude represented on a 

schematic Mohr diagram (τ= tangential vs σn= normal stress), red arrows represent uncertainty 

about the values of the effective principal stresses, e) outputs and remarks. f-i) Stylolite roughness 

inversion technique SRIT (Schmittbuhl et al., 2004): f) microphotograph of a stylolite, black bar is 5 

mm, g) top: ideal roughness signal split into a sum of large wavelength signal and small wavelength 

signal, bottom: corresponding signal analysis by Fast Fourier Transform (Fourier Power Spectrum 

(P(k)) vs Spatial Frequency k (mm-1)) that shows two different slopes with coefficient factor typical 

for elastic energy at large scale and surface energy at small scale, and a Crossover Length Lc used to 
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calculate the magnitude of the principal stress parallel to the peaks, h) Outcome of SRIT in term of 

stress magnitude represented on a schematic Mohr diagram, i) outputs and remarks. 
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Figure 2 – Illustration of the coupled Mohr approach to obtain the complete effective stress tensor. 

α represents the measured angle between σ1 and the considered fracture plane, the red square 

correspond to the tangency to the failure criterion. a) Original method using populations of 

neoformed and reactivated faults (Angelier, 1989); b) Use of CSIT on oriented veins (Amrouch et al., 

2011); c) combination of fluid pressure estimate from fluid inclusion microthermometry, frictional 

reactivation curve and reopened vein orientation (André et al., 2001). θ1 or 2 represents the angle 

between reopened veins strike and the σ1 or 2, blue points correspond to the intersection between 

the Mohr circles and the measured fluid pressure, grey and blue areas correspond to the domain 

wherein veins can be reopened. 
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Figure 3 – Case studies illustrating the reconstructed evolution of differential stress (σ1-σ3) vs 

distance to the hinterland/foreland boundary using calcite twinning paleopiezometry. a) Exponential 

decrease of the differential stress in the Ouachita foreland using Jamison and Spang technique 

(triangles from Hnat et al., 2013, squares from van der Pluijm et al., 1997); b) Nearly stable 

differential stress in the hinterland and FTB of the Zagros using CSIT (Lacombe et al., 2007). An 

alternative interpretation suggesting a decrease is also proposed; c) Decreasing differential stress in 

the first 100 km of External Hellenides FTB, using Jamison and Spang technique (Xypolias and 

Koukouvelas, 2005). 
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Figure 4 – Case studies illustrating the reconstruction of the evolution of the principal stress 

orientations and effective or absolute stress magnitudes at the fold scale, along with schematic 

representation of the deformation pattern at each stage of deformation (including folding), with 

neoformed/reactivated features in red, and corresponding Mohr circle aligned. a) case of the Sheep 

Mountain Anticline, USA (Amrouch et al., 2011), where the coupled Mohr approach allows 

reconstruction of the effective stress tensor at each stage of deformation (σ’ = σ – Pf) in the strata 

from fold limbs. b) case of the Monte Nero Anticline, Italy, where SRIT and CSIT are combined and 

depth is derived from SRIT on sedimentary stylolites (values re-evaluated after Beaudoin et al., 

2016). Paleostress results are reported on the Mohr diagram (SRIT, grey ; CSIT, white) as absolute 

stress magnitudes (σH, maximum horizontal principal stress; σh, minimum horizontal principal stress ; 

σv, vertical stress; σxc, CSIT; σxs, SRIT). 
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Figure 5 – Log-log plot of differential stress (MPa) obtained from paleopiezometry in orogenic 

forelands and basins versus independent estimates of the depth (km) at the time of deformation, 

from data available in the literature. The frictional stress equilibrium curves according to the stress 
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regime, friction coefficient (µ) and pore fluid ratio (λ) are reported as solid (dry, λ=0) or dashed 

(hydrostatic fluid pressure, λ=0.38) lines, the colour of which refers to the stress regime and µ value. 

The number next to the black square is the case study ID and refers to table S1. ID colour refers to 

the paleopiezometric technique used. The error bars correspond either to the range of stress/depth 

values reported in the literature for each case study or to an arbitrary 10% of the value if a range 

was not available, the colours are related to the stress regime. Frames (SS : strike-slip, SS/R : strike- 

slip /compressional, i.e., transpressional ; R : compressional) correspond to the stress regime 

domains as derived from the plot. 
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mean (σ1-σ3) range (σ1-σ3)* mean depth range depth*

1 Causses (France) Mohr Approach (Faults) 9 [4-20] 300 [200-480] SS Rispoli & Vasseur, 1983

2a Zagros (Oman) CSIT 29 [25-38] 1200 [800-1400] R/SS Lacombe et al., 2007

2b Zagros (Oman) CSIT 42 [20-71] 340 [250-480] R/SS Lacombe et al., 2007

3 Taiwan CSIT 42 [15-100] 365 [250-480] SS Lacombe, 2001

4 Appalachian Plateau (USA) DD 6 [5-7] 1000 [800-1200] SS Engelder, 1982

5 Germany Mohr Approach (Faults) 110 [105-130] 600 [470-800] R/SS Bergerat et al., 1985

6 Appalachian Plateau (USA) Residual stress in situ 12 [11-13] 1800 [1400-2100] SS Engelder and Geiser, 1984

7 Taiwan W CSIT 145 [90-200] 1800 [1500-2100] RR/SS Lacombe, 2001

8a Burgundy (France) CSIT 42 [39-46] 100 [0-200] R/SS Lacombe and Laurent, 1992

8b Burgundy (France) CSIT 46 [32-60] 600 [400-800] SS Lacombe and Laurent, 1992

9  Pyrenees (France) CSIT 78 [70-86] 1350 [900-1800] R/SS Tourneret and Laurent, 1990

10 Provence CSIT 58 [43-86] 600 [500-700] R/SS Lacombe et al., 1991

11 Taiwan W CSIT 70 [52-85] 600 [400-800] R/SS Lacombe, 2001

12 Morocco Mohr Approach (Faults) 40 [32-48] 1900 [1300-2700] SS Petit, 1976

13a Paris basin (France) CSIT 73 [48-108] 1800 [1700-1900] SS Lacombe et al., 1994

13b Paris basin (France) CSIT 66 [55-84] 1700 [1600-1800] R/SS Lacombe et al., 1994

14 Subalpine chain (France) JS 45 [22-90] 4200 [2500-7500] R Ferrill, 1998

15 Subalpine chain (France) RR 220 [140-320] 4200 [2500-7500] R Ferrill, 1998

16 Cantabrian (Spain) RR 225 [170-280] 8000 [7800-8200] R Rowe and Rutter, 1990

17 Thailand CSIT 55 [38-72] 1900 [1800-2000] R/SS Arboit et al., 2017

18 Massif Central (France) Mohr Approach (Faults and FIP) 90 [70-110] 5000 [4800-5200] SS Lespinasse & Cathelineau, 1995

19 Pyrenees (Spain) JS 60 [50-68] 8550 [7100-10000] R Holl and Anastasio, 1995

20 Rocky (Canada) JS 140 [125-155] 5850 [4700-7000] R Jamison and Spang, 1976

21 Alps (Switzerland) DD 200 [120-310] 5300 [5000-6000] R Pfiffner, 1982

22 South Korea Mohr Approach (Faults) 80,6 [72-88] 2000 [1300-2700] R Choi et al., 2013

23 Pioneer landing (USA) Dolomite twins JS/RR 157,5 [115-200] 9000 [8000-10000] R Newmann, 1994

24a Lorraine (France) CSIT 25 [18-31] 220 [150-400] SS Rocher et al., 2004

24b Lorraine (France) CSIT 31 [20-43] 600 [400-900] SS Rocher et al., 2004

25 Swabian Jura (Germany) SRIT 16 [14-18] 220 [200-240] SS Ebner et al., 2010

26b Bighorn Basin (USA) CSIT 31 [18-45] 2500 [2000-3000] R/SS Amrouch et al., 2010

26c Bighorn Basin (USA) CSIT 33 [21-44] 1500 [1000-2000] SS Amrouch et al., 2010

26a Bighorn Basin (USA) CSIT 25 [13-43] 2500 [2200-2800] SS Amrouch et al., 2010

27a Hellenides (Greece) CSIT 48,5 [45-52] 535 [370-700] R Xypolias & Koukouvelas, 2005

27b Hellenides (Greece) CSIT 70 [62-78] 660 [370-950] R Xypolias & Koukouvelas, 2005

27c Hellenides (Greece) CSIT 97,5 [92-103] 2300 [1600-3000] R Xypolias & Koukouvelas, 2005

28a Monte nero (Italy) CSIT 40 [30-56] 2100 [1600-2500] SS Beaudoin et al., 2016

28b Monte nero (Italy) SRIT 44 [40-48] 2100 [1600-2500] R Beaudoin et al., 2016

29a Monte nero (Italy) CSIT 52 [40-64] 2500 [2000-2500] R Beaudoin et al., 2016

29b Monte nero (Italy) SRIT 48 [44-52] 2500 [2000-2500] SS Beaudoin et al., 2016

29c Monte nero (Italy) SRIT 39 [34-43] 1600 [1000-1700] R/SS Beaudoin et al., 2016

29d Monte nero (Italy) CSIT 56 [26-106] 1600 [1000-1700] R/SS Beaudoin et al., 2016

30 Ouachita (USA) JS 61 [24-82] 800 [600-1000] R Craddock et al., 1993

31 Appalachian (USA)** JS 35 [30-40] 1600 [1400-1800] R Craddock et al., 1993

32 Paris basin (France) SRIT 5 [1-10] 250 [200-300] SS Rolland et al., 2014

33 Appalachian (USA) JS 52 [31-100] 800 [600-1000] R Hnat and van der Pluijm, 2011

34 Albania CSIT 111 [57-180] 3800 [2500-5000] R/SS Lacombe et al., 2009

35a Bighorn Basin (USA) CSIT 41 [34-49] 3200 [3000-3500] SS Beaudoin et al., 2012

35b Bighorn Basin (USA) CSIT 46 [29-74] 1700 [1000-2700] R/SS Beaudoin et al., 2012

35c Bighorn Basin (USA) CSIT 34 [27-41] 3200 [3000-3500] R Beaudoin et al., 2012

1 
By order of appearance: 

 
Rispoli & Vasseur, 1983.Tectonophysics, 93, 169-184; Lacombe, 2007.Journal of Structural Geology, 29, 86-99; Lacombe, 2001. Tectonics, 20, 834-849;Engelder, 

1982. Tectonics, 1, 161-177; Bergerat et al., 1985. Geologische Rundschau 74, 311-320; Engelder & Geiser, 1984. Journal of Geophysical Research: Solid Earth, 89, 9365-9370; Lacombe & 

Laurent, 1992. Tectonophysics 202, 83-93; Tourneret & Laurent, 1990. Tectonophysics, 180, 287-302; Lacombe et al., 1991. Comptes rendus de l'Académie des sciences. Série 2, Mécanique, 

Physique, Chimie, Sciences de l'univers, Sciences de la Terre, 313, 1187-1194; Petit, 1976. PhD thesis. Université des Sciences et Techniques du Languedoc; Lacombe et al., 1994. Peri-

Tethyan Platforms, 197-210; Ferrill, 1998. Tectonophysics, 285, 77-86; Rowe & Rutter, 1990. Journal of Structural Geology, 12, 1-17; Arboit et al., 2017. Tectonophysics, 710, 266-276; 

Lespinasse & Cathelineau, 1995. Journal of Geophysical Research: Solid Earth, 100, 3895-3904; Holl & Anastasio, 1995. Journal of Structural Geology, 17, 357-369; Jamison & Spang, 1976. 

Geological Society of America Bulletin, 87, 868-872; Pfiffner, 1982. Journal of Structural Geology, 4, 429-442; Choi et al., 2013. Bulletin de la Société Géologique de France 184, 467-484; 

Newman, 1994. Journal of Structural Geology 16, 1589-1601; Rocher et al., 2004. Tectonophysics, 387, 1-21; Ebner et al., 2010. Journal of Geophysical Research, 115, B06403; Amrouch et 

al., 2010. Geophysical Journal International, 182, 1105-1123; Xypolias & Koukouvelas, 2005. Episodes, 28, 245-251; Beaudoin et al., 2016. Tectonics, 35, 1687-1712; Craddock et al., 1993. 

Tectonics, 12, 257-264; Rolland et al., 2014. International Journal of Rock Mechanics and Mining Sciences, 67, 212-225; Hnat & van der Pluijm, 2011. Lithosphere, 3, 317-327; Lacombe et al., 

2009. Tectonophysics, 475, 128-141; Beaudoin et al, 2012. Tectonophysics, 576-577, 20-45.

*a 10% range has been calculated for data from litterature provided without error; ** Some data from this study were discarded in accordance to the technique's limitations; 28b, 29b & c 

reevaluated after Beaudoin et al., 2016

CSIT: Calcite Stress Inversion Technique; JS: Jamison and Spang; RR: Rowe and Ruther;  DD: Dislocation Density in Calcite; SRIT: Stylolite Roughness Inversion Technique

Table S1. Litterature review of paleopiezometric studies in the fold-and-thrust belts and sedimentary basin.

# Case studies Paleopiezometric Techniques
Differential stress (Mpa) Depth estimates (m)

Regime Authors1
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