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Role of ErbB/HER Family of
Receptor Tyrosine Kinases in
Cholangiocyte Biology
Anna Pellat,1 Javier Vaquero,1,2 and Laura Fouassier 1

The ErbB/HER family comprises four distinct tyrosine kinase receptors, EGFR/ErbB1/HER1, ErbB2/HER2, ErbB3/

HER3, and ErbB4/HER4, which trigger intracellular signals at the origin of essential cellular functions, including differ-

entiation, proliferation, survival, and migration. Epithelial cells, named cholangiocytes, that line intrahepatic and extrahe-

patic bile ducts, contribute substantially to biliary secretory functions and bile transport. Although ErbB receptors have

been widely studied in cholangiocarcinoma (CCA), a malignancy of the biliary tract, knowledge of these receptors in bili-

ary epithelium physiology and in non-malignant cholangiopathies is far from complete. Current knowledge suggests a role

for epidermal growth factor receptor (EGFR) in cholangiocyte specification and proliferation, and in hepatocyte transdif-

ferentiation into cholangiocytes during liver regeneration to restore biliary epithelium integrity. High expression and acti-

vation of EGFR and/or ErbB2 were recently demonstrated in biliary lithiasis and primary sclerosing cholangitis, two

cholangiopathies regarded as risk factors for CCA. In CCA, ErbB receptors are frequently overexpressed, leading to tumor

progression and low prognosis. Anti-ErbB therapies were efficient only in preclinical trials and have suggested the exis-

tence of resistance mechanisms with the need to identify predictive factors of therapy response. This review aims to com-

pile the current knowledge on the functions of ErbB receptors in physiology and physiopathology of the biliary

epithelium. (HEPATOLOGY 2017; 00:000-000).

ErbB/HER Family
The ErbB family of receptor tyrosine kinases com-

prises epidermal growth factor (EGF) receptor
(EGFR; ErbB1/HER1), ErbB2 (HER2), ErbB3
(HER3), and ErbB4 (HER4; Fig. 1). These plasma
membrane receptors are composed of an extracellular
ligand-binding domain, a transmembrane domain, and

an intracellular domain with a conserved tyrosine
kinase (TK) domain, with the exception of ErbB3
which holds an inactive TK domain. They bind spe-
cific ligands belonging to the EGF family, with the
exception of ErbB2 which has no known ligand. Thus,
ErbB2 and ErbB3 are activated through heterodimeri-
zation with other family members. ErbB ligands are
produced as transmembrane precursors and processed
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by enzymes of the ADAM family, disintegrins, and
metalloproteinases (MMPs), leading to the shedding
of proligands and soluble growth factors release.(1)

Each ErbB receptor binds to specific ligands (Fig. 1).
Upon ligand binding, homodimerization or heterodi-
merization of the receptor and subsequent phosphory-
lation of the TK domain occurs, allowing activation of
intracellular signaling pathways(1) (Fig. 1). These cyto-
plasmic pathways transmit the signal to the nucleus
where many transcription factors undergo activity
changes, initiating waves of transcription programs.

EGFR plays a fundamental role in normal physiol-
ogy of epithelial cells.(1) Other ErbB receptors are
involved in cardiac and nervous development.(1) Multi-
ple studies have shown that ErbB receptors are also
involved in numerous pathophysiological functions,
including cell proliferation, differentiation, survival,
adhesion, and migration.(1,2)

This review aims to give an overview of the current
knowledge on the role of ErbB receptors in cholangio-
cyte biology during physiological events and pathologi-
cal conditions. Finally, therapeutic options using anti-
ErbB drugs will be discussed.

ErbB Family in the Liver
ErbB receptors have generated great interest since

the discovery of the liver’s involvement in EGF clear-
ance. Early in the 1970s, it was shown that rat hepato-
cytes express EGFR and that the liver has the capacity
to sequester EGF and secrete it into the bile.(3) By
immunohistochemistry (IHC), EGFR is not detected
or is barely detected in human hepatocytes,(4) while it
is detected in rodent hepatocytes at their sinusoidal
and lateral surfaces, along with ErbB3.(5,6) In cholan-
giocytes, EGFR is present at the basal membrane of
rat(7) and human cholangiocytes.(8,9) On the contrary,
ErbB2 expression is detected in normal bile ducts only
in one study, in large bile ducts.(10) Both ErbB3 and

ErbB4(8) are barely or not detected in normal cholan-
giocytes of portal areas in human liver. Among ErbB
ligands, transforming growth factor a (TGFa) is
expressed by cholangiocytes.(9)

ErbB Receptors in
Cholangiocyte Physiology
Cholangiocytes are a heterogeneous dynamic popu-

lation of epithelial cells that line the bile ducts, known
as the biliary tree. Their major physiological function
lies in the modification of primary hepatic canalicular
bile through both secretion and absorption processes.
So far, no ErbB receptor has been involved in the regu-
lation of cholangiocyte transport functions.

CHOLANGIOCYTE
SPECIFICATION

During liver organogenesis, hepatic progenitor cells
(HPCs), called hepatoblasts, differentiate into hepato-
cytes or cholangiocytes.(11) Upon EGF treatment, the
HPPL cell line, derived from mouse hepatoblasts,
formed biliary cysts and developed epithelial polarity in
three-dimensional culture with specific biliary markers,
suggesting a role for EGF in biliary morphogenesis.(12)

In fetal liver, the Notch pathway plays a major role in
the differentiation of hepatoblasts residing in the portal
area into cholangiocytes, whereas in adult liver it con-
trols the specification of HPC differentiation toward
cholangiocytes and bile duct morphogenesis.(11) Kitade
et al., using clonal HPC lines generated from liver-
specific EGFR knockout mice on a 3,5-diethoxycar-
bonyl-1,4-dihydrocollidine (DDC) diet, have shown
that EGFR-mediated Notch1 signaling was essential
for controlling commitment of HPC to biliary line-
age.(13) Indeed, deletion of EGFR in mouse HPC
cells abolished biliary markers expression and
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branching morphogenesis and strongly down-
regulated Notch1. Reintroduction of EGFR restored
the branching phenotype and the expression of Notch1
and its target genes, Hes family BHLH transcription
factor 1 (Hes1) and SRY (sex determining region
Y)-box 9 (Sox9). The role of the EGFR/Notch1

pathway should be confirmed in human liver as well
as its applicability during embryonic liver develop-
ment. Recently, the EGFR/guanine nucleotide
exchange factor 100 (GEF100)/ADP-ribosylation
factor 6 (Arf6) signaling pathway has been envis-
aged as a regulator of intrahepatic biliary

FIG. 1. ErbB family of receptor tyrosine kinases. The ErbB family includes four members, EGFR/ErbB1/HER1, ErbB2/HER2,
ErbB3/HER3, and ErbB4/HER4. All ErbB receptors have in common an extracellular ligand-binding domain, a single membrane-
spanning region, and a cytoplasmic protein TK domain. However, ErbB2 does not have any known ligand and naturally exists in a
heterodimer form. Note also that ErbB3 lacks kinase activity, but can form heterodimers, especially with ErbB2, acting as an activat-
ing receptor. Their affinity for their ligands varies among the different ErbB members. Once activated and phosphorylated, they relay
their signal through the main intracellular signaling pathways: JAK/STAT3, Raf/MEK/ERK, and PI3K/AKT. Abbreviations: AR,
amphiregulin; BTC, betacellulin; EPR, epiregulin; JAK, janus kinase; NRG1-4, neurigulin 1-4; STAT3, signal transducer and activa-
tor of transcription 3.
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morphogenesis in a zebrafish model.(14) Arf6 knock-
down or pharmacological inhibition of EGFR in
zebrafish embryo resulted in poor bile duct develop-
ment. The deregulation of this pathway could nota-
bly be implicated in the pathogenesis of biliary
atresia, a disease attributed to a defect in early bile
duct development.

In regenerative medicine, cholangiocyte specification
requires EGF, among other factors, to generate chol-
angiocytes from human pluripotent stem cells.(15,16) In
Ogawa et al.’s study, Notch signaling is first activated
in the hepatoblast population to induce the initial
stages of cholangiocyte development. Then, the com-
bination of growth factors, including EGF, allows
early bile duct morphogenesis.(16) However, EGF’s
precise role remains unclear, and lineage tracing studies
evaluating the role of EGFR in this process are still
needed.

LIVER REGENERATION

Liver regeneration is a complex process involving
many mechanisms and growth factors that, together
with their receptors, regulate proliferation. One prop-
erty of regenerating liver is the ability of mature adult
hepatocytes and cholangiocytes to interchange their
phenotypes when needed. If a drastic loss of hepato-
cytes occurs, cholangiocytes can transdifferentiate
into hepatocytes to regenerate the liver paren-
chyma.(17) Conversely, hepatocytes can contribute to
biliary regeneration in case of acute hepatobiliary or
chronic biliary injuries in order to restore the biliary
epithelium’s structure and function.(18) Although the
involvement of an ErbB-dependent signaling has not
been reported in the conversion of cholangiocyte into
hepatocyte, EGFR may contribute to the conversion
of hepatocyte into cholangiocyte-like phenotype.(19)

In rat organoid cultures, EGF, through kinase B pro-
tein (AKT)-independent phosphoinositide 3 kinase
(PI3K) activation, was the only growth factor, along
with hepatocyte growth factor (HGF), capable of pro-
moting hepatocyte transdifferentiation into cholan-
giocytes. Gene array analysis identified the biliary
markers cytokeratin 19, amphiregulin, and secretin
receptors among the up-regulated genes.(19) The role
of ErbB receptors in cholangiocyte proliferation dur-
ing liver regeneration is undetermined because models
of cholangiocyte-specific EGFR knockout are
missing.

ErbB Receptors in
Non-malignant
Cholangiopathies
Cholangiocytes are targets of a number of chronic

biliary diseases also known as cholangiopathies. Main
primary cholangiopathies regroup autoimmune cholan-
gitis, primary sclerosing cholangitis (PSC), primary
biliary cholangitis (PBC; formerly primary biliary cir-
rhosis), and biliary atresia.(20) Rare genetic diseases can
also affect the biliary tree, such as cystic fibrosis, poly-
cystic liver disease (PLD), and Caroli’s disease.(20)

Finally, chronic hepatolithiasis is a frequent secondary
sclerosing cholangitis.

ROLE OF ERBB IN
CHOLANGIOCYTES

Many studies imply that under the combination of
endogenous and exogenous factors, cholangiocytes
become reactive with secretion of proinflammatory
molecules, leading to chronic inflammation of bile
ducts, cholestasis, biliary epithelial cell proliferation,
fibrosis, and malignant transformation.(20) Therefore,
in case of injury, cholangiocyte proliferation is at the
crossroads of liver reparation and disease development.
Cholangiocytes, virtually quiescent, maintain mitotic
capability throughout adult life. This pathological pro-
liferation of cholangiocytes has been studied in order
to understand the link between biliary injury, cholan-
giopathies, and, later, cholangiocarcinoma (CCA).
EGFR, ErbB2, and some of their ligands, have been
implicated in these processes. EGF is a key mitogenic
component for both murine and human cholangio-
cytes,(21,22) for hyperplastic bile ductular epithelial cells
isolated from cholestatic liver (i.e., bile duct-ligated
[BDL] mice and BDL/furan rat models), and is
involved in ductal morphogenesis,(23) and cell-cell
junction integrity.(24,25)

ERBB EXPRESSION IN
CHOLANGIOPATHIES

Hepatolithiasis

EGFR and ErbB2 are frequently expressed in tissue
samples with hepatolithiasis.(26-28) Immunohistochem-
ical (IHC) analysis of human gallbladder (GB) tissues
with gallstones showed overexpression of mucin 5AC
(MUC5AC) associated with neutrophil infiltration



and increased expression of EGFR and tumor necrosis
factor a (TNFa).(26) In vitro, EGF or TGFa, com-
bined with TNFa, induced an overexpression of
EGFR resulting in MUC5AC overproduction.(26) In
addition, bacterial infections and bile flow retardation
contribute to stone formation and recurrence in hepa-
tolithiasis.(29) Lipopolysaccharide (LPS) increases
MUC5AC expression in cholangiocytes by interacting
with its receptor Toll-like receptor 4 (TLR4), which
increases ADAM17-dependent cleavage of TGFa,
promoting activation of EGFR.(29) Accordingly,
increased expression levels of ErbB ligands have been
detected in BDL models.(30) Finally, epithelial-
mesenchymal transition (EMT), a reversible process
by which epithelial cells acquire mesenchymal features,
is involved in the development and progression of
fibrosis, such as hepatolithiasis-induced biliary fibro-
sis.(31) IHC analysis of human hepatolithiasis showed a
strong expression of EGFR in the ductular epithelium
that correlated with increased EMT-related protein
expression,(31) suggesting a link between EGFR and
EMT in nontumor cholangiocytes. However, EMT
pathophysiological significance in hepatolithiasis
remains unclear. Given that cholangiocytes in cholan-
giopathies do not undergo EMT, but rather acquire
some mesenchymal properties as part of a “reactive”
phenotype,(32) EGFR could take part in the regulation
of this reactive phenotype.

PSC

Cholangiocytes from human PSC samples exhibited
increased phospho-EGFR compared to normal livers
and other liver diseases.(33) In vivo, hepatocyte/cholan-
giocyte-specific ablation of EGFR in Mdr2 knockout
mice (Mdr2–/–), led to an aggravation of liver fibrosis,
along with a more prominent cholangiocyte prolifera-
tion compared to Mdr2–/– control mice, suggesting
that cholangiocyte proliferation is independent of
EGFR.(34) ErbB2 was overexpressed in a small cohort
of human samples of PSC, suggesting that it could
represent an early dysfunctional event linked to human
cholangiocarcinogenesis in this disease.(35) Further
studies should be pursued to identify whether ErbB
members participate in cholangiocyte proliferation in
PSC and whether ErbB expression/activation is pre-
dictive of CCA occurrence.

PLD

PLD and Caroli’s disease are genetic diseases
responsible for the formation of cysts along the biliary

tract. IHC analysis of human adult biliary cysts failed
to show signs of cholangiocyte proliferation, but
revealed strong expression of EGFR in cyst epithelia
and variable expression of ErbB2. This study suggested
that cyst formation happens in a non-proliferative way
despite the expression of ErbB receptors.(36) On the
other hand, in vitro, cholangiocytes isolated from the
Balb/c-bpk/bpk (BPK) mice or polycystic kidney
(PCK) rat demonstrated an increased sensitivity to the
proliferative effect of EGF,(22,37) suggesting a role for
EGFR in biliary epithelial hyperplasia and duct ectasia.
Therefore, the EGFR tyrosine kinase inhibitors
(TKIs), for example, EKI-785 and gefitinib, were
expected to reduce biliary cyst formation. They were
efficient in reducing biliary ductal ectasia in BPK mice
and proliferation of cholangiocytes isolated from the
PCK rat.(22,38) However, EKI-785 could not prevent
in vivo the development of cystic liver disease in the
PCK rat.(39) Further studies are needed to conclude
definitively on the role of EGFR in cyst formation in
PLD.

ErbB Receptors in CCA
CCA is a heterogeneous group of malignant tumors

that emerge along the biliary tree. CCA is often diag-
nosed at advanced stages and can rarely be treated by
surgery, although it is the only curative treatment. For
unresectable patients, the treatment is chemotherapy
with a combination of gemcitabine and a platinum
salt.(40)

Several studies have addressed the molecular and
cellular mechanisms underlying the potential role of
ErbB receptors in CCA physiopathology. An integra-
tive genomic analysis on 149 intrahepatic CCA
(iCCA) human samples identified two different clas-
ses: proliferation and inflammation.(41) The prolifera-
tion class (62% of samples) was associated with worse
outcome and 32% of patients had an EGFR overex-
pression,(41) which suggests that EGFR is a low prog-
nostic factor in CCA.

EGFR

Expression, Mutation and Amplification

Many studies have reported the expression of
EGFR by IHC analyses in human CCA samples with
a great variability (from 0% to 100%; Supporting Table
S1). Some have shown that the expression of EGFR
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was associated with clinicopathological and poor prog-
nostic features.

EGFR mutations are detected in CCA, in 0%-15%
of cases, primarily in exons 18-21 coding for the
EGFR TK domain (Supporting Table S2). Among
mutations encountered, the T790M mutation in exon
20 was reported in few patients with CCA. This muta-
tion has been involved in acquired resistance to EGFR
TKI in other cancers. Furthermore, EGFR mutations
were more frequent in CCA developed on chronic
advanced liver disease.(42) EGFR mutations also turned
out to be low prognostic markers in CCA.(41) Genetic
polymorphisms of EGFR have been reported in CCA
with a higher frequency than in hepatolithiasis, sugges-
ting an association between EGFR polymorphisms
and susceptibility of CCA and patient survival.(43)

Finally, EGFR amplification is rarely detected in CCA
(Supporting Table S1).

Role of EGFR in CCA Physiopathology

EGFR regulates proliferation,(44) migration, and
invasion(45) of CCA cells. Upon EGF stimulation,
CCA cells exhibit sustained EGFR activation attrib-
uted to defective receptor internalization, which leads

to proliferation.(44) Moreover, sustained activation of
EGFR, caused by the deregulation of NHERF1/
EBP50, led to EMT-associated features, migration,
and invasion.(45,46)

EGFR signaling is complex because EGFR can be
activated indirectly by various compounds known to
participate in the pathogenesis of CCA, such as bile
acids (BAs). BAs increased cellular myeloid cell leuke-
mia sequence 1 (Mcl-1) protein levels, a potent antia-
poptotic protein from the B-cell lymphoma 2 (Bcl-2)
family, by inhibiting Mcl-1 degradation through the
EGFR/Raf-1 signaling pathway(47) and the production
of cyclooxygenase-2 (COX-2) through the EGFR/
mitogen-activated protein kinase (MAPK) signaling
pathway.(47) EGFR activation by BAs occurred
through a TGFa-dependent mechanism involving
MMP activity as a requisite for TGFa membrane
release(48) (Fig. 2). More recently, it was reported that
conjugated BAs promoted the invasive growth of
CCA through activation of sphingosine 1-phosphate
receptor 2 (S1PR2; Fig. 2) followed by activation of
the EGFR/extracellular signal-regulated kinases 1 and
2 (ERK1/2) signaling pathway.(49) Finally, it was
shown, in BDL mice, that BAs trigger cholangiocyte
proliferation after binding to their G-protein-coupled

FIG. 2. Mechanisms of indirect EGFR activation by bile acids (TLCA, TCDCA, and TCA), LPS, and PGE2. The three com-
pounds are able to stimulate the cleavage of EGFR proligands to produce mature EGFR ligands that, in turn, increase EGFR activa-
tion and signaling. Bile acid activation of TGR5 and S1PR2 leads to EGFR proligand cleavage by ADAM17/TACE and MMPs
thorough the activation of SRC and PLCb, respectively. Similarly, TLR4 activation by LPS promotes ADAM17/TACE activity by
unknown mechanisms. In addition, EGFR activation induces COX2 signaling, which increases PGE2 production. Then, PGE2 acti-
vates EP1 receptor that, in turn, induces SRC signaling to activate EGFR proligand cleavage by ADAM17/TACE. Abbreviations:
ADAM17, ADAM metallopeptidase domain 17; PLCb, phospholipase C-beta; TCA, taurocholic acid; TCDCA, taurochenodeoxy-
cholic acid; TLCA, taurolithocholic acid.
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bile acid receptor 1 (Gpbar-1 or TGR5; Fig. 2) and
activation of the EGFR/ERK1/2 pathway.(50) TGR5
was also found overexpressed in human CCA tissue,
suggesting that the BAs/TGR5/EGFR pathway iden-
tified in nonmalignant cholangiocytes could also play a
role in biliary malignancies.(50)

The other major component engaged in EGFR
transactivation is the COX-2-derived prostaglandin
E2 (PGE2; Fig. 2). In CCA, COX-2 and PGE2 are
overexpressed and display mitogenic, antiapoptotic,
and angiogenic functions.(51) PGE2 released into the
extracellular space binds to its receptor, prostaglandin
E2 receptor 1 (EP1), a G-protein-coupled receptor,
leading to EGFR/AKT axis activation that triggers
CCA cell proliferation and invasion.(52) To add a
higher level of complexity, activation of EGFR by its
prototypal ligand, EGF, causes increased production
of COX-2 and PGE2, thereby generating a vicious
cycle of COX-2/PGE2/EP1/EGFR signaling(52) (Fig.
2). LPS, also by interacting with its receptor TLR4, is
at the origin of EGFR transactivation (Fig. 2). By acti-
vating EGFR through TNF-a converting enzyme
(TACE)-dependent TGFa release, LPS increases pro-
duction of COX-2 and PGE2 that in turn creates a
second wave of phosphorylation of EGFR and ERK1/
2, triggering a feedback loop.(53)

Interleukin (IL)-6 is another proinflammatory cyto-
kine that contributes to chronic biliary inflammation
and CCA carcinogenesis. Overexpression of IL-6
decreased EGFR promoter methylation, resulting in
an increase of EGFR expression in CCA cells.(54)

Finally, resistance to oxidative stress leads to abnormal
proliferation and transformation. H2O2-induced oxi-
dative stress activated the MAPK–activated protein
kinase 2 (MK2)–dependent transduction pathway,
which itself activated the heparin-binding EGF-like
growth factor (HB-EGF)/EGFR axis, therefore allow-
ing cells to survive in this oxidative environment.(55)

Altogether, EGFR acts as a hub by integrating mul-
tiple external information, including its own ligands
and other compounds such as BAs, bacterial products,
and inflammatory factors, promoting genesis and pro-
gression of CCA.

ERBB2

ErbB2 expression levels vary from 0% to 82% in
human CCA specimens (Supporting Table S3). Some
studies have investigated ErbB2 gene amplification and
found results varying from 0% to 100% of samples,
depending on methods and localization of the

malignancy along the biliary tree. Results on the link
between ErbB2 expression and clinicopathological and
prognostic factors were also discordant, although no
study has shown any impact on survival (Supporting
Table S3). In addition, ErbB2 mutation in CCA
remains a marginal event (Supporting Table S2).

Transgenic mice specifically overexpressing ErbB2 in
epithelial tissues showed development of GB carcinomas
and tumors all along the biliary tract.(56) Likely, trans-
plantation of BDEneu cells (an immortalized rat cholan-
giocyte cell line overexpressing ErbB2/neu) in the rat
biliary tract resulted in the development of CCA-like
tumors.(57) The BDEneu cells showed an up-regulation
of COX-2.(57) and combined therapies with anti-COX-
2 and anti-ErbB2 inhibit cell growth.(58) A study in
rodents also showed up-regulation of COX-2 associated
with overexpression of ErbB2/EGFR heterodimers in
GB epithelium.(56) These results as well as immunos-
taining observations of COX-2 and ErbB2 in human
CCA tissues(35) suggest that ErbB2 might play a key
role in regulating COX-2 expression in precancerous
and neoplastic cholangiocytes. Conjugated BAs
increased proliferation of CCA cells through the activa-
tion of EGFR/ErbB2 heterodimer.(59)

ERBB3 AND ERBB4

Expression of ErbB3 was observed in 11.8%-39% of
CCA cases in various studies and was associated with
poorly differentiated tumors and decreased survival
(Supporting Table S4). ErbB3 mutations were identi-
fied in 11.8% of GB carcinoma samples, with ErbB3
being the most frequent ErbB mutated receptor (Sup-
porting Table S2). Fluorescent in situ hybridization
analysis demonstrated a gene amplification of
HER3 in 23% of CCA samples. ErbB4 was expressed
in 39.5%-63.1% of CCA samples (Supporting Table
S5). Its expression was related directly to lymph node
metastasis and to a better survival in EGFR-negative
iCCA (Supporting Table S5). So far, one missense
mutation in HER4 has been reported in iCCA (Sup-
porting Table S2). Although both receptors are
expressed in CCA, the pathophysiological mechanisms
underlying their roles in CCA are still unknown.

ROLE OF TUMOR
MICROENVIRONMENT
IN ERBB SIGNALING

Increasing evidence indicates that the tumor micro-
environment (TME), with its diversity of cell types

http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo
http://onlinelibrary.wiley.com/doi/10.1002/hep.29350/suppinfo


and extracellular components, does not simply provide
an anatomically supporting tissue, but also contributes
to cancer progression and chemoresistance. At the cel-
lular level, the TME in CCA is abundantly composed
of cancer-associated fibroblasts (CAFs),(40) suggesting
a fundamental role for these cells in CCA biology,
which has been confirmed by several studies, including
ours.(40,60) We showed that CAFs from CCA
expressed EGFR ligands, including HB-EGF, which
promote CCA cell invasion through activation of the
HB-EGF/EGFR axis.(60)

Anti-ErbB Therapies in
Cholangiopathies
There are two major classes of anti-ErbB therapies

(Supporting Table S6): monoclonal antibodies, which
block ligand binding, and TKI, which target the cata-
lytic domain of the receptor.

IN NON-MALIGNANT
CHOLANGIOPATHIES

EGFR TKIs have been tested in models of PKD/
PLD. They were efficient in the kidney,(61) but results
in the liver were contradictory. As mentioned, EGFR
TKIs were efficient in reducing biliary ductal ectasia in
BPK mice,(38) but could not prevent the development
of cystic liver disease in the PCK rat.(39) Further stud-
ies are needed to verify these results.

In a rat model of proliferative cholangitis, treatment
with anti-EGFR reduced biliary epithelium hyperpla-
sia, fibrosis, and hyperplasia of peribiliary glands.(62)

Similarly, in the BDL model, erlotinib significantly
reduced fibrosis.(63) To date, there are no clinical trials
with these therapies.

IN MALIGNANT
CHOLANGIOPATHIES

Preclinical Assays

Treatment of CCA cells with anti-EGFR therapies
(gefitinib or cetuximab) inhibits cell growth(44,64) and
induces G1-phase arrest and apoptosis.(64,65) ErbB2
inhibitors alone were also effective in vitro in CCA
cell lines.(66) Moreover, EGFR/ErbB2 combined
inhibition was more efficient than either anti-EGFR
or anti-ErbB2 alone.(66) Anti-ErbB therapies have
also been tested combined with other types of

treatments (chemotherapy or non-ErbB-targeted
therapies). Gefitinib/erlotinib and lapatinib (dual
EGFR/ErbB2) had antiproliferative effects in CCA
cell lines when combined with gemcitabine.(67) Com-
bination of anti-EGFR therapies with other targeted
therapies, such as mitogen-activated protein kinase
kinase (MEK),(68) mammalian target of rapamycin
(mTOR),(69) or vascular endothelial growth factor
receptor (VEGFR)(70) inhibitors, showed growth
inhibition in various CCA cell lines. Besides cell pro-
liferation, EGFR TKIs, such as gefitinib, reduce
migratory and invasive properties of CCA cells(45,46)

by interfering with EMT.
In vivo, administration of gefitinib was efficient in

reducing tumor growth in CCA(45) and GB.(71) In a
mouse CCA xenograft model, EGFR inhibition by
gefitinib prevented the ectopic expression of E-
cadherin in the cytoplasm and restored its membrane
expression in CCA cells,(45) implying that gefitinib
could reverse EMT in CCA. Similarly, the anti-
ErbB2 therapy, pertuzumab, reduced tumor growth in
xenografted models of CCA.(72) Furthermore, combi-
nation of treatments also proved effective in vivo.
Association of erlotinib and cetuximab led to tumor
growth arrest.(73) In mice overexpressing ErbB2,
GW2974, a dual EGFR/ErbB2 inhibitor, showed
chemopreventive efficiency with a decrease in develop-
ment of tumors along the biliary tree.(71) Other dual
anti-EGFR/ErbB2 inhibitors, such as lapatinib(66) or
NVP-AEE788,(74) were more efficient than anti-ErbB
therapies alone. Finally, combination of anti-EGFR
therapies with other targeted therapies, such as as
MEK,(68) mTOR,(69) or VEGFR(70) inhibitors, also
showed antitumor effect in vivo.

Clinical Trials

Among anti-ErbB therapies in CCA, anti-EGFR
therapies have been the most studied. Several clinical
trials were conducted with these drugs, alone or in
combination with other therapies or chemotherapies
(Supporting Table S7). Although they showed efficacy
in preclinical studies, they did not show significant
improvement of overall survival in phases II and III
clinical trials. One recent open-label phase II trial
found a higher-than-expected clinical benefit rate with
the combination of gemicitabine, cisplatine, and pani-
timumab in KRAS wild-type CCA patients, sugges-
ting a possible benefit of anti-EGFR therapies in
selected patients. The only phase III comparing
GEMOX (gemcitabine and oxaliplatine) with erlorinib
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versus chemotherapy alone did not show any difference
in median overall survival. Irreversible blockers of
ErbB receptors have been developed and are being
tested in clinical trials. Indeed, one clinical trial
showed limited, but encouraging, activity for afatinib
in some patients with CCA. Only one clinical trial
has assessed the efficacy of lapatinib in advanced
CCA with a 0% response rate. Finally, a recent
phase Ib study showed longer median overall sur-
vival in CCA patients treated with pulsatile erlotinib
combined with chemotherapy compared to patients
treated with standard chemotherapy, suggesting an
effect for pulsatile administration of anti-EGFR.
Nevertheless, results from clinical trials have been
disappointing, suggesting the existence of resistance
mechanisms to these therapies in CCA.

RESISTANCE MECHANISMS TO
ANTI-ERBB THERAPIES

Two types of resistance (primary or innate, and sec-
ondary or acquired) are involved in anti-EGFR treat-
ment failure in cancer.

Primary resistance often occurs as a result of primary
mutations. EGFR mutations were first described in
lung cancer, where they were responsible for up-
regulation of the downstream signaling pathways, con-
ferring higher sensitivity to gefitinib.(75) As mentioned
before, primary mutations of EGFR TK domain have
been found in CCA (Supporting Table S2), but their
impact on anti-EGFR sensitivity is unknown. Resis-
tance to anti-EGFR treatment in CCA can also result
from primary mutations in downstream signaling pro-
teins (e.g., BRAF or KRAS). Mutations in KRAS and
BRAF are found, respectively, in 3%-54% and in 0%-
33% of CCA.(76) KRAS mutations are known to pre-
clude any therapeutic benefit from anti-EGFR thera-
pies in other cancers, but only two studies have
suggested this effect in CCA for erlotinib and panitu-
mumab.(77,78) The recent development of a patient-
derived xenograft model of iCCA bearing the most
frequent KRAS mutation (G12D) should provide
answers on the role of this mutation in anti-EGFR
treatment efficacy.(68)

Secondary resistance appears under long-term anti-
EGFR treatment. In lung cancer, the EGFR T790M
secondary mutation leads to resistance to anti-EGFR
therapies.(75) No secondary EGFR mutation is known
in CCA. However, under targeted therapy, tumor cells
can use alternative signaling pathways through other
growth receptors. In CCA, we recently underlined

cellular and molecular mechanisms involved in second-
ary resistance to erlotinib. More specifically, we
observed an activation of the insulin-like growth factor
signaling axis that regulates an EMT program and
stemness in erlotinib-resistant cells.(79)

Conclusion
ErbB receptors are involved in many physiological

and pathological functions. EGFR does not seem cru-
cial for liver development, but may play a role in chol-
angiocyte specification and bile duct morphogenesis.
Although many studies have shown roles for ErbB
receptors (especially EGFR) in hepatocytes during
liver regeneration and in hepatic stellate cells during
biliary fibrogenesis, their specific role in cholangiocytes
remains unknown, and only mice models with specific
deletion of ErbB receptors in cholangiocyte lineage
would help highlight their role in development and
diseases. Several signaling pathways leading to cholan-
giocyte proliferation are involved in different cholan-
giopathies, which are main risk factors for CCA.
Advances in understanding the molecular basis of
CCA have been made, but all mechanisms have not
yet been clarified. There is an evident role of the ErbB
family in CCA with EGFR and ErbB2 at the front
line. Indeed, they are often overexpressed and associ-
ated with low prognostic factors. Recent data have
revealed specific genetic mutations, aberrant signaling
pathway activation, and microenvironment interac-
tions, which are responsible for low prognosis and
resistance to treatments in CCA. However, further
research is necessary in order to decipher the role of
this family in cholangiocyte pathophysiology, especially
that of ErbB3 and ErbB4, which have been poorly
investigated in cholangiocyte pathophysiology. Preclin-
ical evidence of the efficiency of anti-ErbB therapies in
CCA is scarce and results in clinical trials are disap-
pointing. Data on the mechanisms involved in the che-
moresistance to these molecules are lacking.
Altogether, further studies are needed to enhance the
molecular understanding of the role of the ErbB recep-
tors in order to develop better therapies targeting major
components of the ErbB signaling network.
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Supplementary Table 1 Reported frequencies of human CCA exhibiting varying degrees of EGFR activity 

Type of 
CCA 

Number 
of 

samples 

% of cases with 
expression 

Expression levels Gene 
Amplification 

Correlation 
with clinical 

factors 

Survival 
analysis 

Ref. 

iCCA 37 32% Expression N.D. N.S. N.D. (1) 
eCCA 

GB 
AV 

29 100% Moderate to Strong 
expression (defined 

as 2+ or 3+) 

N.D. N.D. N.D. (2) 

iCCA 38 45% Expression N.D. S. N.D. (3) 
iCCA 48 81% Moderate to Strong 

expression (defined 
as 1+ or 2 +) 

N.D. N.S. N.S. 
(univariate 
analysis) 

(4) 

CCA 30 47% Strong expression 
(defined as 3+) 

N.D. N.D. N.D. (5) 

iCCA 122 10% Expression N.D. N.D. N.D. (6) 
CCA 221 8% Overexpression 

(defined as 2+ and 
3+) 

6% N.S. N.D. (7) 

iCCA 28 11%  N.D. N.S. N.D.  
eCCA 78 5%  N.D. N.S. N.D.  

GB 89 12%  N.D. N.S. N.D.  
AV 26 0%  N.D. N.S. N.D.  

CCA/G
B 

72 43% Overexpression 
(defined as 2+ or 3+) 

N.D. S. N.S. (8) 

CCA 24 63% Expression N.D. N.D. N.S. 
(univariate 
analysis) 

(9) 

CCA 114 12% Overexpression 
(defined as 2+ and 

3+) 

N.D. N.D. N.D. (10) 

GB 77 16%  N.D. N.D. N.D.  

iCCA 21 0%  N.D. N.D. N.D.  
eCCA 16 0%  N.D. N.D. N.D.  
CCA 236 23% Overexpression 

(defined as 2+ and 
3+) 

N.D. S. Poor 
(multivariate 

analysis) 

(11) 

iCCA 106 27%  N.D. N.S. Poor  
eCCA 130 25%  N.D. S. Poor  

GB 16 94% Overexpression 
(defined as 1+ and 

over) 

N.D. S. Poor (12) 

CCA 89 64% Expression 
(membranous 

immunostaining) 

N.D. S. Poor (13) 

CCA 56 61% Expression N.D. N.S. N.S 
(univariate 
analysis) 

(14) 

iCCA 
eCCA 

GB 

51 80% Expression 0.02% N.D. N.D. (15) 

CCA 49 65% Expression N.D. S. N.D. (16) 
GB 13 39% Expression N.D.  N.D.  

iCCA 17 100% Expression N.D.  N.D.  
eCCA 19 53% Expression N.D.  N.D.  
iCCA 33 58% Expression N.D. S. Poor 

(univariate 
and 

multivariate 
analysis) 

(17) 

CCA 152 24% Overexpression N.D. S. Poor (18) 
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iCCA 
eCCA 

58 
94 

35% 
22% 

(defined as 2+ or 3+) (univariate 
analysis) 

iCCA 58 22% Overexpression 
(defined as 2+ or 3+) 

N.D. S. Poor 
(univariate 
analysis) 

N.S. 
(multivariate 

analysis) 

 

eCCA 94 35% Overexpression 
(defined as 2+ or 3+) 

N.D. S. N.S. 
(univariate 

and 
multivariate 

analysis) 

 

iCCA 
eCCA 
GBC 

57 
40 
16 

70% 
58% 
81% 

Overexpression 
(defined as 1+ to 3+) 

3% N.D. N.D. (19) 

CCA 175 25%  N.D. N.D. N.D. (20) 
iCCA 65 31% Overexpression 

(defined as 2+ or 3+) 
N.D. S. Poor 

(univariate 
and 

multivariate 
analysis) 

 

eCCA 110 21% Overexpression 
(defined as 2+ or 3+) 

N.D. S. Poor 
(univariate 
analysis) 

N.S. 
(multivariate 

analysis) 

 

CCA 113 18% Overexpression 
(defined as 2+ and 

over) 

N.D. N.D. N.D. (21) 

GB 47 19%  4% N.D. N.D.  
CCA 66 17%  12% N.D. N.D.  
iCCA 25 75% Expression N.D. S. N.S. (22) 
eCCA 84 38% Expression N.D. S. Poor 

(multivariate 
analysis) 

(23) 

iCCA 106 68% Expression N.D. N.D. N.D. (24) 
iCCA 36 81% Expression N.D. N.D. N.D. (25) 

Abbreviations: AV, Ampulla of Vater; CCA, cholangiocarcinoma; iCCA, intrahepatic CCA; eCCA, extrahepatic CCA; GB, 
gallbladder; N.D., not determined; N.S., not significant; S., significant. 
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Supplementary Table 2 Mutations of ErbB members in CCA 

Type of CCA Number of cases with 
EGFR mutations (%) 

Mutated exon Ref. 

22 CCA 3 (13.6%) 19 (26) 
22 CCA 0 (0%)  (27) 
40 CCA 

11 GB 

15 iCCA 
14 eCCA 

6 (15%) 

1 

3 
2 

19, 20, 21 (28) 

142 iCCA 2 (1.4%) 21 (29) 
153 CCA 
70 iCCA 
57 eCCA 

26 GB 

2 (1,3%) 
 

1 (1,7%) 
1 (3,8%) 

20 (19) 

51 CCA (GB) 2(3.9%) 5, 21 (30) 
81 iCCA 

38 iCC with CALD 
433 iCC with normal liver 

6 (7,4%) 
5 (13%) 
1 (2%) 

19 (31) 

137 CCA 
57 eCCA 
45 iCCA 
35 GB 

13 (9.5%) 
9 
2 
2 

20, 21 (32) 

116 CCA 
34 GB 

87 others 

2 (1.7%) 
0 
2 

20 (33) 

Type of CCA Number of cases with 
ErbB2 mutations (%) 

Mutated exon Ref. 

22 CCA 0 (0%)  (27) 
153 CCA 
70 iCCA 
57 eCCA 

26 GB 

 
0(0%) 

1 (0,7%) 
1 (3,8%) 

 
 

N.D. 
N.D. 

(19) 

51 CCA (GB) 5(9,8%) 7, 8, 17, 21 (30) 

Type of CCA Number of cases with 
ErbB3 mutations (%) 

Mutated exon Ref. 

51 CCA (GB) 6(11,8%) 3, 12, 25 (30) 

Type of CCA Number of cases with 
ErbB4 mutations (%) 

Mutated exon Ref. 

153 CCA 
70 iCCA 
57 eCCA 

26 GB 

1 (0,7%) 
1 (1,4%) 
0(0%) 
0(0%) 

N.D. 
N.D. 

(19) 

51 CCA (GB) 2(3.9%) 3 (30) 

Abbreviations: CALD, chronic advanced liver disease; CCA, cholangiocarcinoma; 
iCCA, intrahepatic CCA; eCCA, extrahepatic CCA; GB, gallbladder; N.d, not 
determined. 
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Supplementary Table 3 Reported frequencies of human CCA exhibiting varying degrees of HER2 activity 

Type of CCA Number 
of 

samples 

% of cases 
with 

expression 

 Expression 
levels 

Correlation 
with 

clinical 
factors 

Survival 
analysis  

Gene 
amplification 

Ref. 

CCA 63 73% Expression N.D. N.D. N.D. (34) 
CCA 10 0% Overexpression N.D. N.D. N.D. (35) 
CCA 6 67% Overexpression N.D. N.D. N.D. (36) 
CCA 47 64% Overexpression S. N.D. N.D. (37) 
iCCA 18  Overexpression N.D. N.D. N.D.  
GB 11  Overexpression N.D. N.D. N.D.  
AV 18  Overexpression N.D. N.D. N.D.  

CCA 47 70% Overexpression N.D. N.D. N.D. (38) 
iCCA 42 29% Expression N.D. N.D. N.D. (39) 
iCCA 19 

(Thai 
patients) 

26% Expression N.D. N.D. N.D.  

iCCA 23 
 

(Japanese 
patients) 

30% Expression N.D. N.D. N.D.  

iCCA 38 53% Expression N.S. N.D. N.D. (3) 
iCCA 81 56% Expression S. N.S. 

(univariate 
and 

multivariate 
analysis) 

4% (40) 

iCCA 22 82% Overexpression N.S. N.D. 100% (41) 
CCA 71 30% Overexpression S. N.D. N.D. (42) 
iCCA 48 4% Overexpression N.S. N.S. 4% (4) 
CCA 221 10% Overexpression S. N.D. 6,8% (7) 
iCCA 28 0% Overexpression N.D. N.D.   
eCCA 78 5% Overexpression N.D. N.D.   

GB 89 16% Overexpression N.D. N.D.   
AV 26 12% Overexpression N.D. N.D.   

iCCA 31 32% Strong 
expression 

S. N.D. N.D. (43) 

CCA  
(44CCA  
+28 GB) 

72 65% Overexpression N.S N.S. 
(univariate 

and 
multivariate 

analysis) 

N.D. (8) 

 114 21% Overexpression N.D. N.D.  (10) 
GB 77 31% Overexpression N.D. N.D. 21%  

iCCA 21 33% Overexpression N.D. N.D. 0%  
eCCA 16 31% Overexpression N.D. N.D. 21%  
CCA  236 5% Overexpression S. N.D. N.D. (11) 
iCCA 106 1% Overexpression N.D. N.D. N.D.  
eCCA 130 9% Overexpression S. N.D. N.D.  

GB 16 6% Overexpression N.D. N.D. N.D. (12) 
CCA 124 20% Overexpression N.D. N.D. 5% (14) 
CCA 51 4% Overexpression N.D. N.D. N.D. (15) 
CCA 39 18% Expression N.D. N.D. 8% (tested only 

for scores 2+ 
and 3+) 

(16) 

GB 13 10% Expression N.D. N.D.   
iCCA 17 10% Expression N.D. N.D.   
eCCA 19 26% Expression N.D. N.D.   
eCCA 224 6% Overexpression S. N.S. N.D. (44) 
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(defined as 3+) (univariate 
analysis) 

eCCA 94 4% Overexpression N.D. N.D. 3,5% (18) 
CCA 175 3%  N.D. N.D. N.D. (20) 
iCCA 65 0% Overexpression N.S. N.D. N.D.  
eCCA 110 5% Overexpression S. N.D. N.D.  
CCA 113 27%  N.D. N.D.  (21) 
GB 47 32% Overexpression N.D. N.D. 17%  

CCA 66 23% Overexpression N.D. N.D. 23%  

Abbreviations: AV, Ampulla of Vater; CCA, cholangiocarcinoma; iCCA, intrahepatic CCA; eCCA, extrahepatic CCA; 
GB, gallbladder; N.D., not determined; N.S., not significant; S., significant. 
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Supplementary Table 4 Reported frequencies of human CCA exhibiting varying degrees of HER3 activity 

Type of CCA Number 
of 

samples 

% of cases 
with 

expression 

Expression levels Correlation 
with clinical 

factors 

Survival  
analysis 

Gene 
amplification 

Ref. 

eCCA 230 39% Overexpression S. S. N.D. (44) 
CCA 175       

iCCA 65 12.3% Overexpression S. N.D. N.D. (20) 

eCCA 110 11.8% Overexpression N.S. N.D. N.D.  

CCA 113       
GB 47 34% Overexpression N.D. N.D. 26% (21) 

CCA 66 29% Overexpression N.D. N.D. 27% 

Abbreviations: AV, Ampulla of Vater; CCA, cholangiocarcinoma; iCCA, intrahepatic CCA; eCCA, extrahepatic CCA; 
GB, gallbladder; N.D., not determined; N.S., not significant; S, significant. 

 
 
 
 

Supplementary Table 5 Reported frequencies of human CCA exhibiting varying degrees of HER4 activity 

Type of CCA Number 
of 

samples 

% of cases 
with 

expression 

Level of 
expression 

Clinical 
factors 

Survival 
analysis 

Gene 
amplification 

Ref. 

iCCA 38 39.5% Expression S. N.D. N.D. (3) 
CCA 175       

iCCA 65 63.1% Overexpression N.S. N.S. N.D. (20) 

eCCA 110 56.4% Overexpression N.S. N.S. N.D.  

Abbreviations: AV, Ampulla of Vater; CCA, cholangiocarcinoma; iCCA, intrahepatic CCA; eCCA, extrahepatic CCA; 
GB, gallbladder; N.D., not determined; N.S., not significant; S., significant. 
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Supplementary Table 6 Anti-ErbB therapies in CCA. 

Type Name Reversible Irreversible EGFR ErbB2 ErbB3 ErbB4 

TKI        

 Erlotinib X  X    
 Gefitinib X  X    

 AEE788 X  X X   
 Lapatinib X  X X   

 Afatinib  X X X  X 

 Dacomitinib  X X X  X 
 AZD9291  X X    
 Vandetanib   X    
 Tyrphostin AG 879 

GW2974 
AEE788 

 
X 
X 

  
X 
X 

X 
X 
X 

  

Antibodies        
 Cetuximab   X    
 Panitumumab   X    
 Pertuzumab    X   
 Trastuzumab    X   
 Patritumab     X  
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Supplementary Table 7 Clinical trials with anti-EGFR therapies in CCA 
Treatment Clinical 

phase 
Number 

of 
Patients 

CR 
(%) 

PR 
(%) 

ORR 
(%) 

SD 
(%) 

Median 
overall 

survival 
(months) 

Ref. 

Erlotinib II 42 0 8 8 43 7.5 (25) 
Lapatinib II 17 0 0 0 26 5.2 (45) 
Erlotinib/ 

Bevacizumab 
II 53 0 12 12 51 9.9 (46) 

GEMOX 
+ cetuximab 

II 30 10 53 63 17 15.2 (47) 

GEMOX 
+erlotinib 
-erlotinib 

III  
135 
133 

 
0 
2 

 
30 
14 

 
30 
16 

 
36 
51 

 
9.5 
9.5 

(33, 48) 

GEMOX 
+capeticabine 
+panitumumab 

II 46 2,4 31 33 50 10 (49) 

Gemcitabine 
+capecitabine 
+cetuximab 

II 34 6 12 18  15.7 (50) 

Gemcitabine 
+irinotecan 

+panitumumab 

II 35 6 26 74 43 12.9 (51) 

GEMOX +panitumumab II 31 0 45 45 45 20.3 (52) 
GEMOX 

+cetuximab 
-cetuximab 

II  
76 
74 

 
1 
2 

 
17 
15 

 
24 
23 

 
44 
31 

 
11 

12.4 

(53) 

Sorafenib 
+erlotinib 

II 34 0 6 - - 6 (54) 

Vandetanib 
Vandetanib 

+Gemcitabine 
Gemcitabine 

+placebo 

II 59 
58 

 
56 

- 
- 
 
- 

- 
- 
 
- 

4 
19 

 
14 

- 
- 
 
- 

7.6 
9.5 

 
10.2 

(55) 

GEMOX 
+cetuximab 
- cetuximab 

II  
62 
60 

 
- 
- 

 
24 
15 

 
27 
15 

 
55 
45 

 
10.6 
9.8 

(56) 

GEMOX 
+ panitumumab 
- panitumumab 

II  
45 
44 

 
2 
2 

 
24 
16 

 
27 
18 

 
49 
50 

 
9.9 
10.2 

(57) 

Gemcitabine 
+Cisplatine 

+Panitumumab 

II 46 2 30 - 41 30 (58) 

GEMOX 
+pulsatile erlotinib 

Ib 17 
 

0 29 29 65 18 (59) 

Abbreviations: GEMOX : gemcitabine + oxaliplatine; CR, complete response; ORR, objective response rate; PR, partial 
response; SD, stable disease. 
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