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Abstract We propose an introduction to the use of incremental preference elicita-
tion methods in the field of multiobjective combinatorial optimization. We consider
three different optimization problems in vector-valued graphs, namely the shortest
path problem, the minimum spanning tree problem and the assignment problem.
In each case, the preferences of the decision maker over cost vectors are assumed
to be representable by a weighted sum but the weights of criteria are initially
unknown. We then explain how to interweave preference elicitation and search
in order to quickly determine a near-optimal solution with a limited number of
preference queries. This leads us to successively introduce an interactive version of
dynamic programming, greedy search, and branch and bound to solve the prob-
lems under consideration. We then present numerical tests showing the practical
efficiency of these algorithms that achieve a good compromise between the number
of queries asked and the solution times.

Keywords Multiobjective Combinatorial Optimization · Preference Elicitation ·
Imprecise Weights · Minimax Regret

1 Introduction

The increasing complexity of applications encountered in multicriteria optimiza-
tion, multiagent optimization and optimization under uncertainty leads us today
to apply decision models to combinatorial sets of solutions which are implicitly
defined. This significantly complicates the decision process and, in particular, the
construction of a preference model fitting the objectives of the Decision Maker
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(DM) as well as the calculation of the optimal decision. In the recent years, these
difficulties have motivated the development of algorithmic decision theory as a
research field which constitutes the reference frame of this paper.

We consider here new algorithms for the interactive elicitation of preferential
parameters in a decision model and the efficient calculation of optimal solutions
with respect to this model. Instead of approaching independently and separately
these two subjects, we introduce incremental decision procedures aiming to inte-
grate and combine the elicitation of preferences and the calculation of the preferred
solution in order to determine the optimal choice without fully specifying the de-
cision model. In these new interactive resolution schemes, asking questions about
the DM’s preferences during the exploration of the set of solutions allows to focus
the elicitation of preferences on information that is really useful for separating
competing solutions and thus reducing the number of questions required. This is
the main benefit of the incremental approach to decision making.

The incremental approach has already been successfully considered for pref-
erence elicitation in non-combinatorial problems in various contexts such as mul-
tiattribute utility theory (White III et al, 1984; Braziunas and Boutilier, 2007),
multicriteria decision making (Benabbou et al, 2015, 2017), decision making under
risk (Ha and Haddawy, 1997; Chajewska et al, 2000; Wang and Boutilier, 2003;
Hines and Larson, 2010; Perny et al, 2016; Gilbert et al, 2017) and collective de-
cision making (Lu and Boutilier, 2011; Dery et al, 2014; Benabbou et al, 2016).
Preference elicitation on combinatorial domains is a challenging issue that recently
motivated several contributions in various contexts such as constraint satisfaction
(Gelain et al, 2010), committee election (Benabbou and Perny, 2016), matching
(Drummond and Boutilier, 2014), sequential decision making under risk (Regan
and Boutilier, 2009; Weng and Zanuttini, 2013; Gilbert et al, 2015; Benabbou and
Perny, 2017), multiattribute decision making (Koriche and Zanuttini, 2010) and
multicriteria optimization (Benabbou and Perny, 2015b,c; Kaddani et al, 2017;
Bourdache and Perny, 2017). In this paper we focus on preference-based search
for multiobjective combinatorial optimization with the aim of explaining how pref-
erence queries can be inserted in standard combinatorial optimization algorithms
for both increasing our knowledge of the DM’s preferences and facilitating the con-
struction of the optimal solution. This approach is incremental in the sense that
we learn the decision model and the notion of optimality during the exploration
of the set of feasible solutions and not in a preliminary step.

Our purpose is to introduce the general principle of progressive regret reduction
present in many incremental elicitation approaches and to explain how it can be
efficiently implemented within combinatorial algorithms to solve different types of
multiobjective optimization problems involving multiple criteria. For the sake of
simplicity, we here assume that DM’s preferences are representable by a weighted
sum of criterion values but the criteria weights are initially unknown. In this
context, we study the incremental elicitation of criteria weights so as to efficiently
determine a (near-)optimal solution.

The paper is organized as follows. In Section 1, we recall the basic principles
of incremental elicitation methods based on regret-minimization. In particular, we
recall how worst-case regrets can be used for the active selection of preference
queries in incremental decision methods and how they can support the determina-
tion of robust recommendations under imperfect knowledge of preferences. Then
the three following sections explain how preference queries used for weight elicita-
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tion can be interleaved with a combinatorial optimization algorithm progressively
constructing an optimal solution. The integration of preference elicitation steps
during the search is presented for three different solution methods classically used
in combinatorial optimization, namely multiobjective dynamic programming ap-
plied to state space search (in Section 2), multiobjective greedy search applied
to the minimum spanning tree problem (in Section 3), and multiobjective branch
and bound applied to the multiobjective assignment problem (in Section 4). In
all these sections, we introduce incremental elicitation strategies during the search
that use preference queries to progressively reduce the set of admissible weights
until a (near-)optimal solution can be identified. The validity of our algorithms is
established and numerical tests are provided to show their efficiency both in terms
of number of generated preference queries and solution times.

2 Incremental Elicitation based on the Minimax Regret Criterion

In this section, we first introduce a formal framework for multicriteria combinato-
rial optimization problems where the weights of criteria are not precisely known.
Then we recall how the minimax regret criterion can be used for decision making
under imperfect knowledge of criterion weights, using an incremental elicitation
procedure to determine a (near-)optimal solution without asking too many queries
in practice.

2.1 Preliminaries

Let X denote the set of solutions that need to be compared in order to make a
decision; in this paper, we assume that X is implicitly defined as the set of feasible
solutions of a multiobjective combinatorial optimization problem. More precisely,
we consider a set of q objective functions to be minimized simultaneously (e.g.,
time, cost, distance). Denoting xj the evaluation of any solution x ∈ X on criterion
j, j ∈ Q = {1, . . . , q}, every solution x ∈ X is characterized by the cost vector
(x1, . . . , xq). For simplicity, throughout the paper, x will indifferently denote a
solution or its performance vector. Moreover, we assume that the DM’s preferences
are representable by a linear function fω(x) =

∑q
j=1 ωjxj measuring the overall

cost of any solution x ∈ X and that the weighting vector ω = (ω1, . . . , ωq) is initially
not known or only imprecisely known.

In this context, we consider the set Ω containing all admissible normalized
weighting vectors ω at a given step of the decision process. By default, Ω is initially
defined as the simplex {ω ∈ int(Rq+) :

∑q
j=1 ωj = 1} where int(Rq+) represents the

interior of the cone Rq+. Later in the decision process, Ω may represent the subset
of normalized weighting vectors that are still compatible with the set of preference
statements obtained from the DM. Due to the linearity of fω(x) in ω for any fixed
cost vector x, any preference statement of type “x is at least as good as y” induces
the linear constraint fω(x) ≤ fω(y) over the simplex. As a consequence, throughout
this paper, we can assume that Ω is a convex bounded polyhedron without loss of
generality.
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2.2 Minimax Regret

The Minimax regret criterion is a decision criterion standardly used in optimization
under total uncertainty and in robust optimization (Savage, 1954; Kouvelis and Yu,
1997). This criterion has been more recently advocated to make robust decisions
under imprecise utilities (Salo and Hämäläinen, 2001; Boutilier et al, 2006). In our
context, the minimax regret decision criterion can be used to determine a robust
solution given the parameter imprecision defined by Ω. It is formally defined using
the following definitions of regrets:

Definition 1. The pairwise max regret (PMR) of solution x ∈ X with respect to

solution y ∈ X is defined as:

PMR(x, y,Ω) = max
ω∈Ω
{fω(x)− fω(y)}

By definition, the pairwise max regret of solution x with respect to solution y

represents the worst-case loss that can be induced by recommending x instead of y
to the DM. In particular, solution x is necessarily preferred to solution y whenever
we have PMR(x, y,Ω) ≤ 0; in this case, we indeed have fω(x) ≤ fω(y) for all
ω ∈ Ω. Note that pairwise max regrets can be efficiently computed by means of
linear programming. The max regret is then derived from pairwise max regrets as
follows:

Definition 2. The max regret (MR) of solution x ∈ X is defined as:

MR(x,X , Ω) = max
y∈X

PMR(x, y,Ω)

In other words, the max regret associated to x represents the worst-case loss
that one may obtain when recommending solution x instead of any other solution,
and in particular any adversary’s choice in arg maxy∈X PMR(x, y,Ω). Then comes
the minimax regret:

Definition 3. The minimax regret (mMR) is defined as:

mMR(X , Ω) = min
x∈X

MR(x,X , Ω)

An optimal solution with respect to the minimax regret is a solution x ∈ X
that minimizes the maximum regret (i.e., any element of arg minx∈X MR(x,X , Ω)).
This criterion enables to protect one against the worst case scenario. It is a bit
conservative but leads to robust recommendations under imperfect knowledge of
preferences.

2.3 Incremental Regret-based Preference Elicitation

Given a set Ω of admissible weighting vectors, the worst-case loss ensured by the
recommendation of any optimal solution for the minimax regret criterion might
still be too large for certifying the quality of the solution. Note that this worst-case
loss may decrease by considering additional preference statements obtained from
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the DM since they induce new constraints on the set of admissible parameters.
For any set Ω′ ⊆ Ω, we indeed have:

PMR(x, y,Ω′) ≤ PMR(x, y,Ω), ∀x, y ∈ X (1)

MR(x,X , Ω′) ≤MR(x,X , Ω), ∀x ∈ X (2)

mMR(X , Ω′) ≤ mMR(X , Ω) (3)

These inequalities show that the minimax regret cannot increase by collecting new
preference statements from the DM; in practice, this value often strictly decreases
when preference queries are carefully chosen (see e.g., Braziunas (2011)). Hence,
this decision criterion can be used within an incremental elicitation process that
progressively asks preference queries to the DM until the minimax regret drops
below a given tolerance threshold δ ≥ 0. At that moment, recommending any
optimal solution for the minimax regret criterion ensures that the loss incurred
by not choosing the true optimal solution is bounded above by that threshold.
Ideally, we would like to ask preference queries until the minimax regret is equal
to 0, which corresponds to the identification of an optimal solution. However, to
reduce the elicitation burden, it is often more efficient to consider a threshold δ > 0
representing the maximum admissible gap to optimality.

Choosing good queries is essential in order to be able to reduce the minimax re-
gret reasonably quickly (i.e. asking only few queries). Different types of preference
queries can be used when designing such an incremental elicitation process. Just to
name a few examples, bound queries ask if the overall utility (aggregate value) of a
solution is higher or lower than a given reference value whereas comparison queries
require the DM to compare a pair of solutions and state which one is preferred
among the two. Bound queries are only necessary when we want to construct an
absolute evaluation scale in which some numeric values have a special meaning
and serve as references. In this paper we prefer resorting to comparison queries
because they only rely on relative assessments; this is sufficient to determine an
optimal solution or to rank the solutions of a decision problem. Even when the
type of query is fixed, there are of course several possible queries that can be asked
at each step. Notice however that some preference queries are less informative than
others. For instance, the minimax regret will not change after asking to compare a
solution with another one that is Pareto-dominated by the former. Instead, asking
to compare two potentially good solutions is much more likely to constitute a good
preference query. This idea was successfully implemented in (Wang and Boutilier,
2003; Boutilier et al, 2006) by the query generation strategy called Current Solution

Strategy (CSS). The CSS consists in asking the DM to compare, at each iteration
step, an optimal solution x∗ for the minimax regret decision criterion with one of
its adversarial choices y∗ (arbitrarily chosen in arg maxy∈X PMR(x∗, y, Ω))1.

At each iteration step, the minimax regret can be determined by computing the
value PMR(x, y,Ω) for all ordered pairs of distinct solutions in X (see Definition 3).
Even if the computational effort can be significantly reduced by using standard
pruning rules for min aggregators (as shown in Braziunas (2011)), the number of

1 Using the CSS, we will necessarily reach a point where we have mMR(X , Ω) ≤ δ for any
threshold δ ≥ 0. Indeed, at each iteration step, we can always choose x∗ and y∗ such that we
have PMR(x∗, y∗, Ω) > 0 and PMR(y∗, x∗, Ω) > 0 before asking the query, and after collecting
the DM’s answer, one of these values will become smaller or equal to zero. Then the result
derives from the fact that the set X of solutions is finite.
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PMR-computations remains quadratic in the worst-case. This approach therefore
induces prohibitive computation times when the set X is composed of all solutions
of a combinatorial optimization problem. In this context, instead of determining
the set X and then applying this elicitation scheme, we propose to integrate an
incremental elicitation method to the search procedure: starting with an initial
set Ω of possible weights, we generate preference queries during the search so as
to progressively reduce the set Ω until being able to determine a near-optimal
solution (i.e. a solution x ∈ X such that MR(x,X , Ω) ≤ δ). The motivation behind
our proposal is to:

– save computation time by using the DM’s answers to quickly focus the search
on the most promising solutions and

– reduce the elicitation burden by generating preference queries only to discrim-
inate between some solutions found during the search.

In the following sections, we will see that integrating incremental preference elic-
itation into dynamic programming (Section 3), greedy (Section 4) and branch
and bound (Section 5) algorithms enables us to save both computation time and
preference queries needed to determine a near-optimal solution in practice.

3 Multiobjective State Space Search

Preference-based search is an active topic in Operations Research and Artificial
Intelligence with various applications to constraint satisfaction, planning, search,
resource allocation and electronic commerce (e.g., Boutilier et al (2004); Brafman
and Domshlak (2009); Domshlak et al (2011)). In this section, we study the po-
tential of incremental elicitation methods in the framework of multiobjective state
space search (Stewart and White III, 1991; Mandow and De la Cruz, 2005). This is
a decision context where feasible solutions are very numerous and defined implic-
itly as the paths starting from a source node to a goal node in a state space graph.
In vector-valued graphs, the set of Pareto non-dominated cost vectors attached to
feasible paths grows, in some family of instances, exponentially with the size of
the problem (Hansen, 1980), which precludes any explicit enumeration. Assuming
that the DM’s preferences can be represented by a weighted sum, we propose here
to combine incremental preference elicitation and state space search so as to ef-
ficiently determine a (near-)optimal solution with a limited number of preference
queries.

3.1 The General Framework

Let G = (N,A) be a state space graph where N is the finite set of nodes repre-
senting the different states and A is the set of arcs representing the feasible state
transitions. Formally, A = {(n, n′) : n ∈ N,n′ ∈ Π(n)} where Π(n) ⊆ N is the set of
all nodes that can be reached from node n by a single transition. A path between n
and n′ is characterized by a list of nodes of type 〈n1, . . . , nk〉 where n1 = n, nk = n′

and ni+1 ∈ Π(ni) for all i ∈ {1, . . . , k − 1}. The set of all paths between node n
and node n′ will be denoted by P (n, n′) in the sequel; in particular, the set of all
solution paths, starting at the source node s ∈ N and reaching any element of the
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set Γ ⊂ N of goal nodes, will be denoted by P (s, Γ ). Besides, we consider a finite
set of criteria gj : A → R+, with j ∈ Q = {1, . . . , q}, that need to be minimized
(e.g., distance, time, travel cost). Hence, graph G is endowed with a vector valu-
ation function g : A → Rq+ which assigns the cost vector g(a) = (g1(a), . . . , gq(a))
to each arc a ∈ A. Moreover, each path p in graph G is associated with a cost vec-
tor g(p) = (g1(p), . . . , gq(p)) which is defined by gj(p) =

∑
(n,n′)∈p gj((n, n

′)) for all

j∈Q. Finally, the set of feasible cost vectors is denoted by X = {g(p) : p ∈ P (s, Γ )}.
This set represents the image of all solution paths in the space of criteria.

In this section, we consider the problem of finding a near-optimal solution
path, i.e. an optimal solution path for the minimax regret decision criterion such
that the gap to optimality, quantified by the minimax regret, is bounded above
by threshold δ. First, given a set of Ω of admissible weighting vectors, we propose
a search procedure that enables to detect paths that cannot be part of a solution
path with a max regret below δ. Then, we propose incremental procedures that
reduce Ω during the search by alternating preference elicitation steps and search
steps so that a near-optimal solution path is returned at the end of the search with
a limited number of queries.

3.2 Search of Possibly Near-Optimal Solution Paths

Preference-based search methods in multiobjective optimization are often based
on the exploration of the set of Pareto-optimal solutions. The so-called MOA∗

algorithm (Stewart and White III, 1991; Mandow and De la Cruz, 2005) is a
multiobjective extension of A∗ (Hart et al, 1968) that determines the set ND(X )
of Pareto non-dominated cost vectors attached to paths in P (s, Γ ) and returns one
path for each element of ND(X ). Formally ND(X ) = {x ∈ X : ∀y ∈ X , not(y ≺P x)}
where ≺P is the Pareto dominance relation on cost vectors, i.e. x ≺P y (read x

Pareto-dominates y) if and only if xj ≤ yj for all j ∈ Q and xj < yj for some j ∈ Q.
Since all preference models considered in multicriteria analysis are compatible with
Pareto dominance or weak Pareto dominance (defined by x -P y if and only if
xj ≤ yj for all j ∈ Q), the MOA∗ algorithm is a useful basis to develop more
specific preference-based search procedures. We introduce now a search procedure
based on recent variants of MOA∗ (Mandow and De la Cruz, 2005) which uses
new pruning rules that are able to detect paths that cannot lead to solution paths
with a max regret below the tolerance threshold δ.

In vector-valued graphs, there possibly exist several optimal paths with differ-
ent cost vectors to reach a given node in the graph. Therefore, the basic graph
exploration procedure consists in iteratively expanding labels attached to sub-
paths rather than nodes, labels being of the form ` = [n`, p`, g`] where p` is a
path from node s to node n` and g` = g(p`) denotes its cost vector (with a
slight abuse of notation). At every iteration of the search procedure, a label is
selected for expansion. The expansion of a label `∗ generates the set of its suc-
cessors {[n, p`∗ ◦ 〈n〉, g(p`∗ ◦ 〈n〉)] : n ∈ Π(n`∗)}, where ◦ is the path appending
operator. At any time, the set of generated labels is divided into two disjoint sets:
a set C of closed labels (already expanded) and a set O of open labels (candidate to
expansion). The set C (resp. O) restricted to labels ` such that p` ∈ P (s, n) will be
denoted by C(n) (resp. O(n)) in the sequel. During the search, all expanded labels
corresponding to solution paths are stored in a set denoted by S, the correspond-
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ing set of cost vectors being denoted by gS hereafter. The pruning rules that we
are proposing to detect paths that cannot be part of a solution path with a max
regret below threshold δ are based on the following dominance relation:

Definition 4 (≺δΩ-dominance). For all X,Y ⊂ Rq+:

X ≺δΩ Y ⇔ ∀y ∈ Y, ∀ω ∈ Ω,∃x ∈ X, fω(y)− fω(x) > δ

This dominance relation, defined for all non-negative real vectors, satisfies the
following convenient property:

Proposition 1. For all X,Y ⊂ Rq+:

X ≺δΩ Y ⇔ ∀y ∈ Y,min
ω∈Ω

,max
x∈X
{fω(y)− fω(x)} > δ

Proof. (⇒) Let X,Y ⊂ Rq+ be two sets of vectors such that we have X ≺δΩ Y and
let y be an element of Y . Then, for all ω ∈ Ω, there exists a vector x ∈ X such that
the inequality fω(y) − fω(x) > δ holds (by definition of relation ≺δΩ). Therefore,
we have maxx∈X{fω(y) − fω(x)} > δ for all ω ∈ Ω, and in particular we have
minω∈Ω maxx∈X{fω(y)− fω(x)} > δ.
(⇐) Consider two sets of vectors X,Y ⊂ Rq+ such that, for all vectors y ∈ Y , the
inequality minω∈Ω maxx∈X{fω(y)− fω(x)} > δ holds. This inequality implies that
we have maxx∈X{fω(y)− fω(x)} > δ for all vectors y ∈ Y and all weighting vector
ω ∈ Ω. Hence, for all y ∈ Y and all ω ∈ Ω, there exists a vector x ∈ X such that
fω(y)− fω(x) > δ holds. Thus, we have X ≺δΩ Y .

Since Ω is a convex polyhedron and fω(x) is linear in ω for any fixed x ∈ Rq+,

this proposition enables to efficiently perform ≺δΩ-dominance tests using linear
programming. Then, the first pruning rule we are proposing relies on the following
property of the ≺δΩ-dominance relation:

Proposition 2 (Additivity). For all X,Y, Z ⊆ Rq+ :

X ≺δΩ Y ⇒ X + Z ≺δΩ Y + Z

where B + C = {b+ c : b ∈ B, c ∈ C} for all B,C ⊆ Rq+.

Proof. Let X,Y ⊆ Rq+ be two sets of vectors such that we have X ≺δΩ Y . Let
Z ⊆ Rq+ be another set of vectors. Let u be an element of the set Y + Z. Since
u ∈ Y + Z, there exists a vector y ∈ Y and a vector z ∈ Z such that we have
u = y + z. Let ω be any weighting vector in the set Ω. Since X ≺δΩ Y holds by
hypothesis, there exists a vector x ∈ X such that we have fω(y) − fω(x) > δ, i.e.
fω(y) + fω(z) − fω(x) − fω(z) > δ. Then, by linearity of function fω, we obtain
fω(y+z)−fω(x+z) > δ, which can be rewritten fω(u)−fω(x+z) > δ. Finally, since
vector x+ z is an element of the set X + Z by definition, the previous inequality
establishes the result.

This nice property enables to use a dynamic programming approach based on
relation ≺δΩ as shown by the following proposition:

Proposition 3. At any node n ∈ N , if there exists an open label `′ ∈ O(n) and a set

of labels L ⊆ O(n) ∪ C(n) such that {g` : ` ∈ L}≺δΩ{g`′}, then path p`′ cannot be part

of a solution path with a max regret below threshold δ.
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Proof. Consider a node n ∈ N , a label `′ ∈ O(n) and a set of labels L ⊆ O(n)∪C(n)
such that we have {g` : ` ∈ L}≺δΩ{g`′}. Let p be a path in P (n, Γ ) and Ω′ be a
subset of Ω. We want to prove that MR(g(p`′ ◦ p),X , Ω′) > δ holds. Since the
≺δΩ-dominance relation is additive (see Proposition 2), we derive {g` : ` ∈ L} +
{g(p)}≺δΩ{g`′} + {g(p)}. Hence, we have {g` + g(p) : ` ∈ L}≺δΩ{g`′ + g(p)} which
can be rewritten as follows: {g(p` ◦ p) : ` ∈ L}≺δΩ{g(p`′ ◦ p)}. Therefore, for all
weighting vectors ω ∈ Ω, there exists a vector x ∈ {g(p` ◦ p) : ` ∈ L} such that
we have fω(g(p`′ ◦ p)) − fω(x) > δ. Since Ω′ ⊆ Ω and {g(p` ◦ p) : ` ∈ L} ⊆ X ,
we know that the following statement is true: for all weighting vectors ω ∈ Ω′,
there exists a solution x ∈ X such that fω(x) − fω(x) > δ holds. Hence, we have
maxω∈Ω′ maxx∈X {fω(x)− fω(x)} = MR(g(p`′ ◦ p),X , Ω′) > δ.

This proposition says that we can discard any label `′ ∈ O(n) during the search
whenever {g` : ` ∈ L}≺δΩ{g`′} is verified by some subset L ⊆ O(n) ∪ C(n). This
indeed ensures that path p`′ cannot be completed into a solution path with a max
regret below threshold δ, even if we further restrict the set of feasible weights Ω
by asking preference queries to the DM. Note that, in practice, there is no need
to enumerate and test all subsets L to know whether this proposition enables
to discard label `′. It is indeed sufficient to make the test for L = O(n) ∪ C(n)
by definition of the ≺δΩ-dominance relation. Therefore, we use here the following
pruning rule:

Rule R1. Discard all labels `′ ∈ O(n) such that {g` : ` ∈ O(n) ∪ C(n)}≺δΩ{g`′}.

Our search procedure imports another feature from MOA∗: for each generated
label `, a set F (`) = {g` + h : h ∈ H(n`)} of cost vectors is computed to estimate
the cost vectors of the solution paths extending p`, where H(n`) is a set of heuristic
costs estimating the set {g(p) : p ∈ P (n`, Γ )}. These sets are used here to define
another pruning rule that is able to detect paths that necessarily lead to solution
paths with a max regret strictly greater than δ. More precisely, as in MOA∗, we
assume that heuristic H is admissible, i.e. H provides an optimistic evaluation of
the cost to reach the goal. This assumption is formalized as follows: for all nodes
n ∈ N , for all paths p ∈ P (n, Γ ), there exists h ∈ H(n) such that h -P g(p). Under
this assumption, the following proposition holds:

Proposition 4. At any node n ∈ N , if there exists an open label `′ ∈ O(n) such that

gS ≺δΩ F (`′) holds, then path p`′ cannot be part of a solution path with a max regret

below threshold δ.

Proof. Consider a node n ∈ N and an open label `′ ∈ O(n) such that gS ≺δΩ F (`′)
holds. We want to prove that we have MR(g(p`′ ◦ p′),X , Ω′) > δ for any path
p′ ∈ P (n, Γ ) and any set of weighting vectors Ω′ ⊆ Ω. Since H is admissible,
we know that there exists a heuristic cost vector h′ ∈ H(n) such that we have
h′ -P g(p′), and therefore g`′ + h′ -P g`′ + g(p′) = g(p`′ ◦ p′). Since we have
fω(x) ≤ fω(y) for any two vectors x, y ∈ Rq+ such that x -P y, then we derive
fω(g`′ + h′) ≤ fω(g(p`′ ◦ p′)) for all weighting vectors ω ∈ Ω′. Moreover, since
gS ≺δΩ F (`′) = {g`′ + h : h ∈ H(n)} holds, there exists a label ` ∈ S such that we
have fω(g`′ + h′) − fω(g`) > δ for all weighting vectors ω ∈ Ω′ (by Definition 4).
Therefore, the inequality fω(g(p`′ ◦ p′))− fω(g`) > δ holds for all weighting vectors
ω ∈ Ω′. Hence, we have max`∈S{fω(g(p`′ ◦ p′))− fω(g`)} > δ for all vectors ω ∈ Ω′.
Then, since we have gS ⊆ X , we obtain maxx∈X {fω(g(p`′ ◦ p′)) − fω(x)} > δ for
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all vectors ω ∈ Ω′. Therefore, we have maxω∈Ω′ maxx∈X {fω(g(p`′ ◦ p′))− fω(x)} =
MR(g(p`′ ◦ p′),X , Ω′) > δ.

Hence, if there exists an open label `′ ∈ O such that gS ≺δΩ F (`′) holds at some
point of the search procedure, then Proposition 4 ensures that path p`′ cannot be
completed into a solution path with a max regret below threshold δ (even if we
further restrict the set of admissible weights Ω). This result gives us the following
pruning rule:

Rule R2. Discard label `′ ∈ O(n) if gS ≺δΩ{g`′}+H(n).

To summarize, we are proposing a search procedure which refines a MOA∗

search of Pareto-optimal cost vectors by using two additional pruning rules based
on the ≺δΩ-dominance relation, namely R1 and R2 (see Algorithm 1).

Algorithm 1: Multiobjective state space search with imprecise preferences

Input: G = (N,A); s; Γ ; H; Ω
Output: S: a set of labels associated to solution paths

1 foreach n ∈ N do

2 O(n)← ∅
3 C(n)← ∅
4 end

5 O(s)← {[s, 〈s〉, (0, . . . , 0)]}
6 S ← ∅
7 while O 6= ∅ do

8 Select `∗ in the set
L∗ = {` ∈ O : ∃f ∈ F (`), ∀`′ ∈ O,∀f ′ ∈ F (`′), not(f ′ -P f)}

9 Move `∗ from O to C
10 if n`∗ ∈ Γ and ∀` ∈ S, not(g` -P g`∗) then

11 Add `∗ to S
12 else

13 foreach n ∈ Π(n`∗) do

14 Generate `′ = [n, p`∗ ◦ 〈n〉, g`∗ + g((n`∗ , n))]
15 if ∀` ∈ O(n) ∪ C(n), not(g` -P g`′) then

16 Add `′ to O(n)
17 Apply rule R2 to `′

18 if `′ is not discarded then

19 Apply rule R1 to O(n)
20 end

21 end

22 end

23 end

24 end

25 return S

The following example presents a complete execution of Algorithm 1 on a small
instance of G = (N,A):
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Example 1. Consider the instance of G = (N,A) given in Figure 1 with δ = 0. With

no preference information, the set Ω of admissible weights ω = (ω1, ω2) is formally

defined by Ω = {ω ∈ int(R2
+) : ω1 + ω2 = 1}. Note that, due to normalization, Ω can

also be defined as the set of vectors of type (ω1, 1− ω1) with 0 < ω1 < 1.

s(1,2)

n1

(0,1)

n3

(1,1)

n2

(1,0)

n4

(2,0)

γ (0,0)

(1
, 4

)

(5, 6)

(3, 1)

(2
,3

)

(3, 3)

(5
,1

)

(0, 4)

(1, 0)

(2
, 3

)

(2
,1

)

Fig. 1 An instance of G = (N,A) with N = {s, n1, n2, n3, γ}; cost vectors are given next to
arcs and heuristic cost vectors are given next to nodes.

Initially, we have O = {`s} where `s = [s, 〈s〉, (0, 0)] (see line 5). At the first

iteration step of the while loop, label `s is moved from O to C to be expanded (see

lines 8-9). Since s 6∈ Γ and Π(s) = {n1, n2, n3}, the following labels are generated:

`1 = [n1, 〈s, n1〉, (1, 4)], `2 = [n2, 〈s, n2〉, (5, 6)] et `3 = [n3, 〈s, n3〉, (3, 1)] (see lines

13-14). Since we have O(ni) ∪ C(ni) = ∅ for all i ∈ {1, 2, 3} (see lines 15-16), these

generated labels are then inserted in O. Moreover, these labels are not discarded by

rule R2 since gS is empty, and they are not eliminated by rule R1 since we have

O(ni) ∪ C(ni) = {`i} for all i ∈ {1, 2, 3}.
At the second iteration step, we have O = {`1, `2, `3} where F (`1) = {(1, 5)},

F (`2) = {(6, 6)} and F (`3) = {(4, 2)}. Since (6, 6) is Pareto-dominated by (1, 5), we

can only expand `1 or `3 in line 8. Assume that label `3 is selected at this step. In that

case, label `3 is moved from O to C (line 9). Since n3 6∈ Γ and Π(n3) = {n2, γ}, two

labels are generated: `′2 = [n2, 〈s, n3, n2〉, (8, 2)] and `γ = [γ, 〈s, n3, γ〉, (5, 4)]. Then,

the algorithm proceeds as follows:

• Label `′2: since O(n2) = {`2}, C(n2) = ∅ and not(g`2 -P g`′2), label `′2 is inserted

in O in lines 15-16. Then label `′2 is not discarded by rule R2 since gS = ∅ (see

line 17). Finally, none of the labels in O(n2) = {`2, `′2} is eliminated by rule R1

since {g`2 , g`′2} ≺
δ
Ω {g`2} and {g`2 , g`′2} ≺

δ
Ω {g`′2} do not hold: for instance, we

have fω(g`2) − fω(g`′2) ≤ δ with ω = (3/4, 1/4) ∈ Ω and fω(g`′2) − fω(g`2) ≤ δ

with ω = (1/2, 1/2) ∈ Ω.

• Label `γ : since O(γ) ∪ S = ∅, label `γ is inserted in O and is discarded by neither

rule R1 nor rule R2.

Finally, we have O = {`1, `2, `′2, `γ} at the end of the second step with F (`1) = {(1, 5)},
F (`2) = {(6, 6)}, F (`′2) = {(9, 2)} and F (`γ) = {(5, 4)}. Since (6, 6) is Pareto-

dominated by (1, 5), only `1, `′2 and `γ can be expanded at the third step (see line 8).
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Assume that `γ is selected at this step. In that case, label `γ is moved from O to C (see

line 9) and is inserted in S (see lines 10-11).

At the fourth iteration step, we have O = {`1, `2, `′2} where F (`1) = {(1, 5)},
F (`2) = {(6, 6)} and F (`′2) = {(9, 2)}. At this step, only label `1 and label `′2 can be

expanded since (6, 6) is Pareto-dominated. Assume that `1 is selected for expansion (in

line 8). In that case, label `1 is moved from O to C in line 9. Moreover, since n1 6∈ Γ and

Π(n1) = {n2, γ, n4}, the following labels are generated: `′′2 = [n2, 〈s, n1, n2〉, (3, 7)],
`′γ = [γ, 〈s, n1, γ〉, (1, 8)] and `4 = [n4, 〈s, n1, n4〉, (4, 7)] (see lines 13-14). Then:

• Label `′′2 : since O(n2) = {`2, `′2}, C(n2) = ∅, not(g`2 -P g`′′2 ) and not(g`′2 -P g`′′2 ),

label `′′2 is inserted in the set O in lines 15-16. Then, label `′′2 is not discarded by

rule R2 since we have S = {`γ} and {g`γ} ≺
δ
Ω F (`′′2) does not hold: for instance,

we have fω(F (`′′2))− fω(g`γ ) ≤ δ with ω = (4/5, 1/5) ∈ Ω. However, `2 is deleted

by rule R1 in line 19 since we have {g`2 , g`′2 , g`′′2 } ≺
δ
Ω {g`2}, as illustrated below:

ω1

−7
−6

−1
−2

fω(g`′′2
)

fω(g`′2
)

fω(g`2 )

|
10

|−

• Label `′γ : since O(γ) = ∅, S = {`γ} and not(g`γ -P g`′γ ), `′γ is inserted in O (see

lines 15-16). Then, it is not discarded by rules R1 and R2 since {g`γ} ≺
δ
Ω {g`′γ}

does not hold: for instance, we have fω(g`′γ )−fω(g`γ ) ≤ δ with ω = (3/4, 1/4) ∈ Ω.

• Label `4: since O(n4) ∪ C(n4) = ∅, label `4 is inserted in O in line 16. However,

we know that {g`γ} ≺
δ
Ω F (`4) holds since F (`4) is Pareto-dominated by g`γ and so

label `4 is necessarily eliminated by rule R2 in line 17.

Finally, we have O = {`′2, `′′2 , `′γ} at the end of the fourth step, where F (`′2) =
{(9, 2)}, F (`′′2) = {(4, 7)} and F (`′γ) = {(1, 8)}. Since none of these vectors is Pareto-

dominated, any of them can be expanded at the fifth step. Assume that `′γ is chosen. In

that case, it is moved from O to C (in line 9) and it is inserted in S (in line 11).

At the beginning of the sixth step, we have O = {`′2, `′′2} and either `′2 or `′′2 can be

selected for expansion. If label `′′2 is expanded, then it is moved from O to C in line 9.

Then, since n2 6∈ Γ and Π(n2) = {γ}, label `′′γ = [γ, 〈s, n1, n2, γ〉, (4, 7)] is generated

(see lines 13-14). Since O(γ) = ∅, S = {`γ , `′γ}, not(g`γ -P g`′′γ ) and not(g`′γ -P g`′′γ ),

label `′′γ is inserted in O (see lines 15-16). However, rule R2 eliminates `′′γ in line 17

since {g`γ , g`′γ , g`′′γ } ≺
δ
Ω F (`′′γ) holds as illustrated below:

ω1

−8
−7

−4

−1

fω(F (`′′γ))

fω(g`γ )

fω(g`′γ )
|
10

|−
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At the beginning of the seventh step, we have O = {`′2} and so `′2 is moved from O
to C in line 9. Then, since n2 6∈ Γ and Π(n2) = {γ}, label `′′′γ = [γ, 〈s, n3, n2, γ〉, (9, 2)]
is generated. Since O(γ) = ∅, S = {`γ , `′γ}, not(g`γ -P g`′′′γ ) and not(g`′γ -P g`′′′γ ),

label `′′′γ is inserted in O (see line 17). Then, we know that this label is not eliminated

by rules R1 and R2 since {g`γ , g`′γ , g`′′′γ } ≺
δ
Ω {g`′′′γ } does not hold: for instance, we

have fω(g`′′′γ )−fω(g`γ ) ≤ δ and fω(g`′′′γ )−fω(g`′γ ) ≤ δ for ω = (1/5, 4/5) ∈ Ω. Thus,

we have O = {`′′′γ } at the end of this step.

At the eighth step, label `′′′γ is expanded: it is moved from O to C in line 9 and

then it is inserted in S in line 11. Since we have O = ∅ at the end of this iteration

step, the while loop ends here. Finally the algorithm stops after returning set S which

includes only three solution paths out of the six feasible solutions of this problem, namely

〈s, n3, γ〉, 〈s, n1, γ〉 and 〈s, n3, n2, γ〉.

3.3 Combining Incremental Elicitation and Search

Algorithm 1 can be used to focus the search on relevant Pareto-optimal solution
paths by detecting and discarding paths that cannot be part of a solution path
with a max regret below δ. However, for a given set Ω, it may be the case that
no solution path p ∈ P (s, Γ ) is such that MR(g(p),X , Ω) ≤ δ. We introduce now a
sufficient condition on mMR(gS , Ω) to guarantee the existence of a solution path
with a max regret below δ:

Proposition 5. If mMR(gS , Ω) ≤ δ at the end of the search performed by Algorithm 1,

then MR(g(p∗),X , Ω) ≤ δ for any solution path p∗ ∈ arg min
p`:`∈S

MR(g`, gS , Ω).

Proof. Let p∗ be an element of arg minp`:`∈SMR(g`, gS , Ω). We want to prove that
we have MR(g(p∗),X , Ω) ≤ δ. By definition of max regrets, this amounts to prove
that PMR(g(p∗), g(p0), Ω) ≤ δ holds for any solution path p0 such that g(p0) ∈ X .
Hence, we want to prove that we have fω(g(p∗))− fω(g(p0)) ≤ δ for every ω ∈ Ω.
With this aim in view, we now divide the solution paths into three categories:

Category 1: there exists a label `0 ∈ S such that p0 = p`0 . In that case, we can di-
rectly infer the result since we have fω(g(p∗))−fω(g(p0)) ≤ PMR(g(p∗), g(p0), Ω) ≤
MR(g(p∗), gS , Ω) = mMR(gS , Ω) ≤ δ.

Category 2: there exists a label `0 such that path p`0 is a subpath of p0 and label
`0 was eliminated during the search due to rule R2. In that case, there exists a
set of labels S′ ⊆ S such that gS′ ≺δΩ F (`0). Therefore, for all h ∈ H(n`0) and all
ω ∈ Ω, there exists a path phω ∈ {p` : ` ∈ S′} such that fω(g`0 + h)− fω(g(phω)) > δ.
Since H is admissible, there exists h′ ∈ H(n`′) such that g`0 + h′ -P g(p0). Then,
since fω(x) ≤ fω(y) for any two vectors x, y ∈ Rq+ such that x -P y, we have

fω(g`0 + h′) ≤ fω(g(p0)). As a consequence, we have fω(g(p0)) − fω(g(ph
′
ω )) > δ,

which can be rewritten fω(g(ph
′
ω )) − fω(g(p0)) < −δ. Moreover, since S′ ⊆ S and

MR(g(p∗), gS , Ω) ≤ δ, we necessarily have fω(g(p∗))− fω(g(ph
′
ω )) ≤ δ. By summing

the two previous inequalities, we obtain fω(g(p∗))− fω(g(p0)) < δ − δ = 0 ≤ δ.

Category 3: there exists a label `0 such that path p`0 is a subpath of p0 and
label `0 was eliminated during the search by rule R1. In that case, there exists
a set of labels L such that {p` : ` ∈ L} ⊆ P (s, n`0) and {g` : ` ∈ L}≺δΩ{g`0}.
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Let p ∈ P (n`0 , Γ ) be the unique path such that p0 = p`0 ◦ p. Since we have
{g` : ` ∈ L}≺δΩ{g`0} and since relation ≺δΩ is additive (see Proposition 2), we
have {g` : ` ∈ L}+ {g(p)}≺δΩ{g`0}+ {g(p)}, i.e. {g` + g(p) : ` ∈ L}≺δΩ{g`0 + g(p)}.
Hence, we have {g(p`◦p) : ` ∈ L}≺δΩ{g(p0)}. Therefore, there exists ` ∈ L such that
fω(g(p0))− fω(g(p1)) > δ (by definition of relation ≺δΩ), where p1 = p` ◦ p. Hence,
we have fω(g(p1))−fω(g(p0)) < −δ. Note that we necessarily have p1 ∈ P (s, Γ ) be-
cause p` ∈ P (s, n`0) and p ∈ P (n`0 , Γ ). Since path p1 is an element of P (s, Γ ), then
we can iterate this whole reasoning on path p1. More precisely, the two following
cases may occur:

– Case 1: path p1 belongs to category 1 or 2. In that case, we just proved
that we necessarily have fω(g(p∗))−fω(g(p1)) ≤ δ. Moreover, since fω(g(p1))−
fω(g(p0)) < −δ by definition of p1, then we obtain fω(g(p∗))−fω(g(p0)) < 0 ≤ δ
by summing the two previous inequalities.

– Case 1: path p1 belongs to category 3. In that case, we can prove that there
exists a solution path p2 such that fω(g(p2)) − fω(g(p1)) < −δ with the exact
same reasoning. Since we have fω(g(p1))− fω(g(p0)) < −δ by definition of p1,
then we obtain fω(g(p2))−fω(g(p0)) < −2δ < −δ by summing the two previous
inequalities. Hence, we can now iterate the reasoning on p2 in order to prove
that we have fω(g(p∗)) − fω(g(p0)) ≤ δ: if p2 belongs to category 2 or 3, then
we can infer the result with the same reasoning; otherwise, we have to consider
a path p3 and so on. Note that this iterative process necessarily stops after a
finite number of steps since we have fω(g(pk+1))− fω(g(pk)) < −δ for all steps
k ≥ 0 and fω(g(p)) ≥ 0 for all solution paths p ∈ P (s, Γ ).

Thus, if the value mMR(gS , Ω) is smaller than threshold δ at the end of the
procedure, then we know that any solution path p∗ ∈ arg minp`:`∈SMR(g`, gS , Ω)
satisfies MR(g(p∗),X , Ω) ≤ δ. Otherwise, one may consider a two stage procedure
that consists first in applying Algorithm 1 to compute S and then in applying an
efficient incremental elicitation method designed for explicit sets of solutions (e.g.,
the CSS method) so as to reduce Ω until the value mMR(gS , Ω) drops below δ.
However, this approach would not be very efficient in practice due to the possi-
bly large size of S. To implement this idea more efficiently, we propose instead
to refine Algorithm 1 by interleaving preference elicitation and search steps. Col-
lecting preference information during the search is made possible by the following
straightforward result:

Proposition 6. For all Ω,Ω′ such that Ω′ ⊆ Ω and for all sets X,Y ⊂ Rq+:

X ≺δΩ Y ⇒ X ≺δΩ′ Y

This proposition shows that new preference statements obtained during the
search do not invalidate the pruning operations made so far while increasing our
pruning opportunities for the rest of the search. We now present two strategies (S1
and S2) for generating preference queries during the search so as to obtain a set Ω
sufficiently small to identify a near-optimal solution. These elicitation strategies
directly integrate the CSS strategy to Algorithm 1 so as to generate informative
preference queries during the search.
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Strategy S1 aims to use new preference statements to better select the next
label to expand. More precisely, in Algorithm 1 line 8, instead of selecting `∗

in L∗ arbitrarily, we iteratively ask queries applying the CSS method over the set
X = {g`+h : ` ∈ L∗, h ∈ H(n`)} of heuristic cost vectors until the value mMR(X,Ω)
drops below δ. Note that if mMR(X,Ω) is initially smaller than δ at some step,
then no query is asked at this step. Then, the label `∗ ∈ L∗ selected for expansion
corresponds to an element of X with a max regret below δ, i.e. the label `∗ is
such that MR(g`∗ + h,X,Ω) ≤ δ for some h ∈ H(n`∗). Thus, using this strategy
amounts to only extending paths associated with a near-optimal heuristic cost
vector. Finally, if mMR(gS , Ω) is strictly larger than δ at the end of Algorithm 1,
then S1 applies the CSS method over gS until the mMR(gS , Ω) ≤ δ; this ensures
that a near-optimal solution path is returned by Algorithm 1 (see Proposition 5).

Strategy S2 only uses new preference statements to keep the value mMR(gS , Ω)
below δ at all times. More precisely, whenever the insertion of `∗ in S (line 11)
makes the value mMR(gS , Ω) be strictly larger than δ, then S2 repeatedly asks
queries applying the CSS over gS until mMR(gS , Ω) drops below δ. Therefore,
S2 ensures that a near-optimal solution path is returned by Algorithm 1 (see
Proposition 5).

The following example gives an execution of Algorithm 1 combined with strat-
egy S2 on a small instance.

Example 2. Consider the instance of G = (N,A) given in Figure 1 with δ = 0
and assume that the DM’s preferences are represented by a weighted sum with the

hidden weight ω0 = (0.6, 0.4). With no preference information, the set Ω of admissible

weights ω = (ω1, ω2) is characterized by the constraint 0 < ω1 < 1, the weight ω2 being

implicitly defined by the normalization constraint (i.e. ω2 = 1− ω1).

Recall that strategy S2 only generates preference queries when mMR(gS , Ω) becomes

strictly larger than δ = 0 after inserting a new label in S. Therefore the first four

iteration steps of the while loop are here the same as those of Example 1. Hence, at the

beginning of the fifth iteration step, we have:

• O = {`′2, `′′2 , `′γ} where `′2 = [n2, 〈s, n3, n2〉, (8, 2)], `′′2 = [n2, 〈s, n1, n2〉, (3, 7)] and

`′γ = [γ, 〈s, n1, γ〉, (1, 8)].
• C = {`s, `1, `3, `γ}, where `s = [s, 〈s〉, (0, 0)], `1 = [n1, 〈s, n1〉, (1, 4)],
`3 = [n3, 〈s, n3〉, (3, 1)] and `γ = [γ, 〈s, n3, γ〉, (5, 4)].

• S = {`γ}.

Moreover, we have F (`′2) = {(9, 2)}, F (`′′2) = {(4, 7)} and F (`′γ) = {(1, 8)}. Since

none of these vectors is Pareto-dominated, we can expand `′2, `′′2 or `′γ at this iteration

step. Assume that label `′γ is selected for expansion. In that case, this label is moved

from O to C in line 9 and then it is inserted in S in line 11. Now, we have to compute

mMR(gS , Ω) (following strategy S2). Since the latter value is stricly larger than δ,

strategy S2 asks the DM to compare the cost vectors (6, 4) and (1, 8) which correspond

to `γ and `′γ respectively. Since fω0(5, 4) = 4.6 ≥ fω0(1, 8) = 3.8, the DM states that

she prefers the second solution path to the first one. This induces the linear constraint

fω(5, 4) = 5ω1 + 4(1 − ω1) ≥ fω(1, 8) = ω1 + 8(1 − ω1) on the space of admissible

weighting vectors. This constraint can be rewritten as ω1 ≥ 1
2 . Thus, we now have

Ω = {(ω1, 1 − ω1) : 1
2 ≤ ω1 < 1} and mMR(gS , Ω) = MR((1, 8), gS , Ω) ≤ 0 = δ.
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Therefore, no more queries are generated at this step and label `′γ corresponds to the

best solution found so far.

At the sixth iteration step, we can expand either `′2 or `′′2 . Assume that label `′′2 is

selected for expansion. In that case, label `′′2 is moved from set O to set C. Then, since

n2 6∈ Γ and Π(n2) = {γ}, the following label is generated: `′′γ = [γ, 〈s, n1, n2, γ〉, (4, 7)]
(see lines 13-14). This label is then inserted in set O since we have not(g`γ -P g`′′γ )

and not(g`′γ -P g`′′γ ) (see lines 15-16). However, label `′′γ is then deleted by our pruning

rule R2 because we have {g`γ , g`′γ , g`′′γ } ≺
δ
Ω {g`′′γ }, as illustrated below:

ω1

−1

−4.5
−5.5

fω(g`′′γ )

fω(g`γ )

fω(g`′γ )
|
10.5

|−

Thus we have O = {`′2} at the end of this iteration step. Therefore, at the seventh

iteration step, label `′2 is necessarily selected for expansion (see line 8). It is first moved

from set O to set S in line 9. Then, since n2 6∈ Γ and Π(n2) = {γ}, the following label

is generated: `′′′γ = [γ, 〈s, n3, n2, γ〉, (9, 2)]. This label is then inserted in set O since we

have not(g`γ -P g`′′′γ ) and not(g`′γ -P g`′′′γ ) (see lines 15-16). However, label `′′′γ is

eliminated by rule R2 since we have {g`γ , g`′γ , g`′′′γ } ≺
δ
Ω {g`′′′γ } as illustrated below:

ω1

−1

−4.5
−5.5

fω(g`′′′γ )

fω(g`γ )

fω(g`′γ )
|
10.5

|−

Hence set O is now empty and therefore the while loop must stop here. Finally,

our interactive procedure returns the set S including label `γ which corresponds to a

necessarily optimal solution path by construction, namely 〈s, n3, γ〉. Thus, Algorithm 1

combined with strategy S2 is here able to determine a optimal solution path with only

one generated preference query.

3.4 Numerical Tests

In this subsection, we report various numerical tests aiming to evaluate the per-
formance of elicitation procedures S1 and S2 within Algorithm 1. For comparison,
we also consider the two-stage procedure (named S0 hereafter) consisting in first
running MOA∗ and then applying the CSS method over the resulting set of Pareto-
optimal cost vectors. These algorithms are used here to determine a near-optimal
solution path for the tolerance threshold δ = 0.01 (meaning that the minimax re-
gret will be below 0.01 at the end). These interactive algorithms are compared both
in terms of computation times and number of preference queries. Starting from an
empty set of preferences statements, simulated DMs answer queries according to
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a linear scalarizing function fω, where the weighting vector ω is randomly chosen
in the set {ω ∈ int(Rq+) :

∑
j∈Q ωj = 1}.

We consider instances of graph G = (N,A) with one goal node γ and gener-
ated as follows: the nodes in N are uniformly drawn in the two dimension grid
{1, . . . , 1000} × {1, . . . , 1000}, except the source node s and the goal node γ which
are respectively located in (1, 500) and (1000, 500). Then, each generated node is
linked to its five nearest nodes (w.r.t. Euclidean distance) and the associated cost
vectors are uniformly drawn in {0, . . . , 100}q. As heuristic H, we consider here that
H(n) only contains the ideal point I(n) = (I1, . . . , Iq) for all nodes n ∈ N , where
Ij = minx∈{g(p):p∈P (n,γ)} xj for all j ∈ Q.

The tests aim to estimate the impact of q (the number of criteria, see Table 1)
and the impact of |N | (the number of nodes, see Table 2) on the performance
of method S0 and and Algorithm 1 implemented with S1 or S2. In Tables 1 and
2, the results are obtained by averaging over 30 runs2. Linear optimizations (i.e.
≺δΩ-dominance tests) are here performed using the Gurobi library of Java.

q = 2 q = 3 q = 4 q = 5
time queries time queries time queries time queries

S0 0.0 3.7 1.3 8.3 131.5 12.5 192.7 23.5
S1 0.5 6.3 1.1 12.5 1.5 17.9 2.2 28.1
S2 2.9 3.5 25.1 6.8 78.2 10.2 603.2 13.1

Table 1 Impact of q the number of criteria (|N | = 200, times in minutes).

|N | = 100 |N | = 300 |N | = 400 |N | = 500
time queries time queries time queries time queries

S0 0.2 7.7 6 9.4 15.8 10.4 28.8 11.5
S1 0.3 12.3 8.3 13.2 3.8 11.6 5.8 10.6
S2 2.4 6.5 158.4 7.7 65.6 9.1 154.4 8.3

Table 2 Impact of |N | the number of nodes (q = 3, times in minutes).

Let us first compare method S0 and Algorithm 1 used with strategy S1. We see
that Algorithm 1 used with strategy S1 is faster than S0 when we consider more
than three criteria (see Table 1). In particular, strategy S1 is almost 100 times
faster than S0 for q = 4, 5. Moreover, the number of generated queries tends to be
smaller than that of S0 as q increases: S1 indeed generates 70%, 51%, 43% and 20%
more queries than S0 when q is respectively equal to 2, 3, 4 and 5. Besides, we can
see that Algorithm 1 combined with S1 is much faster than S0 on bigger instances
(see Table 2). More precisely, strategy S1 is almost five times faster than S0 while
generating 8% less queries for |N | = 500. Looking now at the results obtained for
S2, we first see that Algorithm 1 used with S2 generates less preference queries than
S0. For instance, S2 generates 44% less queries for q = 5 (see Table 1) and saves

2 The numerical tests were performed on an Intel Core i7-4770 CPU with 15GB de RAM.
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about 25% of queries on the bigger instances (see Table 2). Therefore, strategy
S2 significantly reduces the DM’s burden. However, computation times are worse
with S2, especially on small instances and when considering two or three criteria.
Overall, Algorithm 1 combined with strategy S1 turns out to be faster but S2 may
still be preferred to minimize the number of queries.

4 The Multicriteria Spanning Tree Problem

In this section, we study how incremental elicitation methods can be integrated
into a greedy algorithm. We focus here on the multicriteria spanning tree problem,
an easy optimization problem in the single objective case that can be solved in
polynomial time using standard greedy algorithms (Kruskal, 1956; Prim, 1957).
The multicriteria spanning tree problem appears naturally in various situations, for
example, when a set of clients must be connected to one another through a com-
munication or transportation network. Unfortunately, this problem becomes in-
tractable when considering at least two criteria to optimize: the number of Pareto-
optimal cost vectors attached to spanning trees is exponential in the number of
nodes in the graph in the worst case (see e.g., Hamacher and Ruhe (1994)). This
precludes one from performing an exhaustive enumeration in order to determine
the best solution for the DM. Instead, assuming that the DM’s preferences can be
represented by a weighted sum, we propose to construct a (near-)optimal spanning
tree using a greedy algorithm which alternates search steps and elicitation steps.

4.1 The General Framework

We consider here a multicriteria spanning tree problem defined by a connected
graph G = (N,E) where N is a finite set of nodes and each edge e ∈ E is valued by
a cost vector xe ∈ Rq+ giving the cost of e with respect to different criteria (e.g.,
prices, construction time, distance). The set of criteria is denoted byQ = {1, . . . , q},
and every criterion is assumed to be additive over the edges, i.e. the cost vector xF

associated with any set of edges F ⊆ E is defined by xF =
∑
e∈F x

e. A spanning
tree of graph G is a connected subgraph of G which includes every node of G while
containing no cycle. Notice that a spanning tree T of G is completely characterized
by its set of edges. Therefore, for the sake of simplicity, T will indifferently denote
the tree or its set of edges in the sequel. Moreover, the set of cost vectors associated
with the spanning trees of G will be denoted by X . This set represents the image
of all spanning trees in the space of criteria.

4.2 A Greedy Algorithm Incorporating an Incremental Elicitation Method

In this subsection, we consider the problem of determining a near-optimal span-
ning tree in the graph, i.e. a spanning tree with a max regret bounded above by a
given tolerance threshold δ ≥ 0. Note that, for a given set Ω of admissible weight-
ing vectors, it may be the case that no such spanning tree exists. In that case, we
need to collect preference information to reduce the set of admissible weights Ω
until being able to determine a spanning tree T such that MR(xT ,X , Ω) ≤ δ. To
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achieve this, one may consider a two stage procedure that consists first in comput-
ing the set X (or the Pareto set) and then in applying an incremental elicitation
method designed for explicit sets of solutions (e.g., strategy CSS presented in Sec-
tion 2.2). However, this approach would not be very efficient in practice due to
the possibly large size of the Pareto set, as discussed above. Instead, we propose a
multiobjective extension of Prim’s algorithm (Prim, 1957) that generates prefer-
ence queries during the search so as to guarantee that the returned spanning tree
is near-optimal.

Let us recall briefly Prim’s algorithm, which is a greedy algorithm constructing
a spanning tree of minimum cost (in the single objective case). Starting from
an initial node n0, it first selects an adjacent edge of minimum cost. Then, it
iteratively selects a min-cost edge in the cocycle C(N ′), where N ′ is the set of
nodes covered so far by the selected edges. Recall that the cocycle of a set N ′ is
the set of all edges adjacent to N ′, i.e. C(N ′) = {(n1, n2) ∈ E : n1 ∈ N ′, n2 ∈
N\N ′}. Similarly, we propose here a greedy search that selects, at any step, an
edge in the current cocycle. More precisely, at step i (selection of ith edge), we
collect preference information to discriminate between the edges of the current
cocycle until determining an edge with a max regret below δi, where δi is a fraction

of the admissibility threshold δ such that
∑|N |−1
i=1 δi = δ. In order to limit the

number of generated preference queries, we use here the CSS method (presented
in Section 2.2) to efficiently reduce the set Ω of admissible weights. Thus, we
propose Algorithm 2:

Algorithm 2: Interactive search for multicriteria spanning tree problems

Input: G = (N,E); n0; δi, i ∈ {1, . . . , |N | − 1}: positive values summing to δ
1 N ′ ← {n0}
2 F ← ∅
3 for i = 1 . . . |N | − 1 do

4 ND ← {e ∈ C(N ′) : ∀e′ ∈ C(N ′), not(xe
′
≺P xe)}

5 X ← {xe : e ∈ ND}
6 while mMR(X,Ω) > δi do

7 Ask one preference query to the DM according to the CSS
8 Update Ω by inserting the linear constraint associated with the

answer
9 end

10 Select an edge e ∈ ND such that xe ∈ arg minx∈X MR(x,X,Ω)
11 F ← F ∪ {e}
12 N ′ ← N ′ ∪ {ne}, where ne is the endpoint of e that is not in N ′

13 end

14 return spanning tree F

Notice that, at each iteration step i, the number of iterations of the while loop
(line 6) is bounded above by |C(N ′)| ≤ |N |2, which garantees the termination of the
algorithm after a polynomial number of steps. The following theorem shows that
this algorithm returns a near-optimal spanning tree at the end of the execution:
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Theorem 1 The spanning tree T returned by Algorithm 2 verifies MR(xT ,X , Ωf )≤δ,
where Ωf denotes the final set of admissible weights.

Proof. We want to prove that we have PMR(xT , xT0 , Ωf ) ≤ δ for any spanning tree

T0 of graph G. For any step i ∈ {1, . . . , |N | − 1}, let ei be the ith edge inserted in
T and let Ni (resp. Ωi) be the set N ′ (resp. Ω) at the end of step i. Let j denote
the first iteration step such that ej 6∈ T0. Since T0 is a spanning tree, there exists
a chain c in T0 linking the two endpoints of ej . Moreover, since ej links one node
in Nj−1 to one node in N\Nj−1, there exists an edge e′j in chain c that links one
node in Nj−1 to one node in N\Nj−1. Note that e′j is necessarily in the cocycle
C(Nj−1) by definition. Then, two cases may occur: either e′j ∈ NDj or e′j 6∈ NDj

where NDj is the set of non Pareto-dominated edges in C(Nj−1) (see line 4). Let

us prove that we have PMR(xej , xe
′
j , Ωf ) ≤ δj in both cases:

Case 1: e′j ∈ NDj . In that case, since edge ej has been selected to build the
spanning tree T , we know that xej ∈ arg minx∈Xj MR(x,Xj , Ωj) (see lines 10-11)
where Xj = {xe : e ∈ NDj}. Moreover, since mMR(Xj , Ωj) ≤ δj at the end of the

while loop (see line 6), we necessarily have PMR(xej , xe
′
j , Ωj) ≤ δj . Then, since

Ωj ⊆ Ωf by construction (see line 8), we have PMR(xej , xe
′
j , Ωf ) ≤ δj .

Case 2: e′j 6∈ NDj . By definition of NDj , there exists e ∈ NDj such that xe ≺P xe
′
j .

For all ω ∈ Ωf , we have fω(xe) < fω(xe
′
j ) since fω(x) < fω(y) holds for any two

vectors x, y ∈ Rq+ such that x ≺P y. Hence PMR(xej , xe
′
j , Ωf ) ≤ PMR(xej , xe, Ωf ).

Then, similarly to the first case, we can prove that PMR(xej , xe, Ωf ) ≤ δj holds

since xe ∈ NDj . Hence, we have PMR(xej , xe
′
j , Ωf ) ≤ PMR(xej , xe, Ωf ) ≤ δj .

Let T1 be the spanning tree obtained from T0 by replacing e′j by ej . Let ek be
the first edge inserted in T that is not in T1. Then, similarly to T0, we can prove that
we have PMR(xek , xe

′
k , Ωf ) ≤ δk. By iterating, we obtain PMR(xel , xe

′
l , Ωf ) ≤ δl

for all l ∈ {1, . . . , |N | − 1} such that el 6∈ T0. Moreover, for all l ∈ {1, . . . , |N | − 1}
such that el ∈ T0, we have PMR(xel , xel , Ωf ) = 0 ≤ δl. Let π : T → T0 be the one-
to-one correspondence such that π(el) = e′l if el 6∈ T0 and π(el) = el otherwise. By
definition, PMR(xel , xπ(el), Ωf ) ≤ δl holds for all l ∈ L = {1, . . . , |N | − 1}. Finally:

PMR(xT , xT0 , Ωf ) = max
ω∈Ωf

{fω(xT )− fω(xT0)}

= max
ω∈Ωf

{fω(
∑
l∈L

xel)− fω(
∑
l∈L

xπ(el))}

= max
ω∈Ωf

∑
l∈L
{fω(xel)− fω(xπ(el))} by linearity of fω

≤
∑
l∈L

max
ω∈Ωf

{fω(xel)− fω(xπ(el))}

=
∑
l∈L

PMR(xel , xπ(el), Ωf )

≤
∑
l∈L

δl

= δ

The following example presents an execution of Algorithm 2 on a small graph:
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Example 3. Consider the instance of G = (N,E) with four nodes, three criteria and

δ = 0, that is given in Figure 2.

n0 n1

n2n3

(2, 4, 2)

(7, 0, 5)

(8, 1, 3)

(4, 1, 3) (5
, 2
, 3

)

Fig. 2 An instance of graph G = (N,E) with N = {n0, n1, n2, n3} and Q = {1, 2, 3}.

Assume that the DM’s preferences are represented by a weighted sum with the hidden

weights ω0 = (0.4, 0.2, 0.4). With no preference information, the set Ω of admissible

weights ω = (ω1, ω2, ω3) is defined by Ω = {ω ∈ int(R3
+) : ω1 + ω2 + ω3 = 1}. In

Figure 3, the latter set is represented by the triangle ABC in the space (ω1, ω2), ω3

being implicitly defined by ω3 = 1− ω1 − ω2.

ω1

ω2

•
ω0

•B1

•A
0

•C
1

Fig. 3 The initial set Ω of admissible weights ω = (ω1, ω2, ω3), seen in the space (ω1, ω2).

We start with N ′ = {n0} and the set of selected edges F is initialized to the empty

set. At the first iteration step, the cocycle C(N ′) consists of the edges (n0, n1) and

(n0, n3) with cost vectors (2, 4, 2) and (4, 1, 3) respectively. Since none of these vectors

is Pareto-dominated, we have ND = {(n0, n1), (n0, n3)} and X = {(2, 4, 2), (4, 1, 3)}.
Moreover, we have mMR(X,Ω) ≈ 2 > δ1 = 0. As a consequence, the procedure asks

the DM to compare the later two cost vectors (following the CSS). Since fω0(2, 4, 2) =
2.4 ≤ fω0(4, 1, 3) = 3, the DM states that she prefers (2, 4, 2) to (4, 1, 3). Then, the

algorithm updates the set of admissible weights Ω by inserting the linear constraint

fω(2, 4, 2) ≤ fω(4, 1, 3), i.e. ω2 ≤ 1
4ω1 + 1

4 . This constraint is represented by the (DE)
line in Figure 4, the admissible area being below this line. Now we have mMR(X,Ω) =
MR((2, 4, 2), Ω) ≤ δ1 = 0. As a consequence, the while stops after asking only one

query and the edge (n0, n1) is inserted in F .
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ω1

ω2

•
ω0

•B1

•A
0

•C
1

•D

•E

Fig. 4 The set Ω of admissible weights after the first iteration step, seen in the space (ω1, ω2).

At the second iteration step, the cocycle C(N ′) only includes the edges (n0, n3),

(n1, n3) and (n1, n2) with cost vectors (4, 1, 3), (5, 3, 4) and (7, 0, 5) respectively. Since

(5, 3, 4) is Pareto-dominated by (4, 1, 3), we have ND = {(n0, n3), (n1, n2)} and X =
{(4, 1, 3), (7, 0, 5)}. Moreover, mMR(X,Ω) = MR((4, 1, 3), Ω) ≈ −1.4 ≤ δ1 = 0.

Therefore, no query is needed at this step and edge (n0, n3) is directly inserted in F .

At the third iteration step, the cocycle C(N ′) only includes (n1, n2) and (n2, n3)
with cost vectors (7, 0, 5) and (8, 1, 3) respectively. Since none of these vectors is Pareto-

dominated, we have ND = {(n1, n2), (n2, n3)} and X = {(7, 0, 5), (8, 1, 3)}. More-

over, we have mMR(X,Ω) ≈ 1 > δ3 = 0. Therefore, the procedure asks the DM

to compare these two cost vectors following the CSS. Since we have fω0(8, 1, 3) =
4.6 ≤ fω0(7, 0, 5) = 4.8, the DM declares that she prefers (8, 1, 3) to (7, 0, 5). Then,

the algorithm updates the set of admissible weights Ω by inserting the linear con-

straint fω(8, 1, 3) ≤ fω(7, 0, 5), i.e. ω2 ≤ −ω1 + 2
3 . This constraint is represented

by the line (GH) in Figure 5, the admissible are being below this line. Now we have

mMR(X,Ω) = MR((8, 1, 3), Ω) = 0 ≤ δ3. Therefore, the while loop stops after only

one iteration and the edge (n2, n3) is inserted in set F .

ω1

ω2

•
ω0

•B1

•A
0

•C
1

•D

•E

•G

•H

•I

Fig. 5 The set Ω of admissible weights after the third iteration step, seen in the space (ω1, ω2).

Finally, the procedure stops after this step and returns the optimal spanning tree

{(n0, n1), (n0, n3), (n2, n3)}. Note that only two queries are here generated to discrim-

inate between the eight feasible spanning trees.
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4.3 Numerical Tests

In this subsection, we report numerical tests of Algorithm 2 on random instances
of the multicriteria spanning tree problem. The numerical tests were performed on
an Intel Core i7-4770 CPU with 15GB de RAM. In these tests, we consider graphs
with a number of nodes |N | ranging from 25 to 100, a number of criteria q ranging
from 2 to 6 and an edge density of 50% (the costs are drawn within {1, 1000}). In
our experiments, simulated DMs answer queries according to a linear scalarizing
function fω where ω is randomly chosen in Ω = {int(Rq+) :

∑
j∈Q ωj = 1}. To study

the impact of threshold δ on the number of queries and the computation time, we
run tests with two distinct values: δ = 0.05 and δ = 0.1. The values δj required at
every step of the algorithm are set to δj = δ/(|N |−1) for all j ∈ {1, . . . , |N |−1}. Here
also we use the Gurobi library of Java to compute pairwise max regrets at every
step. Results have been obtained by averaging over 30 runs and are summarized
in Table 3.

δ = 0.05 δ = 0.1

q |N | time queries time queries

2 25 0.02 3.8 0.02 3.4
2 50 0.03 3.6 0.05 2.8
2 75 0.09 4.4 0.12 3.4
2 100 0.14 4.2 0.18 2.8

4 25 0.08 16.2 0.12 11.8
4 50 0.39 17.0 0.71 12.6
4 75 1.26 19.8 1.94 12.2
4 100 2.12 20.4 3.80 12.1

6 25 0.22 29.2 0.23 15.4
6 50 1.35 32.0 2.05 22.8
6 75 4.28 30.8 8.30 25.0
6 100 12.50 33.0 19.70 25.4

Table 3 Performance of Algorithm 2 (times in minutes, number of preference queries).

In Table 3, we observe that our interactive greedy procedure is quite efficient
considering the highly combinatorial nature of the spanning tree problem and the
number of criteria under consideration; recall that the state of the art literature
on the computation of Pareto-optimal spanning trees considers no more than two
or three criteria. For example, we need only twelve preference queries on average
to determine a near-optimal spanning tree on instances with 100 nodes and 4 cri-
teria (with δ = 0.1). The relative efficiency of our search procedure is due to the
possibility of collecting some preference information during the search. Moreover,
as the value of δ increases from 0.05 to 0.1, the requirement on the performance
guarantee is weakened; this explains the observed reduction of the number of pref-
erence queries generated during the search. Note also that reducing the number of
queries tends to keep a larger set Ω of admissible parameters during the execution
which impacts negatively on computation times, as can be observed in Table 3.
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5 The Multicriteria Assignment Problem

In this section, we show how a combinatorial optimization problem with incom-
plete preference information can be efficiently solved using an interactive branch
and bound procedure. For illustration purposes, we focus here on a multicriteria
assignment problem where each item (e.g., objects, resources, tasks) must be as-
signed to a different agent so that the total cost of the assignment is minimized.
In the single objective case, it is well known that this optimization problem can
be solved in polynomial time (using, for example, the so-called Hungarian algo-
rithm (Kuhn, 1955)). However, this problem becomes computationally difficult
when considering several criteria due to the possibly large size of the Pareto set
(Ehrgott, 2005), which precludes to perform any exhaustive enumeration. Instead,
assuming that the DM’s preferences can be represented by a linear aggregation
function, we propose here to determine a (near-)optimal assignment by using a
branch and bound procedure that generates preference queries at some key steps
of the search to efficiently reduce the size of the search tree while limiting the
number of queries.

5.1 The General Framework

Given a set of agents N = {1, . . . , n} and a set of items T of exactly the same
size, we can model the assignment problem by a bipartite graph G = (N ∪ T,E)
where E = {(i, t) : i ∈ N, t ∈ T} is a finite set of edges representing the possible
assignments. Each edge e ∈ E is valued by a cost vector xe = (xe1, . . . , x

e
q) ∈ Rq+

giving the cost of e with respect to q different criteria (e.g., completion time, costs,
resources). In the sequel, the set of criteria will be denoted by Q = {1, . . . , q}.
The cost vector xF of any set of edges F ⊆ E is defined by xF =

∑
e∈F x

e. An
assignment is defined by a set of edges F ⊆ E such that |{(i, t) ∈ F : t ∈ T}| = 1
for all agents i ∈ N and |{(i, t) ∈ F : i ∈ N}| = 1 for all items t ∈ T . The set
of all possible assignments is denoted by F and the associated set of feasible cost
vectors is denoted by X = {xF : F ∈ F} in the sequel; the latter set represents the
image of all assignments in the space of criteria.

In this section, we study the problem of identifying a near-optimal assignment,
i.e. an assignment F with a max regret MR(xF ,X , Ω) = maxx∈X PMR(xF , x,Ω) =
maxx∈X maxω∈Ω{fω(xF )− fω(x)} that is below a given tolerance threshold δ ≥ 0.
First, we propose a branch and bound algorithm that is able, given a set Ω of
admissible weights, to detect that some partial assignments cannot be part of
a near-optimal assignment. Then, we propose a query generation strategy that
collects preference information during the search so as to ensure that the branch
and bound algorithm returns a near-optimal assignment at the end of its execution.

5.2 Search for Possibly Near-Optimal Assignments

We now introduce a branch and bound procedure that enables to identify partial
assignments that cannot be part of an assignment with a max regret below toler-
ance threshold δ (given our partial knowledge of the DM’ preferences). Let de be
the decision variable associated with edge e ∈ E, i.e. we have de = 1 if and only if
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edge e is in the assignment. Nodes of the search tree represent partial instances of
the decision variables de, e ∈ E. More precisely, each node η of the search tree is
characterized by a pair of sets (E0

η , E
1
η) which are defined by Ekη = {e ∈ E : de = k}

for k = 0, 1. Let Eη = E \ (E0
η ∪ E1

η) be the set of edges in the graph that are as-
sociated with an undecided variable at node η. By construction, each node η is
associated with a different region of the solution space which is defined as follows:
assignment F is attached to node η if and only if we have E0

η ∩F = ∅ and E1
η ⊆ F .

The set of cost vectors associated with the assignments attached to node η will be
denoted by Sη hereafter. The main features of our branch and bound procedure
are the following:

Initialization. Using a heuristic, a branch and bound procedure usually deter-
mines some set of solutions before performing the search in order to define an
initial bound on the optimal cost. We propose here to construct an initial set S0 of
cost vectors as follows. For every criterion j ∈ Q, we first determine an assignment
that is optimal when only considering criterion j and then we insert the associated
cost vector in the set S0. Recall that each of these assignments can be computed
in polynomial time since determining an optimal assignment is a polynomial time
problem in the single objective case.

Evaluation and pruning. Let S be the set of cost vectors attached to the assign-
ments found so far (initially S = S0) and let O be the current set of nodes to be
explored. Our pruning rule is based on the notion of setwise max regret defined
as follows: the setwise max regret SR(X,Y,Ω) of a set X ⊆ X with respect to a
set Y ⊆ X is the worst-case loss when recommending the best cost vector in set X
instead of the best cost vector in set Y . More formally, the setwise max regret is
definded as follows:

SR(X,Y,Ω) = max
ω∈Ω

{
min
x∈X

fω(x)−min
y∈Y

fω(y)
}

If we have SR(X,Y,Ω) < −δ, then we know that set Y does not contain any near-
optimal cost vector. It indeed induces that, for all solutions y ∈ Y and for all
weights ω ∈ Ω, there exists an assignment x ∈ X such that fω(x) − fω(y) < −δ
holds, i.e. fω(y)− fω(x) > δ; therefore, we have MR(y,X , Ω′) > δ for all solutions
y ∈ Y and for all set of weights Ω′ ⊆ Ω. Thus, we propose to prune a node
η ∈ O if the setwise max regret SR(S,Sη, Ω) is strictly below −δ (since this implies
that Sη includes no near-optimal assignment). Note that the setwise max regret
SR(X,Y,Ω) of a set X ⊆ X with respect to a set Y ⊆ X can be rewritten as follows:

SR(X,Y,Ω) = max
y∈Y

max
ω∈Ω

min
x∈X

{
fω(x)− fω(y)

}
Therefore, we have SR(S,Sη, Ω) = maxy∈Sη maxω∈Ω minx∈S{fω(x) − fω(y)} for
all nodes η ∈ O. This alternative formulation of setwise max regrets allows us to
compute SR(S,Sη, Ω) as the optimal value of the following mixed-integer quadratic
program (denoted by MIQPη hereafter):
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max r

s.t.



r ≤
∑
j∈Q

ωjxj −
∑
j∈Q

ωj
∑
e∈E

dex
e
j , ∀x ∈ S

de = k, ∀k ∈ {0, 1}, ∀e ∈ Ekη∑
(i,t)∈E

d(i,t) = 1, ∀i ∈ N

∑
(i,t)∈E

d(i,t) = 1, ∀t ∈ T

∑
j∈Q

ωj = 1

∑
j∈Q

ωjxj ≤
∑
j∈Q

ωjyj , ∀(x, y) ∈ P

r ∈ R; de ∈ {0, 1}, ∀e ∈ E; ωj ≥ 0, ∀j ∈ Q

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

In this program, Equations (4b-4d) ensure that variables de, e ∈ E, characterize
a feasible assignment attached to node η, Equations (4e-4f) guarantee that ω is
normalized and compatible with the available preference information and Equa-
tion (4a) introduces variable r ∈ R representing the smallest difference of costs
between a cost vector x ∈ S and the cost vector associated with the assignment
characterized by variables de, e ∈ E. Note that the constraints given in Equa-
tion (4a) include quadratic terms of type ωjde, e ∈ E, since the weights ωj , j ∈ Q,
are also variables of the optimization problem. In order to linearize theses con-
straints, we introduce positive variables vje, j ∈ Q, e ∈ E, representing the product
ωjde and Equation (4a) is replaced by the following constraints:

s.t.



r ≤
∑
j∈Q

ωjxj −
∑
j∈Q

∑
e∈E

vjex
e
j , ∀x ∈ S

vje ≤ ωj , ∀e ∈ E,∀j ∈ Q
vje ≤ de, ∀e ∈ E,∀j ∈ Q
vje − ωj ≥ de − 1, ∀e ∈ E,∀j ∈ Q

The resulting mixed-integer linear program (denoted by MIPη hereafter) can be
further simplified by removing all the decision variables de with e ∈ E0

η ∪E1
η since

we know their respective value (see Equation (4b)).

Branching. Setwise max regrets SR(S,Sη, Ω) available for all nodes η ∈ O are
also used to select the next node to be explored. More precisely, we select here
a node η ∈ O which maximizes SR(S,Sη, Ω). This node is then split in two by
considering possible instantiations of a variable de, e ∈ Eη, chosen among the vari-
able equal to 1 in the optimal solution of program MIPη. This branching strategy
aims to maximally improve the current solution set S. The cost vector y of any
optimal solution of MIPη indeed maximizes the value minx∈S{fω(x)}− fω(y) over
all weights ω ∈ Ω and all feasible cost vectors y′ ∈

⋃
η′∈O Sη′ .

The algorithm implementing these principles is summarized by Algorithm 3.
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Algorithm 3: Branch & Bound procedure for multicriteria assignment problems

Input: G = (N ∪ T,E); Ω; S0: initial cost vectors
1 S ← S0

2 η ← [∅, ∅]
3 O ← {η}
4 while O 6= ∅ do

5 Select a node η in arg maxη′∈O SR(S,Sη′ , Ω)
6 if |Sη| = 1 then

7 S ← S ∪ Sη
8 else if SR(S,Sη, Ω) ≥ −δ then

9 Select e ∈ Eη such that de = 1 in the optimal solution of MIPη
10 Generate node η0 = [E0

η ∪ {e}, E1
η ] and node η1 = [E0

η , E
1
η ∪ {e}]

11 forall η′ ∈ {η0, η1} do

12 if Sη′ 6= ∅ and SR(S,Sη′ , Ω) ≥ −δ then

13 O ← O ∪ {η′}
14 end

15 end

16 end

17 O ← O \ {η}
18 end

19 return S

Recall that this regret-based branch and bound procedure is able to detect
partial assignments that cannot be part of a near-optimal assignment (even if
we further restrict the sets of admissible weights by collecting new preference
statements from the agents, see Paragraph “evaluation and pruning”).

5.3 Combining Incremental Elicitation and Search

The branch and bound procedure introduced in the previous subsection can be
used to eliminate partial assignments that cannot be part of a near-optimal as-
signments. Nevertheless, it may be the case that there exist no near-optimal as-
signments for a given set Ω. The following proposition gives a sufficient condition
to guanrantee the existence of a near-optimal solution:

Proposition 7. If mMR(S, Ω) ≤ δ at the end of the search performed by Algorithm 3,

then MR(x∗,X , Ω) ≤ δ for any cost vector x∗ ∈ arg minx∈SMR(x,S, Ω).

Proof. Let x∗ be an element of arg minx∈SMR(x,S, Ω). To prove that we have
MR(x∗,X , Ω) ≤ δ, we need to prove that the inequality PMR(x∗, x,Ω) ≤ δ holds
for any cost vector x ∈ X . If x ∈ S, then we can directly infer the result since we
have PMR(x∗, x,Ω) ≤MR(x∗,S, Ω) ≤ δ by hypothesis. Assume that x 6∈ S. In that
case, at some iteration step, Algorithm 3 pruned a node η such that x ∈ Sη (see
Paragraph “evaluation and pruning”). According to the pruning rule, there exists
S′ ⊆ S such that SR(S′,Sη, Ω) < −δ. Hence, for all ω ∈ Ω, there exists x′ ∈ S′
such that fω(x′) − fω(x) < −δ (by definition of SR). Moreover, since S′ ⊆ S and
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MR(x∗,S, Ω) ≤ δ, we have fω(x∗) − fω(x′) ≤ δ for all x′ ∈ S′ and for all ω ∈ Ω.
Hence, fω(x∗)−fω(x) < δ−δ ≤ δ for all ω ∈ Ω and therefore PMR(x∗, x,Ω) ≤ δ.

Thus, if we have mMR(S, Ω) ≤ δ at the end of the search performed by our
branch and bound procedure, then any cost vector in arg minx∈SMR(x,S, Ω) is
associated with a near-optimal assignment. Therefore, we now introduce a query
generation strategy that collects preference information during the search per-
formed by Algorithm 3 so as to ensure that this condition is satisfied at the end
of the execution. This is made possible by the following simple result:

Proposition 8. For all Ω,Ω′ such that Ω′ ⊆ Ω and for all sets X,Y ⊆ X :

SR(X,Y,Ω) < −δ ⇒ SR(X,Y,Ω′) < −δ

Hence, reducing Ω during the search do not invalidate any pruning operation
made by Algorithm 3 while potentially increasing the number of pruning opera-
tions. In order to generate informative preference queries, we integrate the CSS
strategy (presented in Section 2.2) to our search procedure as follows. Whenever
the insertion of some cost vectors in S (see line 7) makes the value mMR(S, Ω)
be strictly larger than δ, we repeatedly ask preference queries applying the CSS
method on set S until this value is smaller than δ. By definition, this query gener-
ation strategy ensures that a near-optimal cost vector is returned by Algorithm 3
(see Proposition 7). The following example presents an execution of the proposed
interactive branch and bound procedure:

Example 4. Consider the multicriteria assignment problem with 4 agents, 2 criteria

and δ = 0, given in Figure 6.

1

2

3

4

1

2

3

4

(5, 9)

(3, 9)

(4, 5)

(5, 9)

(3,
9)

(7, 6)

(2, 6)(9, 8)

(5
, 4

)

(8,
5)

(3, 9)

(9, 2)

(9
, 9

)

(2
, 3

)

(6,
2)

(3, 5)

Fig. 6 An instance of bipartite graph G = (N ∪ T,E) with four agents and Q = {1, 2}.
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Initially, we have Ω = {(ω1, ω2) ∈ int(R2
+) : ω1 + ω2 = 1}. Note that Ω is com-

pletely characterized by the constraint 0 < ω1 < 1 since ω2 is implicitly defined by the

normalization constraint. We assume here that the DM’s preferences are represented by

the weighting vector ω0 = (0.4, 0.6). The assignments {(1, 2), (2, 1), (3, 3), (4, 4)} and

{(1, 1), (2, 2), (3, 4), (4, 3)} are optimal when only considering the first and the second

criterion respectively. These solutions are associated with the cost vectors (12, 32) and

(27, 19) respectively. Hence, we set S = S0 = {(12, 32), (27, 19)} (see line 1). In the

sequel, the nodes generated at iteration step t will be denoted by η0
t and η1

t (line 10).

At the first iteration of the while loop, the node η = [∅, ∅] is selected for branching.

Here we have to solve MIPη to be able to generate the new nodes (see lines 9-10).

Since {(1, 4), (2, 3), (3, 1), (4, 2)} is an optimal solution, we can choose e = (1, 4) at this

iteration step and generate the following nodes: η0
1 = [{(1, 4)}, ∅] and η1

1 = [∅, {(1, 4)}].
Since Sη0

1
6= ∅ and SR(S,Sη0

1
, Ω) ≈ 4.18 ≥ −δ = 0, node η0

1 is inserted in O. Moreover,

since Sη1
1
6= ∅ and SR(S,Sη1

1
, Ω) ≈ 4.43 ≥ 0, node η1

1 is also inserted in O. Then,

node η is removed from O (see line 17).

At the second iteration step, we have O = {η0
1 , η

1
1} where SR(S,Sη0

1
, Ω) ≈ 4.18 and

SR(S,Sη1
1
, Ω) ≈ 4.43. Since SR(S,Sη1

1
, Ω) ≥ SR(S,Sη0

1
, Ω), node η1

1 = [∅, {(1, 4)}] is

selected for branching in line 5. Moreover, since assignment {(1, 4), (2, 3), (3, 1), (4, 2)}
is an optimal solution of MIPη1

1
, we can select edge (2, 3) to generate the new nodes (see

lines 9-10): η0
2 = [{(2, 3)}, {(1, 4)}] and η1

2 = [∅, {(1, 4), (2, 3)}]. Then, since Sη0
2
6= ∅,

Sη1
2
6= ∅, SR(S,Sη0

2
, Ω) ≈ 0.79 ≥ −δ = 0 and SR(S,Sη1

2
, Ω) ≈ 4.43 ≥ 0, node η0

2 and

node η1
2 are both inserted in O. Finally, node η1

1 is removed from O.

At the third iteration step, we have O = {η0
1 , η

0
2 , η

1
2} where SR(S,Sη0

1
, Ω) ≈ 4.18,

SR(S,Sη0
2
, Ω) ≈ 0.79 and SR(S,Sη1

2
, Ω) ≈ 4.43. Since we have SR(S,Sη1

2
, Ω) ≥

SR(S,Sη0
1
, Ω) ≥ SR(S,Sη0

2
, Ω), node η1

2 = [∅, {(1, 4), (2, 3)}] is chosen in line 5. More-

over, since assignment {(1, 4), (2, 3), (3, 1), (4, 2)} is an optimal solution of MIPη1
2
,

edge (3, 1) can be used to generate the new nodes: η0
3 = [{(3, 1)}, {(1, 4), (2, 3)}] and

η1
3 = [∅, {(1, 4), (2, 3), (3, 1)}]. Then, since SR(S,Sη0

3
, Ω) ≈ −3.96 < −δ = 0, node η0

3

is not inserted in set O. On the other hand, we have Sη1
3
6= ∅ and SR(S,Sη1

3
, Ω) ≈

4.43 ≥ 0; therefore η1
3 is inserted in O. Finally, node η1

2 is removed from O.

At the fourth iteration step, we have O = {η0
1 , η

0
2 , η

1
3} and SR(S,Sη1

3
, Ω) ≈ 4.43 ≥

SR(S,Sη0
1
, Ω) ≈ 4.18 ≥ SR(S,Sη0

2
, Ω) ≈ 0.79. Therefore η1

3 = [∅, {(1, 4), (2, 3), (3, 1)}]
is here selected for branching. Since {(1, 4), (2, 3), (3, 1), (4, 2)} is an optimal solution

of MIPη1
3
, the following nodes are generated: η0

4 = [{(4, 2)}, {(1, 4), (2, 3), (3, 1)}] and

η1
4 = [∅, {(1, 4), (2, 3), (3, 1), (4, 2)}]. Then, node η1

4 is inserted in set O since we have

Sη1
4
6= ∅ and SR(S,Sη1

4
, Ω) ≈ 4.43 ≥ −δ = 0. However, node η0

4 is eliminated in line

12 since we obviously have Sη0
4

= ∅.
At the fifth iteration step, we have O = {η0

1 , η
0
2 , η

1
4} and SR(S,Sη1

4
, Ω) ≈ 4.43 ≥

SR(S,Sη0
1
, Ω) ≈ 4.18 ≥ SR(S,Sη0

2
, Ω) ≈ 0.79. As a consequence, at this step, node

η1
4 = [∅, {(1, 4), (2, 3), (3, 1), (4, 2)}] is selected for branching. Since we have |Sη1

4
| = 1,

we set S = S ∪ Sη1
4

= {(12, 32), (27, 19)} ∪ {(14, 22)} in line 7. Then, our query

generation strategy requires that we compute mMR(S, Ω). Here we have mMR(S, Ω)=
MR((14, 22),S, Ω) = PMR((14, 22), (27, 19), Ω)≈ 3> δ. Therefore, the DM is asked

to compare cost vectors (14, 22) and (27, 19) (following the CSS). Since fω0(14, 22) =
18.8 ≤ fω0(27, 19) = 22.2, the DM states that (14, 22) is better than (27, 19) and so

we have to update the set Ω by inserting the linear constraint fω(14, 22) ≤ fω(27, 19),

i.e. ω1 ≥ 3
16 . Thus Ω = {(ω1, 1 − ω1) : 3

16 ≤ ω1 < 1}. Now we have mMR(S, Ω) =
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MR((14, 22),S, Ω) = PMR((14, 22), (12, 32), Ω) ≈ 2 > δ = 0. Hence the DM is now

asked to compare (14, 22) and (12, 32). Since fω0(14, 22) = 18.8 ≤ fω0(12, 32) = 24,

the DM states that she prefers the first cost vector to the second one and so we have to

update Ω by inserting the linear constraint fω(14, 22) ≤ fω(12, 32), i.e. ω1 ≤ 5
6 . Thus,

Ω = {(ω1, 1− ω1) : 3
16 ≤ ω1 <

5
6} and mMR(S, Ω) ≤ δ.

At the sixth iteration step, we have O = {η0
1 , η

0
2} and SR(S,Sη0

1
, Ω) ≈ 1.69 ≥

SR(S,Sη0
2
, Ω) ≈ −0.5. Therefore, node η0

1 = [{(1, 4)}, ∅] is selected for branching.

Since assignment {(1, 3), (2, 1), (3, 4), (4, 2)} is an optimal solution of MIPη0
1
, edge

(1, 3) is selected and the following nodes are generated: η0
6 = [{(1, 4), (1, 3)}, ∅] and

η1
6 = [{(1, 4)}, {(1, 3)}]. Here we have Sη0

6
6= ∅, Sη1

6
6= ∅, SR(S,Sη0

6
, Ω) ≈ 0.88 ≥

−δ = 0 and SR(S,Sη1
6
, Ω) ≈ 1.69 ≥ −δ = 0. Therefore both nodes η0

6 and η1
6 are

inserted in O and then node η0
1 is removed from O in line 17.

At the seventh iteration step, we have O = {η0
2 , η

0
6 , η

1
6} and SR(S,Sη1

6
, Ω) ≈ 1.69 ≥

SR(S,Sη0
6
, Ω) ≈ 0.88 ≥ SR(S,Sη0

2
, Ω) ≈ −0.5. Therefore node η1

6 = [{(1, 4)}, {(1, 3)}]
is selected for branching. Since assignment {(1, 3), (2, 1), (3, 4), (4, 2)} is an optimal

solution of MIPη1
6
, edge (2, 1) can be selected here and then the following nodes are

generated: η0
7 = [{(1, 4), (2, 1)}, {(1, 3)}] and η1

7 = [{(1, 4)}, {(1, 3), (2, 1)}]. Moreover

we have Sη0
7
6= ∅, Sη1

7
6= ∅, SR(S,Sη0

7
, Ω) ≈ 0.69 ≥ −δ = 0 and SR(S,Sη1

7
, Ω) ≈

1.69 ≥ −δ = 0. As a consequence, both nodes η0
6 and η1

6 are inserted in set O. Finally,

node η1
6 is removed from O.

At the eighth step, we have O = {η0
2 , η

0
6 , η

0
7 , η

1
7} and SR(S,Sη1

7
, Ω) ≈ 1.69 ≥

SR(S,Sη0
6
, Ω) ≈ 0.88 ≥ SR(S,Sη0

7
, Ω) ≈ 0.69 ≥ SR(S,Sη0

2
, Ω) ≈ −0.5. There-

fore, we have to choose node η1
7 = [{(1, 4)}, {(1, 3), (2, 1)}] for branching. Since as-

signment {(1, 3), (2, 1), (3, 4), (4, 2)} is an optimal solution of MIPη1
7
, we select (3, 4)

and we generate the following nodes: η0
8 = [{(1, 4), (3, 4)}, {(1, 3), (2, 1)}] and η1

8 =
[{(1, 4)}, {(1, 3), (2, 1), (3, 4)}]. Since we have Sη1

8
6= ∅ and SR(S,Sη1

8
, Ω) ≈ 1.69 ≥

−δ = 0, node η1
8 is inserted in set O. However, η0

8 is eliminated by our pruning rule

since we have SR(S,Sη0
8
, Ω) ≈ −2.37 < −δ = 0. Then, node η1

7 is removed from O.

At the ninth iteration step, we have O = {η0
2 , η

0
6 , η

0
7 , η

1
8} and SR(S,Sη1

8
, Ω) ≈

1.69 ≥ SR(S,Sη0
6
, Ω) ≈ 0.88 ≥ SR(S,Sη0

7
, Ω) ≈ 0.69 ≥ SR(S,Sη0

2
, Ω) ≈ −0.5. Hence

node η1
8 = [{(1, 4)}, {(1, 3), (2, 1), (3, 4)}] is selected for branching at this step. Since

assignment {(1, 3), (2, 1), (3, 4), (4, 2)} is an optimal solution of MIPη1
8
, we select edge

(4, 2) and generate the following nodes: η0
9 = [{(1, 4), (4, 2)}, {(1, 3), (2, 1), (3, 4)}] and

η1
9 = [{(1, 4)}, {(1, 3), (2, 1), (3, 4), (4, 2)}]. Moreover, since we have Sη1

9
6= ∅ and

SR(S,Sη1
9
, Ω) ≈ 1.69 ≥ −δ = 0, node η1

8 is inserted in set O. However, node η0
9

is here eliminated since Sη0
9

= ∅. Finally, node η1
8 is removed from O in line 17.

At the tenth iteration step, we have O = {η0
2 , η

0
6 , η

0
7 , η

1
9} and SR(S,Sη1

9
, Ω) ≈

1.69 ≥ SR(S,Sη0
6
, Ω) ≈ 0.88 ≥ SR(S,Sη0

7
, Ω) ≈ 0.69 ≥ SR(S,Sη0

2
, Ω) ≈ −0.5. Hence

node η1
9 = [{(1, 4)}, {(1, 3), (2, 1), (3, 4), (4, 2)}] is here selected for branching. Since

|Sη1
9
| = 1, we set S = S ∪ Sη1

9
= {(12, 32), (27, 19), (14, 22))} ∪ {(18, 19)}. Now,

following our query generation strategy, we have to compute mMR(S, Ω). Here we have

mMR(S, Ω)=MR((14, 22),S, Ω)=PMR((14, 22), (18, 19), Ω)≈1.69 > δ = 0. Hence

the DM is asked to compare the cost vectors (14, 22) and (18, 19). Since fω0(14, 22) =
18.8 ≥ fω0(18, 19) = 18.6, the DM states that she prefers (18, 19) to (14, 22) and so we

have to update Ω by inserting the linear constraint fω(18, 19) ≤ fω(14, 22), i.e. ω1 ≤ 3
7 .

Thus, Ω = {(ω1, 1− ω1) : 3
16 ≤ ω1 <

3
7} and mMR(S, Ω) = MR((18, 19),S, Ω) ≤ δ.
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Now we have O = {η0
2 , η

0
6 , η

0
7}, SR(S,Sη0

6
, Ω) ≈ −0.57, SR(S,Sη0

7
, Ω) ≈ −1 and

SR(S,Sη0
2
, Ω) ≈ −2.56. Since all these values are strictly below 0, we know that the cor-

responding nodes will be deleted by our pruning rule in the following steps (see line 8).

Therefore, our algorithm necessarily returns S = {(12, 32), (27, 19), (14, 22), (18, 19)}
and since MR((18, 19),S, Ω) ≤ δ, we know that (18, 19) is the cost vector of an opti-

mal solution, namely {(1, 3), (2, 1), (3, 4), (4, 2)}. Note that only 3 queries were needed

here to find the best choice between the twenty four feasible assignments.

5.4 Numerical Tests

In this section, we report the results of numerical tests aiming to evaluate the
performance of our regret-based branch and bound procedure (Algorithm 3) com-
bined with our query generation strategy (presented in Section 5.3) in terms of
both computation time and number of preference queries. In Table 4, the results are
obtained by averaging over 30 runs and linear optimizations are performed using
the Gurobi library of Java. In our experiments, we consider instances of weighted
bipartite graphs with 50 nodes (with edge densities of d = 0.1, 0.2) randomly gen-
erated as follows: each agent (resp. item) is linked to exactly d × n items (resp.
agents) and the associated cost vectors are randomly drawn in {1, . . . , 1000}q. To
study the impact of tolerance threshold δ on the performance of our procedure, we
ran tests with two distinct values: δ = 0.01 and δ = 0.05. Moreover, the number
of criteria q varies from 2 to 5. In these tests, we start with an empty set of pref-
erences statements and DMs answer to queries according to a linear scalarizing
function fω where ω is randomly chosen in {int(Rq+) :

∑q
j=1 ωj = 1}.

δ = 0.01 δ = 0.05

q d time queries time queries

2 0.1 0.02 3.5 0.02 2.8
2 0.2 0.97 4.3 0.92 2.9

3 0.1 0.04 7.4 0.05 5.3
3 0.2 79.01 11.8 94.43 7.0

5 0.1 0.09 13.5 0.10 10.1
5 0.2 540.12 20.4 701.27 15.7

Table 4 Performance of our incremental branch and bound method (times in minutes).

Not surprisingly, we observe here also that reducing δ tends to decrease the
number of queries which impacts negatively on computation times.

6 Conclusion

We have shown how to implement an incremental preference elicitation method
based on regret minimization within three different solution algorithms frequently
used to address combinatorial optimization problems, namely dynamic program-
ming, greedy search and branch and bound. The common feature in these three
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algorithms is that they are constructive, i.e., the optimal solution is constructed
step by step by sequencing elementary decisions until the obtention of a complete
optimal solution. Due to this decomposition, the difficult problem of eliciting pref-
erences over a combinatorial domain reduces to a sequence of simpler problems
consisting in eliciting the best elementary decision at the current step, given the
past decisions. With this sequential elicitation, we significantly reduce the combi-
natorial aspect of the problem and therefore the elicitation burden while better
focusing the search on the most promising part of the Pareto set.

This approach is made possible by the use of a linear aggregation function (a
weighted sum) to define the overall value of a solution. Due to the linearity of
this aggregation, it is indeed possible to construct an optimal solution from lo-
cally optimal elementary decisions. When the DM’s preferences are too complex
to be captured by a weighted sum, local preferences on partial solutions are less
informative and the elicitation must preferably be made using complete solutions.
For example, we proposed an adaptation of this incremental approach to deal with
preferences represented by a Choquet integral in multiobjective state space search
(Benabbou and Perny, 2015a) but the number of queries used to solve the prob-
lem and the solution times are less good than with linear models. An alternative
approach consists of directly working on the set of complete Pareto optimal so-
lutions. This approach is illustrated in (Bourdache and Perny, 2017) where the
solution optimizing an ordered weighted average is obtained by combining a rank-
ing algorithm used to enumerate complete solutions with an incremental weight
elicitation process.

Beside the difficulty of eliciting preferences represented by non-linear models,
two important issues should be investigated in the future to extend the state of the
art in incremental preference elicitation on combinatorial domains. The first one
concerns the analysis of the query complexity of the algorithms (i.e., the number
of preference queries necessary to obtain the optimum in the worst case). We need
to obtain formal guarantees and possibly to revise the algorithms so as to obtain
polynomial upper bounds on query complexity. This is yet possible when prefer-
ence queries are carefully selected to divide the range of an interval at every step.
An example is given in (Benabbou and Perny, 2017) for the incremental elicitation
of a utility function in the context of sequential decision making under risk; it could
probably be adapted in the context of weight elicitation for multicriteria decision
making. The second issue concerns the sensitivity of the elicitation process to the
DM’s answers. Preference queries are asked here without any redundancy, in or-
der to minimize the number of preference queries. Questionnaires are designed in
such a way that the DM never has the opportunity to contradict herself. However,
whenever the DM expresses some instability in answering to preference queries or
if the underlying model does not perfectly fit to her preferences, it may be the case
that some implicit inferences made on preferences are not valid. This may impact
the quality of the final recommendation. For this reason, an alternative approach
could be to regularly check the consistency of the model with the observable pref-
erences and to let the possibility to revise the model if inconsistencies appear.
However, this interesting line of research is significantly more expensive in terms
of query complexity and probably more difficult to implement on combinatorial
domains.
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