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Abstract
Network theory has played a dominant role in understanding the structure of complex systems and
their dynamics. Recently, quantum complex networks, i.e.collections of quantum systems arranged
in a non-regular topology, have been theoretically explored leading to significant progress in a
multitude of diverse contexts including, e.g., quantum transport, open quantum systems, quantum
communication, extreme violation of local realism, and quantum gravity theories. Despite important
progress in several quantumplatforms, the implementation of complex networkswith arbitrary
topology in quantum experiments is still a demanding task, especially if we require both a significant
size of the network and the capability of generating arbitrary topology—from regular to any kind of
non-trivial structure—in a single setup.Herewe propose an all optical and reconfigurable
implementation of quantum complex networks. The experimental proposal is based on optical
frequency combs, parametric processes, pulse shaping andmultimodemeasurements allowing the
arbitrary control of the number of the nodes (opticalmodes) and topology of the links (interactions
between themodes)within the network.Moreover, we also showhow to simulate quantumdynamics
within the network combinedwith the ability to address its individual nodes. To demonstrate the
versatility of these features, we discuss the implementation of two recently proposed probing
techniques for quantumcomplex networks and structured environments.

1. Introduction

During the last twenty years, network theory has experienced remarkable progress and revolutionized the
research in diverse disciplines ranging, e.g., from technology to social sciences and biology [1–4]. The discovery
of new types of networks, such as having scale-free [5] or small-world properties [6], and development of new
tools, e.g. community detection [7], has led to the invaluable role that network theory currently has in empirical
studies ofmany real-world complex systems.

By character, the combination of network theory and its applications aremultidisciplinary and during the
recent years a new area applying network theory and complex networks to quantumphysical systems has
emerged [8, 9]. Furthermore, specific features of quantumnetworks with no classical equivalent have been
reported [10–13].

Indeed, due to their ubiquitous nature, complex networks have found applications also in diverse topics in
theoretical physics. The properties and topology of the underlying complex network influence localization
properties of coherent excitations [14], phase transition of light [15], Bose–Einstein condensation of non-
interacting bosons [16], and quantumwalks with the associated quantum transport [17].With technological
advances for quantum communication and development of quantum internet [18], the future information
networks have to handle not only their computational complexity but also their complex geometrical structure,
and there are already results on how the network topology influences entanglement percolation [10, 19].
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Moreover, complex graphs of higher dimensions are strongly connectedwith special quantumalgorithms [20]
and networks have also been used for studies in quantum gravity [21]. In general, earlier theoretical discussions
on quantum complex networks include topics from the control, probing and engineering of the network
[22–26], to the generation and protection of quantum resources [25, 27–29], as well as the study of collective
phenomena [30, 31], like quantum synchronization [32, 33].

However, despite the theoretical progress, a large gap remains hindering the practical developments: is it
actually possible to create and control quantum complex networkswith arbitrary topology in a single setup?

We give a positive answer for this question by combining earlier theoretical work on complex networks of
interacting harmonic oscillators [32, 34]with recent experimental advances in creatingmultipartite entangled
states in amultimode optical system [35]. Interacting opticalmodes represent an interesting option because they
are highly resilient to noise, highly controllable with classical instruments and efficiently detectable. Our
proposal is based on a compact optical setup including optical frequency combs and parametric processes
which, alongwithmode selective andmultimode homodynemeasurements, allows for the implementation of
networkswith reconfigurable coupling and topology, with sufficient size and diversity to be relevant in the
context of complex networks. Here, themodes represent the nodes in the network and the interactions between
them the links.Wewant also to stress here that although the efficient implementation of quantumnetworks has
been achieved in other platforms, e.g. superconducting qubit [36], atoms in optical lattices [37] and single
photons [38], the topologies which have been explored aremainly regular ones (lattice, circulant graphs,
triangular graphs) and theymainly concern logical encoding rather than physical interactions between the
quantum systems.On the contrary, our platform allows for: the deterministic implementation of the network, as
themapping is based on continuous variables, and the implementation of arbitrary complex topologywithin the
limits of the experimentally achievable size.Moreover, the reconfigurability, i.e. varying the topology for the
network, does not require to change the optical setup.

The quantumnature of the networks is provided by the ability to initialize the oscillators in quantum states
and/or generate entanglement connections between nodes. Part of this strategy has already demonstrated the
fabrication ofmultipartite entangled states [39] and cluster states [35, 40]. Herewe address amore general
scenario, with additional tools and a specificmapping, for the implementation of quantum complex networks.

Several featuresmake the scheme truly appealing for the general study of quantum complex networks.We
can control the number of nodes in the network and in principle any network—whether complex or not—can
be created from a given set of nodes.Moreover, the system allows to simulate quantumdynamics within the
network bymapping the dynamical results of [34] for optimized experimental parameters of the optical
multimode set-up. It is also important to note that each node of the network can be individually addressedwhich
opens significant possibilities to probe the global properties of the network by detecting the local properties, as
proposed in [34, 41]. The proposal also opens the possibility to design quantum simulators for continuous
variable open quantum systems. This is important because open systemdynamics andmemory effects have been
very actively studied in the last ten years both theoretically [42–44] and experimentally (see, e.g., [45]). On the
other hand,memory effects have been predicted consideringmicroscopic bath realization of coupled oscillators
[46] and can be realizedwith the present set-up.However,most of the experimental work in this context has
dealt with conceptually rather simple single qubit (photon) open systems and no experiments on controlled
continuous variable open systemdynamics withmemory effects exist yet, to the best of our knowledge.Our
results also benefit research on complex quantum communication and information networks [13, 47], and in
energy transport and harvesting within biological systems [11, 48]. In the following sections, wefirst describe the
dynamics within the complex network of coupled harmonic oscillators and then show in detail how this can be
mapped to the optical platform.We then continue by demonstrating the implementation of two probing
techniques for complex networks, and discuss the requirements of scalability and reconfigurability of the
system.

2.Network dynamics

Weconsider bosonic quantum complex networks composed by an ensemble of quantumharmonic oscillators,
with frequenciesωi, linked by spring-like couplings according to a specific topology. This is defined by the
adjacencymatrixV, which contains the coupling terms vij for any couple of nodes. Notice that since the
interactions between the oscillators are symmetric, the adjacencymatrixmust be symmetric aswell, meaning
that the networks will be undirected. This system can provide a quantummodel of a heat bath sustained by an
electromagnetic field, or it can be interpreted as a generic bosonic structure which can be exploited, e.g. for
transporting energy or information. The networkHamiltonian is H p p q Aq2E

T T= ¢ ¢ + ¢ ¢wherewe have
vectors ofmomentum and position operators p pp , ,T

N1¢ = ¢ ¼ ¢{ }, q qq , ,T
N1¢ = ¢ ¼ ¢{ } forNharmonic

oscillators. ThematrixAhas diagonal elements which can bewritten by introducing the effective frequencies iw̃
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as vA 2 2 2ii i i j ij
2 2w w= = + å˜ , and off-diagonal elementsAi≠j=−vij/2.Note thatA can be expressed in

terms of the adjacencymatrixV of the network and a diagonalmatrix containing the effective frequencies
diag , , N1

2 2w wD = ¼w { ˜ ˜ }˜ , as A V2 2D= -w̃ .
As the bosonic oscillators are intended to describe electromagnetic fields we use amore common formalism

in quantumoptics by substituting q′ andp′with the renormalized quadratures q andp by defining

q qT T D= ¢ w and p pT T 1D= ¢ w
- with diag , , N1w wD = ¼w { }. So the networkHamiltonian is rewritten as

H
p p

q A q
2

. 1E

T
T 1 1D

D D= +w
w w
- - ( )

By diagonalizing the symmetricmatrixAwith an orthogonalmatrixK, such as K K A2 T2D =W( ) , whereΔΩ

is a diagonalmatrix diag , , N1= W ¼ W{ }, we can define decoupled oscillators, also namednormalmodes, with
quadratures

Q K q

P K p

,

. 2

T

T

1

1

D D

D D

=

=

w

w

W
-

W
- ( )

Plugging equation (2) in (1) the networkHamiltonian becomes

H P QP P Q Q 2 2. 3E
T T

i

N

i i i
2 2åD D= + = W +W W( ) ( ) ( )

From the free temporal evolution of the decoupled quadratures {Q,P} and by inverting the relations (2)we can
recover the temporal evolution of the network oscillators:

t

t

T D T D

T D T D
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Q
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0
0
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and then
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whereT K1
1D D= w W

- andT K2
1D D= w

-
W andwe have introduced the diagonalmatrices

D tsinii isin = WW ( ) and D tcosii icos = WW ( ). The equations can be given in the compact form

t S
t S

x X
x x

0 ,
0 , 6

V

V

= ¢
=

( ) ( )
( ) ( ) ( )

where X Q P,T T T= { }and xT={qT,pT}. The optical implementation of the evolution described by (4) or (5)
requires amultimode system, consisting of a number ofmodes equal to the number of nodes in the network.
The opticalmodes need to be prepared in the initial state described by the quadratures {Q(0)T,P(0)T} in the
normalmodes picture or, equivalently, by {q(0)T, p(0)T} in the bare oscillators picture. Finally the
implementation involves reconfigurable optical processes, able to drive the quadratures evolution S′V or SV at
different times, which are intimately connectedwith the network structureV, the bare frequencies of the
network oscillators and the frequencies of the normalmodes. The evolutions described by equations (4) and (5)
being equivalent, we can choose one of the two pictures according towhich ismore convenient for evaluating the
desired expectation values orwhich one between S′V and SV could bemore efficiently implemented in the
experimental setup. Thematrices S′V and SV in equation (6) are symplectic and they can then be factored via the
Bloch–Messiah (B–M)decomposition [49], for example:

S R R . 7T
V 1

sq
2= D ( )

Δsq being a diagonalmatrix andR1,R2 symplectic and orthogonalmatrices. Infigure 1 three different networks
composed byN=51 (figure 1 A) orN=50 (figures 1(B), (C)) nodes are shown: a periodic chain, a linear chain
with shortcuts and a randomnetwork, the bare frequencies of the network oscillators are set toωi=ω0=0.25
for the three different topologies. The networkmatrices SV calculated at different times from the evolution in
equation (5) are shown infigure 2, while the B–Mdecomposition at time t=50 for the three network is shown
infigure 3.

Note that the complexity of B–Mdecomposition is of the order ofO(N3) [50]. It takes around 0.03 s to
implement the B–Mdecomposition for networks of 50 nodeswith a standard laptop.

3

New J. Phys. 20 (2018) 053024 JNokkala et al



3.Mapping the network to amultimode experimental platform

Thematrices sqD ,R1 andR2 in equation (7) have awell-known physical interpretation in optics: thefirst is a
squeezing operationwhile each of the two others corresponds to the action of a linearmultiport interferometer,
i.e. a basis change. The implementation of SV can then be decomposed in a combination of squeezing and linear
optical operations in amultimode scenario. In the followingwe are going to present a particular compact and
completely reconfigurable experimental implementation of such strategy.

The experimental implementation proposed here is based on parametric processes pumped by optical
frequency combs. A very large network of entangled photons is produced [35, 51] under a quadratic
Hamiltonian, that leads to a symplectic evolution. Themappingwe present here aims atmatching this evolution

Figure 1.Graphical structure of the investigated networks. (A) is a periodical chainwith 51 nodes, the coupling strength vij=0.1, is
reduced to vij=0.06 every third link. (B) is a linear chain, with vij=0.1, whereweak shortcuts with strength vij/50 are added. In the
centre the shortcuts structure is shown. (C) is an Erdős–Rényi randomnetwork of 50 nodeswith vij=0.01.

Figure 2.Matrix plot of the calculated evolution SV, i.e., thematrix of equation (5), for the three networks offigure 1, at different
times, all the oscillators frequencies are set toωi=ω0=0.25. Thematrices contain 100 (or 102) rows as they concern the evolution at
the given time of the 50 (51) q quadratures plus the 50 (51)p quadratures of the network oscillators. A temperature colourmap is used:
positive values are in red colours, negative in bluewhilewhite colour indicates the zero value, as shown by the legend in the plot at
t=999.
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to SV using the experimentally controllable degree of freedoms: the pump spectral amplitude and the
measurement basis.

In practice, the laser sources considered here aremode-locked lasers emitting pulses from30 to 150 fs with
repetition rates from70 to 150MHz at awavelength centred aroundλ=800 nm. The spectrumof these lasers is
constituted of hundreds thousands of frequency components. A second harmonic generation process is used for
generating a frequency-doubled combwhich serves as pumpof the parametric process. The pump frequencies
arewritten asωp=ωp0+p·ωRR, whereωRR is the repetition rate of the original laser source,ωp0 is the pump
central frequency and p an integer. TheHamiltonian describing the parametric process, which is parametric
down conversion in aχ(2) crystal, is H ıg a a h.c.;m n m n m n, ,= å +† † it couples pairs of frequenciesωm andωn via
the term m n, which is the product of crystalʼs phasematching function fm,n and of the complex pump
amplitudeαp at frequencyωp=ωm+ωn. m n, describes the probability amplitude that a photon at frequency
ωp is converted into two daughter photons at frequenciesωn andωm. Given the number of frequency
components in the pump, a number of down-converted frequencies, which is of the same order ofmagnitude
that the one in the original spectrum, is combined in a non-trivialmultipartite entangled structure [39]. This
Hamiltonian governs the system evolution thatwe express for the optical quadrature operators
q q q p p p q p X, , .. , , , ,N N b

T
1 2 1 2 ¼ = ={ } { } in a givenmode basis b, with the convention

q a a1 2j j j= +( )( )† and p i a a2j j j= -( )( )†/ . A natural choice for the basis would be the frequency

components of the comb spectrum. The parametricHamiltonian leads to a symplectic transformation
Xf=SexXiwhich can be decomposed via B–Min

S R R . 8T
ex 1ex ex

sq
2ex= D ( )

If the inputmodesXi are in the vacuum state theR2ex term can be neglected

RX X . 9f i1ex ex
sq= D ( )

The squeezing parameters in ex
sqD can be derived from the eigenvalues of  andR1ex can be reinterpreted as

change of basis from the basis of the squeezedmodes, named ‘supermodes’, towards themeasurement basis. In
the case of a pump and phasematching functionwithGaussian spectral profile, the supermodes basis obtained
from  coincide withHermite–Gaussmodes. If the symplectic transformation Sex can be experimentally
controlled in order to coincide with SVwe are obtaining an optical implementation of the complex network
described by the equation (5). Thismeans that by addressing the opticalmodes we canmeasure the properties of
the oscillators in the network.

Figure 3.B–Mdecomposition for the three networks at t=50. The evolution SV can be decomposed as the product of a squeezing
operationΔsq in between two linear optics transformations RT

1 andR2.
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Wewould like to stress here the special features of ourmapping: to emulate the network dynamics we only
need to know its symplectic evolution SV at time t, which can be experimentally emulated by Sex.We do not need
to know the physical phenomenon that generates the networks dynamics or the nature of the oscillators in the
network (they could bemechanical or optical oscillators) or even the specific picture that can be chosen to
describe theHamiltonian evolution. In the case described by equation (5), for example, the symplectic evolution
is derived from the fullHamiltonian also containing the non-interacting terms, while the experimental process
is described in the interaction picture. As a consequence, the frequencies of the network oscillators will not
match the frequencies of the correspondentmodes, but insteadwill bemapped to squeezing parameters in the
optical setup. By focusing on the emulation of the symplectic evolution, we can then use the same experimental
resources tomap different network parameters according to the features of the phenomenonwe are studying.

Themapping of the quantumnetworks to the experimental platform is summarized in table 1.
In the followingwe explain how the symplectic transformation can be controlled bymanipulating the terms

of its B–Mdecomposition. The squeezing operations in ex
sqD can be controlled by tailoring the spectral shape of

the pump in the parametric process. This can be done experimentally via a pulse shaper based on a spatial light
modulator (SLM) in a 4-f configuration (see figure 4)which provides control over amplitude and phase of the
spectral components by exploiting a 2D geometry . The phasemask of the SLMcan be set according to the results
provided by an optimization procedure, based on an evolutionary algorithmwhich directly relates experimental
parameters with the diagonal terms of thematrix ex

sqD [52]. Note that the optimization of ex
sqD also influences the

spectral shape of the supermodes, and thus the squeezedmodes basis.
The linear transformationR1ex can be tuned adequately choosing themeasurement basis, which is the

equivalent of choosing the basis onwhich evolution (9) is calculated. Experimentally, this is implemented using
homodyne detectionwhere themeasuredmode is governed by the spectral shape of the local oscillator (LO)
[40]. The squeezingmatrixΔsq acts on the supermode basis, then the quadratures of themth network oscillator
can be addressed by applying the basis change defined by themth rowof thematrix RT

1 . Thismeans that we can
measure the quadratures qm(t) and pm(t) of themth network oscillator by performing homodyne detectionwith
a LO shape defined by u R SP ı R SPm j

N
mj

T
j j N

N
mj

T
j NLO 1 1 1

2
1w w w= å + å- = = + -( ) ( ) ( ), where SPi(ω) are the

supermodes. Figures 4(A) and (B) show the scheme for the experimental control of ex
sqD via the control of the

Table 1.Themapping of the quantumnetworks to the experimental platform. Refer tomain text formore details.

Quantumnetwork Experimental implementation

Node Quantumharmonic oscillator Opticalmode

Link Spring-like coupling term Nonlinearmode coupling

t Evolution time Parameter controlling the symplecticmatrix Sex
Frequency Oscillator frequencies Squeezing of opticalmodes

Decoupledmode Normalmode of the network Supermode, a non-correlated squeezed opticalmode

Addressing a node Localmeasurement Pulse shaping andmode-selectivemeasurement of the supermodes

Figure 4.Experimental control of themultimode squeezing operation ex
sqD (A) and the basis changeRex (B) . Thefirst is controlled by

shaping the pumpof the parametric process (here in cavity as [35]), the experimental parameters of the pulse shaper are found by
running an optimization procedure based on an evolutionary algorithm. The basis change defines themodes which carry the
information on the oscillators evolution as a combination of the supermodes shape.
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pump spectral shape, after the optimization, and the control ofR1ex by choosing themeasurement basis via pulse
shaping of the LO.

A second point has to be stressed here: even if the B–Mreduction of general symplectic transformations and
its physical interpretation is well known, the full control allowing for complete reconfigurability of the squeezing
operations and basis changes in a single optical setup, enabling from trivial to complex topologies, has never
been addressed before.

The control ofRex and ex
sqD is sufficient for the simulation of the dynamics if the particular feature we are

interested in is independent on the initial quantum state of the network oscillators. In that case we can consider
the oscillators being in the vacuum state at time t=0, by choosing R RT

ex 1= ex
sq sqD = D , and discardingR2 the

network simulation can be performed.Otherwise we need to initialize the opticalmodes in the desired quantum
states. The oscillators can be prepared in an initial pureGaussian state, by considering afirst symplectic
transformation S0 which prepares themodes in the desired state, followed by network evolution SV. The effective
total evolution to be simulated is

t S S Sx x x0 0 , 10V 0 ef= =( ) ( ) ( ) ( )

where the initial states are vacua. Then via B–Mdecompositionwe can set

S R R , 11ef 1ef ef
sq

2ef= D ( )

experimentally implement ex
sq

ef
sqD = D andRex=R1ef andfinally discardR2ef as it is acting on vacuum states. If

the complex networks we are implementing are intended to simulate environments of open quantum systems, a
typical requirement wemay have to fulfil is to set afinite temperature for the network. This can be achieved by
initializing the oscillators in an optical thermal state, which can be built, for instance, as the reduced state of an
entangled state. Indeed, amaximally entangled state of 2 qubits hasmarginal distributions which aremaximally
mixed (equivalent toT  ¥), and the same is true in continuous variableGaussian states. Consider e.g., a two-
mode squeezed state of two bosonicmodes with squeezing parameter r. The reduced covariancematrix of only
one of themodes reads r rdiag cosh 2 2, cosh 2 2 s w w= { ( ) ( ) }, which describes a thermal state with

r Tcosh 2 coth 2w( ) ( ). ForT/ω>1 the required squeezing grows as r Tacosh 2 2 ( ) and this scales like
Tlog , e.g. r∼2 forT/ω∼20, which is reasonable experimentally.Wemaywant to initialize one oscillator of

the network in a thermal state. This is then done by having twoprobes initially in a two-mode squeezed state,
which is obtained by aπ/4 rotation in the 2×2 subspace, individual squeezings, and a rotation back. If instead
we need to initialize the entire network into a thermal statewe should duplicate it and impose a two-mode
squeezed state between each pair of node copies. Network dynamics then follows by applying the time evolution
only on half of the network units, and the identity on the other half. This scheme increases the overhead of the
protocol but is feasible in principle.

Thefigure 5 shows the results of the simulation for the periodic network and the randomnetwork based on
experimental parameters. The optimization procedure for the pump shape is run in order tominimize the

Figure 5. Simulation of the periodic and the randomnetwork evolution by the experimental setup. 1, 2, 3 and 4 stand for t=50, 150,
500 and 999, respectively. Upper part of each box: diagonal terms of thematrixΔsq in dB, the red are the theoretical values coming
from the B–Mdecomposition, the blue are the optimized valueswhich can be obtained from an optimized pump shapewith a BiBO
crystal of length 2.5 mm, in the case of the periodic network, and of 1.5 mm, in the case of randomnetwork. Lower part of each box:
spectral shape ofmode 26 representing the 26th oscillator obtained by applying the linear transformation RT

1 on the calculated
supermodes. The amplitude is represented by a plot with rainbow colours while the grey line is the spectral phase. Units are arbitrary.
This corresponds to the spectral shapewhich has to be set in the LO in order to address themode.
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distance between the theoretical values (the diagonal ofΔsq) and the experimentally realizable ones ( ex
sqD ) by

varying the spectral shape of the pump. The simulated squeezing values are close to the theoretical ones: the
relative distance of the simulated curves to the theoretical ones are in between 6.8% and 10.4% for the periodic
network and in between 3.5% and 5.3% for the randomnetwork. The spectral shape of themode corresponding
to one oscillator of the network is given: 0 nmcorresponds to the central wavelength of the laser source (800 nm).
The relative errors on the experimentally simulated SV are exactly the same ofΔsq if the exact required basis
changeR1 is performed. This necessitates that any of the 50modes simulating the oscillators can be addressed by
choosing the right shape of the LO in homodyne detection. As shown infigure 5, this requires to handle laser
light of large bandwidth, which can be generated by coherent broadening of themain laser source. The results of
figure 5 are obtained by setting two different crystal lengths: in the case of the shorter crystal (1.5mm) the
experimentally achievable squeezingmatrix ( ex

sqD ) is closer to the theoretical one (Δsq) than in the case of 2.5 mm
crystal length.However the case of shorter crystal generally requires larger bandwidth for the LO as the resulting
supermodes have a larger spectrum. Infigure 6we showone observable, themean photon number, for all the
oscillators in the network.We evaluate both its theoretical valuewith the exact evolution and the simulated one
with the squeezing values derived from the optimization. For this calculationwe choose the vacuum state as the
initial state. The relative errors on the calculated excitation numbers is 5.3% for the periodic and 5.0% for the
randomnetwork. The simulation is performedwith a crystal length of 1.5 mm, also in this case by admitting
larger relative errors (of the order of 10% in the excitation numbers) it is possible to reduce the bandwidth of the
LO (to half the value of the shapes shown infigure 6)with a crystal length of 2.5 mm.

In order to show that the setup has the potential of replicating the behaviour of complex networkswith any
topology by simulating SV or S′V at different times, we repeat the procedure for other networks withmore
complex topology, which are shown infigure 7.We study the Barabási–Albertmodel [53], characterized by a
power law of the degree distribution, and theWatts–Strogatzmodel [54], which describes networks with small-
world properties as clustering. Additionally, we consider two graphical structures derived from real natural
networks, studied by Scannell et al [55] and Lusseau [56], that we call Scannel and Lusseau networks. The
simulations are shown infigure 8 and they show the same performances of the simulations infigure 5with a
similar trade-off between relative errors limitation and reduction of the LObandwidth.

4. Interactionwith additional oscillators

In amore general scenario wewould like to describe the network interactingwith additional oscillators: these
would, for example, depict the principal quantum systemswhich interact with the bath described by the network
or the systems inwhich the informationwewant to convey through the network is initially encoded.We takeM
oscillators with frequencies , , ..S S SM1 2w w w{ }, each of them interactingwith one node according to the
Hamiltonian H kq qIr Sr i Sr iw w= - . The interaction couples the supplementary oscillators with any of the

Figure 6. Simulation of the periodic (A) and the random (C)network in the eigenmode picture at t=50with a crystal length of
1.5 mm. The squeezing values here are the diagonal terms ofΔsq from the B–Mdecomposition of S′V in equation (6). In the centre: the
pulse shape for the 26th node. In the lower part the calculatedmean photon number of each oscillator (brown curve) and the
simulated one (black curve) from the experimentally achievable squeezing values.
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normalmode, as we can see from the interactionHamiltonian in the decoupled quadrature picture:
H kq QKIr Sr j ij j Sr jw= - å W . The new totalHamiltonian again can bewritten in diagonal formby orthogonal

diagonalization of B O O2f
T2D= ( ) , thematrix analogue toA containing the extra terms given by the

interaction.Δf is a diagonalmatrix f fdiag , , N M1 ¼ +{ }.

H f 2. 12S E I
j
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j j j
2 2 å= ++ +
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( ) ( )

It is convenient to describe the dynamics of the network plus the newoscillators in terms of the evolution of the
quadratures for the network eigenmodes and the supplementary systems
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wherewe introduced the diagonalmatrices D f tcosii icos = ( ) and D f tsinii isin = ( ), and thematrices

O O f1 ,
1

S
D D= wW

- and O O f2 ,
1

S
D D= wW

- , being diag , , , ...N S SM, 1 1S
w wD = W ¼ WwW { }. Equation (13)

can be againwritten in amore compact form asX(t)=SX(0)with S a function of time. The simulation of the
dynamics of the network interactingwith the system can then be performed by experimentally addressing a
collection of oscillatorsX and implementing the transformation S at any time.

Figure 7.Graphical structure of supplementary networks. (D) is a 50-nodes network derived from the Barabási–Albertmodel [53],
characterized by a power law distribution of the degree with connection parameter set to 3. (E) is a 50-nodes network derived from the
Watts–Strogatzmodel [54], characterized by short average path lengths and high clustering, the rewiring probability is set to be 0.2.
(F) and (G) are networks retrieved from apublic repository of real-world complex networks. (F) is a 52 nodes-networkwhich
represents the connectional organization of the cortico-thalamic systemof the cat, as studied by Scannell et al [55]. (F) is a 62-nodes
network representing the social network of dolphins, derived by Lusseau [56]. The coupling strength between the nodes for the four
networks is set to be vij=0.05.
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5. Probing the spectral density of a structured environment

The additional oscillators introduced above can also be considered as probes for the network in the framework
of the theory of open quantum systems [57, 58]. Here, the probeswould be considered the open quantum
systems and the network their environment, and the objectivewould be to deduce some properties of the
environment based on knowing the reduced dynamics of the probes. In the followingwe consider the case of a
single probe andwe describe the simulation, based on experimentally realizable operations, of the probing
technique for the network spectral density as proposed in [34].

The spectral density J(ω), a key quantity in open quantum systems theory, is determined by the environment
and interactionHamiltoniansHE andHI, and gives the density of environmentalmodes as well as coupling
strengths to them as a function of frequency [46, 58]. Nothing else aboutHE andHIneeds to be known to
determine the open systemdynamics. Conversely, knowing the open systemdynamics reveals information
about J(ω). Indeed, provided that the coupling between the probe and the environment is sufficiently weak,
measuring the photon number operator ná ñof the probe having frequencyωS allows to approximate J(ωS) from

J
t

N n

N n t
ln

0
, 14S

S S

S

w
w w

w
=

- á ñ
- á ñ

⎛
⎝⎜

⎞
⎠⎟( ) ( ) ( )

( ) ( )
( )

where N e 1S
T 1Sw = -w -( ) ( )( ) is the thermal average boson number and t is a large enough interaction time. In

the case at hand, onemay couple the probeweakly to any subset of network oscillators and use equation (14) to
probe J(ωS), however different subsets correspond to different spectral densities as the function depends also on
HI.

Themean photon number here can be accessed from the homodynemeasurement of the probe as
n t q t p t1 2 1 2 1 2S S

2 2á ñ = á ñ + á ñ -( ) ( ) ( ) . The quadratures of the probe {qS(t), pS(t)} appear in the left hand
side of the equation (13), which can be used to derive their expectation value at any time.We have to stress here

Figure 8. Simulation of the supplementary networks shown infigure 7. The optimization is performedwith a BiBO crystal of length
1.5 mm in the case of the Barabási–Albert network, and of 2.5 mm for the other three networks.
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that when the initialmode basisX(0) is defined, the B–Mdecomposition of S (thematrix appearing on the left
side of equation (13)) completely identifies, via the basis changes, thefinalmode corresponding to {qS(t), pS(t)},
which can be simply addressed by pulse-shaped homodyne detection. In this case we cannot initialize all the
network nodes and the probe in the vacuum state, because no energy exchange between the network and the
systemwould bemapped in ná ñ.We thenwill use afirst operation able to set a non-zero value for themean
photon number of the probe n 0á ñ( ) , as for example a squeezing operation S0=Δ′, and thenwewill implement
the B–Mdecomposition of Seff=SΔ′.

The protocol is the following one: given a network structure, a probewith frequency Sw is chosen and the
evolution of the total system is computed at an appropriate time t, the experimental parameters are set according
to the calculated B–Mgiving R ,1ef ef

sqD . The probemode ismeasured by pulse shaping the LO and one value of
J(ωS) is obtained. The procedure is repeated for otherωS in order to retrieve the full shape of the spectral density.

We now look at how the network and probe parameters aremapped in themodel and particularly in the
B–Mdecomposition of the symplecticmatrix in equation (13). The network is totally identified by thematrixA,
which contains the geometrical structure, the frequency of the oscillators and the strength of the couplings
between them. The probe is identified by its frequencyωS and the strength of its coupling k to one of the network
nodewhich is supposed to beweak in the probing scheme. For simplicity we set a constant value for the
frequencies and the couplings in the network, i.e.ωi=ω and vij=g. If we fix the set of values {ω, g,ωS, k}we
find almost the samematrixΔsq in the B–Mdecomposition of S for any network at any time, while the different
network geometries lead to completely different basis changesR1,R2. The frequency terms {ω,ωS} in fact enter
in the renormalized quadrature definitions and they contribute in theHamiltonian as squeezing terms, while the
parameters {g, k} are the ones driving the quadraticHamiltonianswhich contain squeezing operations. On the
other hand the basis change transformations have almost the same role as in cluster state generation, by defining
the graphical structure, and they are hence intimately connectedwith the network structure.When the probe is
in a veryweak coupling regime k<0.01, conditionwhich can be always chosenwithout affecting the results of
the probing technique, the influence ofωS on the squeezingmatrixΔsq is very small. This simplifies the
experimental procedure of the probing protocol because scanningωS requires almost no changes in the
squeezing structure (i.e. in pump shaping) but only appropriate pulse shaping of the LOmode, according the
updated basis change. Figure 9 shows in purple the target squeezing, i.e. the diagonal elements of ef

sqD , in the case
of a periodic chain, with parameters set as infigure 1; ten different purple lists are superposed corresponding to

Figure 9.Purple: diagonal elements of the target ;ef
sqD green: experimental achievable squeezing spectrum, i.e. diagonal elements of

Kex in the case of aGaussian pump spectrum for the parametric process with a crystal length of 1.5 mmandwith no pump
optimization. Brown and red: experimental achievable squeezing spectrum,when optimization on the pump shape is performedwith
a crystal length of 0.5 and 1.5 mm. In the three cases (green, red and brown) the first diagonal element is exactly the same as the target
one (purple). The pictures in the circles show the spectral shape of thefirst and the third supermode in the three possible experimental
configuration.
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ten different values ofωS. The configuration inwhichwe probewith an initially squeezed oscillator requires only
one significantly squeezedmode in thematrix ef

sqD , this is the reasonwhy all the 10 purple lists almost coincide.
The diagonal elements of three experimentally achievable ex

sqD are shown: the green points correspond to a
Gaussian profile for the pumpof the parametric process (no pump shaping), while the brown and red points are
obtained from the optimization procedures run considering a crystal length of 0.5 and 1.5 mm. In the three cases
thefirstmode can be set to have exactly the required value of squeezing of the first targetmode. The insets show
the shape of thefirst and the third supermodes corresponding to the experimentally achievable ex

sqD . Infigures 10
and 11we compare the results for the analytically calculated J(ω) (blue lines), the one derived from the exact
probing (violet circles), and the ones calculated by replacing the exact ef

sqD with the experimentally achievable

ex
sqD (green, red and browndots).We show the normalized value of J(ω) (top) and the raw values after applying

equation (14). The experimentally achievable configurations allow for the retrieval of the peculiar shape J(ω) for
the seven kinds of network. In the case of no optimization of the pump shape, even if the intrinsic structure of the
spectral density ismainly conserved, the numerical values of the calculated J(ω) are quite low, while larger values
are obtainedwhen optimization via pump shaping is included.

Wefinally report, infigure 12, thefirst 10 non-zero values of theN+1th rowof R f1 at different frequencies
ωS. TheN+1th row identifies the shape of themode encoding the probe in termof the supermodes basis, the
resulting shape has to be set as the shape of the LO in homodyne detection in order tomeasure n tá ñ( ) . Examples
of the LO shapes are shown infigures 13–15 . As in the case of simulation of the networks dynamics, longer

Figure 10.The spectral density J(ω) for the periodic (A), the shortcuts (B) and the randomnetwork (C). Blue line: analytical
calculation, violet circles: exact probingmethod.Green dots: calculation of J(ω) by replacing ef

sqD with the ex
sqD which can be obtained

in the experimental setupwith no pumpoptimization. The red and the brown dots are calculatedwith the ex
sqD obtained frompump

optimizationwith a crystal of 1.5 and 0.5 mm. Top: the calculated spectral density is plotted after normalization to itsmaximal value.
Down: the results of direct calculation are shown.

Figure 11.The spectral density J(ω) for the Barabási–Albert (D), theWatts–Strogatz (E), the Scannell (F) and the Lisseau (G)networks.
Shapes and colours have the samemeaning offigure 10.
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Figure 12.Calculated first 10 elements of theN+1th rowof R f1 , defining the shape of the probemode as a linear combination of the
initial supermodes, for (A): periodic (B): shortcuts and (C): randomnetwork. They define the shape of the LO as shown in figure 4(B).

Figure 13. Shape of the LOwhich has to be set formeasuring the probe at three different frequenciesωS in the case of aGaussian pump
spectrum for three networks. (A), (B) and (C) stand for periodic, shortcuts and randomnetwork.

Figure 14. Shape of the LOwhich has to be set formeasuring the probe at three different frequenciesωSwhen pump shapingwith a
0.5 mmcrystal is considered.
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crystals allow for reduced LObandwidth. In any case all the LO shapes calculated in thefigures 13–15 are
experimentally doable.

6. Probing network from the entropy of the probe

An interesting concept, developed in [41] is whether a simple, resource friendly,measurement protocol can
distinguish different classes of complex networks. It is indeed possible to distinguish amongRandomRegular,
Erdös–Renyi and Scale-Free bosonic networks from features displayed by the averaged single node entropy Shá ñ,
where the average is taken over all nodes of the same connectivity h. Interestingly, also a set-upwhere only the
entropy of a probe ismeasured allows to assess such different classes of networks [41]. In this set-up, the probe is
sequentially attached tomore andmore network nodes (increasing its connectivity h) andmeasuring the probeʼs
entropy as a function of h suffices to discriminate network classes. The required vonNeumann entropy is easy to
access through the covariancematrix of a single node (or the probe) , , ,s a g g b= {{ } { }}, and reads
S 1 2 log 1 2 1 2 log 1 2m m m m= + + - - -( ) ( ) ( ) ( ) and 2m ab g= - [59]. The protocol is valid for a
network in the ground state, but is robust for small temperatures, so the implementation devised above can be
easily applied.

7. Conclusions and outlook

In conclusionwe have shown a protocol for implementing reconfigurable experimental quantumnetworks with
a complex topology in amultimode quantumoptical setup. The temporal evolution of networks of various
topology can be implemented by tailoringmultimode squeezing operations andmultimodemeasurements.
This can be done via an optimization protocol on the pump shape for the parametric process andmode selective
homodynemeasurements.Moreover the probingwith one additional oscillator can be simulated: the recovered
behaviours of the spectral density are able to univocally identify the corresponding network topology. Also
probing based on entropymeasurements is realizable. The proposed protocol establishes a connection between
thefield of continuous variables experimental quantumoptics and quantum complex network theory and it
shows, for thefirst time, the full reconfiguratibility of an optical setup in implementing arbitrary B–M
decompositions associatedwith topologies which range from regular to complex.

We have considered networks both fromwell-established theoreticalmodels and from real biological and
community examples. In order to assess the complexity of the generated networks we are considering
geometries involving at least of 40–50 nodes, this is for example the requirement for univocally identifying the
reconstructed J w( )with a non-trivial graphical structure. The experimental setup already demonstrated the
capability of addressing networksmade of 12 nodes [35].While the spectral shape of the required LO for the
probing of J w( ) is within the experimental reach, the required shapes for following the network dynamics will
requiremore experimental effort, depending on the precisionwewant to reach for the simulated quantities. The
extension of involvedmodes numbers up to 50 is within the capability of the present setup by improving the
pulse shaped homodyne detection procedure via the coherent broadening of LO spectrum in order to address
the squeezed high-ordermodes.Moreover the production ofmultimode quantum states involving a large
number of frequency- or temporal-modes has already been demonstrated in other experimental setups [60, 61].

Figure 15. Shape of the LOwhich has to be set formeasuring the probe at three different frequenciesωSwhen pump shapingwith a
1.5 mmcrystal is considered for Barabási–Albert (D), theWatts–Strogatz (E), the Scannell (F) and the Lisseau (G)networks.
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Hence themerging of techniques based on spectral and temporalmultiplexing can allow the implementation of
larger quantum complex networks.

The quantum character of the networks is provided by the initialization of the nodes in quantum states or
establishing entanglement correlations between different nodes. This condition already enables experimental
study of control, engineering and probing of the network [25, 34, 41], generation and protection of quantum
resources [28, 29], quantum synchronization [32], memory effects and dynamics of open quantum system
[42–44, 46]. Also, as in the case of classical networks [62], the resilience of quantum task over network topology
can be investigated. In particular quantum communication tasks, like entanglement percolation [10, 19], and
their extension tomultiparty protocols, like secret sharing, [63] can be studied. The subject of this work is the
topological complexity but the present setupwith a supplementary tool, i.e.mode-dependent coherent single
photon subtractor, can be exploited in future works to demonstrate possible computational complexity, i.e. a
formof quantumadvantage. Themode-dependent coherent single photon subtraction, which has been recently
experimentally demonstrated by some of the authors [64], allows for the introduction of non-Gaussian
processes in the network [65] and a specific circuit includingmultimode squeezing and single photon operations
recently demonstrated to be hard to sample [66]. The strategy can be also exploited to test proposedmodels of
quantum enhanced transport [11, 67] via the propagation of non-Gaussian excitation over complex graphs.

A second supplementary tool which can be added ismulti-pixel homodyne detector which enables
simultaneousmeasurement of several network components. Here aftermixing the signal with the LO in the
50:50 BS the spectral components of the light are spatially dispersed and focussed on two linear array of
detectors. Subtracting signals from the detectors corresponding to the same colours allows for simultaneous
homodyne detection at each band. Pulse shaping on the LO also allows to independently choose the phase of the
quadrature to bemeasured by independentlymodifying the phase of each spectral band. Finally computer post-
processing provides an additional basis change [68]. The simultaneousmultimode analysis can be exploited for
implementing amulti-probes scenario andmoreover to testmeasurement based continuous variables quantum
information protocols over complex graphs.
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