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Introduction

The advent of radiomics generates a lot of enthusiasm and development, especially for oncological studies. 
Radiomics helps in revealing tumor characteristics or predicting prognosis through the extraction of a great 
number of imaging indices inside the tumor area (Lambin et al 2012, Gevaert et al 2014, Aerts 2016, Gillies et al 
2016, Skogen et al 2016). These indices are based on tumor shape, on first-order statistics, e.g. mean intensity, 
standard deviation, histogram-derived indices and on high-order statistics including textural indices derived 
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Abstract
Few methodological studies regarding widely used textural indices robustness in MRI have been 
reported. In this context, this study aims to propose some rules to compute reliable textural indices 
from multimodal 3D brain MRI. Diagnosis and post-biopsy MR scans including T1, post-contrast 
T1, T2 and FLAIR images from thirty children with diffuse intrinsic pontine glioma (DIPG) were 
considered. The hybrid white stripe method was adapted to standardize MR intensities. Sixty textural 
indices were then computed for each modality in different regions of interest (ROI), including tumor 
and white matter (WM). Three types of intensity binning were compared di: constant bin width and 
relative bounds; dii : constant number of bins and relative bounds; diii : constant number of bins and 
absolute bounds. The impact of the volume of the region was also tested within the WM. First, the 
mean Hellinger distance between patient-based intensity distributions decreased by a factor greater 
than 10 in WM and greater than 2.5 in gray matter after standardization. Regarding the binning 
strategy, the ranking of patients was highly correlated for 188/240 features when comparing di with 
diii, but for only 20 when comparing di with dii , and nine when comparing dii  with diii. Furthermore, 
when using di or diii, texture indices reflected tumor heterogeneity as assessed visually by experts. Last, 
41 features presented statistically significant differences between contralateral WM regions when 
ROI size slightly varies across patients, and none when using ROI of the same size. For regions with 
similar size, 224 features were significantly different between WM and tumor. Valuable information 
from texture indices can be biased by methodological choices. Recommendations are to standardize 
intensities in MR brain volumes, to use intensity binning with constant bin width, and to define 
regions with the same volumes to get reliable textural indices.
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from the gray level co-occurrence matrix (GLCM) (Haralick et al 1973), the gray level run-length matrix 
(GLRLM) (Tang 1998) or the gray level size-zone matrix (GLSZM) (Thibault et al 2009). Although these textural 
indices have been widely used in medical imaging, their variability as a function of the range and binning of 
image intensity and the importance of the volume of the region of interest in which they are computed has not 
been extensively studied, especially in MRI.

In PET imaging, several factors influencing textural indices computation have been recently studied. If the 
conclusions regarding some parameters including acquisition parameters and reconstruction methods (Yan et al 
2015) are likely to be specific to PET studies, others may be relevant whatever the imaging modality. Among the 
possible sources of variation, it was previously shown that the volume of the region of interest (Orlhac et al 2014, 
Hatt et al 2015) and the intensity binning method (Leijenaar et al 2015, Orlhac et al 2015) play an important role.

Only a few methodological studies regarding the robustness of texture analysis in MRI have been reported so 
far. In Larroza et al (2016), the authors recommended the use of ROIs of the same size when the range of lesion 
sizes among samples is broad. In Molina et al (2017), it was showed that textural indices computed with differ-
ent dynamic ranges of intensities and spatial resolutions are not comparable. In Mayerhoefer et al (2009), using 
phantoms with nodular pattern, the authors found that textural indices were sensitive to variations in acquisition 
parameters of T2 scans, especially with the spatial resolution.

Unlike PET images, MR images are acquired in arbitrary units and intensities values vary between visits and 
patients, even when using the same machine and the same protocol. Standardizing intensities for each modality 
among all patients and visits is a necessary step for a robust inter-patient comparison. Among different meth-
ods of standardization proposed for cerebral MRI studies (Nyul et al 2000, Christensen 2003, Madabhushi and 
Udupa 2006, Shinohara et al 2014), the hybrid white stripe (hWS) method (Shinohara et al 2014) proved to be 
successful for neurodegenerative diseases (Shinohara et al 2014) and oncological studies (Kickingereder et al 
2016a).

In this context, the present study aimed at defining some rules to compute reliable textural indices from 
structural MRI. The experimental study was carried out on diffuse intrinsic pontine glioma (DIPG), a rare pedi-
atric tumor with extremely bad prognostic (Cohen et al 2017), for which MR images remain our best mean of 
diagnosis and follow-up during treatment. Using these data, four questions were addressed: (i) the standardiza-
tion of the MR intensities adapted to the DIPG images before textural index calculation; (ii) the impact of the 
intensity binning method; (iii) the dependency of textural indices with the volume of the region in which they are 
calculated; (iv) the ability of the different textural indices to distinguish between tumor and white matter (WM).

Subjects and methods

Patients and magnetic resonance imaging (MRI)
Images from thirty children (17 girls and 13 boys) from 3 to 15 years old (mean age 8  ±  3 years) diagnosed with 
DIPG were included in this retrospective study. Patients’ families authorized the use of clinical and radiological 
data recorded during treatment for research purposes. Informed consent was obtained according to the IRB 
of the reference institution. All diagnoses were confirmed histologically and molecularly according to current 
criteria (Castel et al 2015). All patients underwent diagnostic scans including four structural MR modalities: 
T1 weighted, post-contrast T1 weighted (T1c), T2 weighted and FLAIR images, and post-biopsy scans that 
included at least one T1 or one T2 weighted scan. All MR acquisitions were performed using a 1.5 Tesla magnet 
(Signa HDxt/Discovery MR450, GE Medical Systems, Milwaukee, WI, USA) with almost identical acquisition 
parameters between studies (see details in table 1).

MR intensity standardization
The workflow of MR Intensity standardization is detailed in figure 1. Field inhomogeneity was corrected by 
means of the N4 algorithm (Tustison et al 2010). For each patient, the different images (pre and post-biopsy) 
were then realigned to the T2 diagnostic scan (subject’s space) using rigid registration in FSL-FLIRT (Jenkinson 
et al 2002). Registrations were systematically checked visually and were always found to be satisfactory.

Intensities of the different modalities were standardized among all patients and visits using the hWS  
(Shinohara et al 2014), which is a segmentation-free standardization method based on the WM distribution. 
Starting from the R package ‘WhiteStripe: WM Normalization for Magnetic Resonance Images using Whit-
eStripe, Version 1.1.1’, some modifications were introduced to better take into account the specificities of our 
data. In the hWS method, the smoothed histogram corresponding to slices 80–120 in the MNI reference image 

is computed to estimate a WM mode noted µm∗
i,j , for patient i, visit j, modality m as the last peak of the histo-

gram for T1 weighted scans and as the highest peak for T2 weighted scans. Selecting these slices as the reference 
region for standardization is convenient for patients with DIPG since they generally do not contain tumor. In this 
study however, in order to find the corresponding slices in each subject’s space, diffeomorphic transformations 
(Avants et al 2007) were chosen to realign scans with the 1 mm3 MNI template, as patients are children. Moreover, 
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for some T2 weighted scans, as shown in figure 2, the highest histogram peak could correspond to gray matter 
(GM). Hence a mask in the MNI reference image was defined with a probability of WM greater than 0.3, the WM 
being defined using tissue probability maps from SPM12 (Ashburner and Friston 2005). Using this constraint 
ensured that the highest histogram peak corresponds to WM (figure 2). Note that no precise segmentation was 
required and the method is still segmentation-free.

For each scan, the white stripe (WS) is defined as the voxels in the MNI space having intensity values close 

enough to the µm∗
i,j  (Shinohara et al 2014). A parameter called τ  defines the proximity between voxels intensities 

and the WM mode µm∗
i,j . Parameter τ is a quantile tolerance around the WM mode in the cumulative distribu-

tion function. As the T2 (and FLAIR) scans were masked with WM, quantiles were increased to select the same 
number of WS voxels in the T2 (and FLAIR) scans as in the T1 weighted scans. The default value of 0.05 for τ  was 
therefore used for T1 and T1c scans, while a value of 0.08 was used for T2 and FLAIR scans. As a result, the num-
ber of voxels contained in each WS was similar for each modality (about 100 000 voxels). The hybrid WS (hWS) 
of patient i, visit j was defined as the intersection of the WS of all modalities acquired (resulting in about 2000 
voxels when 4 modalities are acquired), to get the so-called non-affected WM (Shinohara et al 2014). Each scan 

Table 1. Acquisition parameters for T1, post injection T1 (T1c), T2 and FLAIR images.

T1a (51 scans) T1cb (47 scans) T2 (57 scans) FLAIRc (43 scans)

TE (ms) 3.6–5.4 3.6–6.8 93.0–115.1 129.9–172.8

TR (ms) 12.0–12.7 12–15.2 2500 8400–9002

TI (ms) 550 550 na 2223–2283

Flip angle 13 13 90 90

Plane Axial Axial Sagittal Sagittal

Pixel resolution (mm) 0.43  ×  0.43–0.47  ×  0.47 0.43  ×  0.43–0.47  ×  0.47 0.43  ×  0.43–0.49  ×  0.49 0.43  ×  0.43–0.53  ×  0.53

Slice thickness (mm) 1.4–1.6 1.2–1.6 1 1.2–1.4

a Except for one patient visit, where TE  =  10.2 ms, TR  =  500 ms, acquisition plane is sagittal and slice thickness is 1 mm.
b Except for one patient visit, where TE  =  10.1 ms, TR  =  600 ms, and acquisition plane is sagittal.
c Except for one patient visit, where acquisition plane is sagittal and slice thickness is 4 mm.

Figure 1. Workflow of MR Intensity standardization. Compared to the hWS method (Shinohara et al 2014), the adaptations needed 
to analyze DIPG scans are shown in purple.

Phys. Med. Biol. 63 (2018) 105003 (12pp)
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of visit j was finally standardized in the subject’s space by the subtraction of the mean intensity of the hWS voxels 
and the division by their standard deviation.

Impact of intensity binning on textural indices in a tumor region
A tumor region was defined in diagnostic scans to evaluate the impact of three intensity binning methods on 
textural indices. After standardization of intensities and registration to the subject’s diagnostic T2 scan, post-
biopsy T2 (or T1) scans were subtracted from corresponding diagnostic scans to facilitate biopsy location. Each 
tumor region was chosen in order to correspond to the biopsy region (tissue extraction of about 1 cm3), and was 
approximated by spheres of 4.5 mm radius (ROI_tumor).

Using PyRadiomics software (version 1.1.1) (Van Griethuysen et al 2017), 60 textural indices were computed 
(28 from the GLCM, 16 from the GLSZM and 16 from the GLRLM) inside the ROI_tumor copied on the four 
realigned diagnostic scans, resampled to isotropic 1 mm3 voxels. PyRadiomics code was slightly modified to eval-
uate 3 types of intensity binning, that were proposed for PET or MR studies: (i) di, relative bounds, bin width 
fixed (Leijenaar et al 2015). For each ROI, the minimum and maximum intensity values inside the ROI were 
the binning bounds. The same bin width (bW  =  2) was used for all ROIs; (ii) dii, relative bounds, number of 
bins fixed. For each ROI, the minimum and maximum intensity values inside the ROI were the binning bounds 
(Michoux et al 2015, Yang et al 2015, Molina et al 2016, Kickingereder et al 2016b). Here, the same number of 
discretization levels (nBins  =  64) was used for all ROIs; (iii) diii: Absolute bounds, number of bins fixed (Orlhac 
et al 2015). The minimum of the 10 percentile values of the 30 individuals and the maximum of the 90 percentile 
values of the 30 individuals included in this study gave the binning bounds. The same number of discretiza-
tion levels (nBins  =  64) was used for all ROIs, which implies that the same bin width (variable according to the 
modality) was also used.

As textural indices are computed to quantify tumor heterogeneity (Orlhac et al 2015), three experts labeled 
the contents of ROI_tumor of each modality independently as homogeneous or heterogeneous, based on its 
three central slices (axial, sagittal and coronal) (figure 3). Experts were blinded to each other and to the values 
of textural indices. For each expert, the label was used to calculate the sensitivity and specificity of each texture 
feature to identify heterogeneous tumor tissue when using the three binning methods.

Impact of the volume of regions of interest (ROI) on textural indices
To evaluate the impact of the volume of the region in which the textural indices are computed, we chose to analyze 
healthy WM, as it is supposed to be similar in brain contra-lateral analysis and across patients. To avoid ROI 
positioning in each subject’s space and analyze the same proportion of tissue in every patient, two concentric 
spherical regions (3 and 5 mm radius) were drawn in the WM of the 1 mm3 MNI brain (figure 4). Employing 
the diffeomorphic transformation estimated in the intensity standardization process, the spherical regions were 
pasted to the subject’s space scans (ROI_MNI3, ROI_MNI5, figure 4). The resulting ROI volumes varied from 
39 to 424 mm3 according to the sphere radius, the age and the brain size of subjects. Furthermore two spherical 
ROIs, ROI_4.5R and ROI_4.5L (radius 4.5 mm) were drawn directly in the subject’s space such as ROI_4.5R 

Figure 2. Histogram of slices 80–120 (in the MNI space) of T2 scan intensities for one DIPG patient without (left) and with (right) 
the application of the WM mask.

Phys. Med. Biol. 63 (2018) 105003 (12pp)
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was concentric with ROI_MNI3 and ROI_MNI5 in the right hemisphere of the brain, and ROI_4.5L mirrored 
ROI_4.5R in the left hemisphere (figure 4). The 60 textural indices previously described were computed in each 
ROI pasted on the four realigned diagnostic scans modalities using binning di. All computations were done in 
subject’s space resampled to isotropic 1 mm3 voxels and after intensity standardization.

Tissue differentiation using textural indices
The ability of textural features to distinguish between tumor and WM tissue was analyzed by computing their 
values in ROI_4.5R and ROI_tumor using settings identical to those defined in the previous paragraph.

Statistical analysis
MR intensity standardization
For the sake of evaluation, masks of WM and GM were defined using the MNI atlas, with a probability greater 
than 0.9 for WM and 0.75 for GM, and excluding slices 31–51 to avoid the tumor. To compare intensity 
distributions before and after standardization, the Hellinger distance (Nikulin 2001) was computed between 

each pair of intensity histograms Hm
i1,j1

 and Hm
i2,j2

with (i1, j1) �= (i2, j2). The smaller the distance, the closer are the 
two histograms.

Impact of intensity binning
For each textural index extracted from ROI_tumor, a ranking of the n  =  30 patients was defined according to the 
increasing values of the index. Spearman’s correlation coefficients (r) were calculated between all three pairwise 
combinations of rankings computed with binning di, dii, and diii. The higher the correlation, the more similar the 
ranking of patients resulted from the two methods.

To assess the ability of each texture feature to characterize tumor heterogeneity, the Area Under the receiver-
operating characteristic Curve (AUC) was computed for each expert and each binning method. These AUC were 
defined for the 240 textural indices, the positive label (homogeneous or heterogeneous) for each index being 
defined as the one that gives the AUC greater than 0.5 for at least two of the binning methods.

Figure 3. ROI_tumor of two patients in sagittal, coronal and axial views (diagnostic visit) with corresponding zoomed regions in 
heat colors. The same color scale was used for each image. Glcm Homogeneity1 values (range  =  [0.0, 1.0]) for three methods of 
binning (di dii, diii) are shown on the left together with the corresponding patient rank.

Phys. Med. Biol. 63 (2018) 105003 (12pp)
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Impact of volume of ROI
Spearman’s correlation coefficient (r) was calculated between each index computed in the two concentric 
regions of different volumes: ROI_MNI3 and ROI_MNI5 and the corresponding volumes for the 30 subjects. In 
addition, Wilcoxon rank sum test followed by Benjamini–Hochberg correction for multiple tests was used to first 
compare indices computed in ROI_MNI5 and ROI_4.5L, indices computed in ROI_MNI5 and ROI_4.5R, then 
indices computed in ROI_4.5R and ROI_4.5L. As all three ROIs are in equivalent WM regions, textural indices 
are likely to be similar. If statistically significant differences are found between ROI_MNI5 and ROI_4.5L and 
between ROI_MNI5 and ROI_4.5R and not between ROI_4.5R and ROI_4.5L, they are probably an effect of the 
different volumes of ROI_MNI5.

Tissue differentiation
To determine whether the various features could distinguish between tumor region and WM, Wilcoxon rank 
sum test followed by Benjamini–Hochberg correction for multiple tests was used to compare indices computed 
in ROI_tumor and ROI_4.5L.

Results

MR intensity standardization
The WM and GM histograms before and after intensity standardization are shown in figure 5 for the four 
MR modalities. The mean Hellinger distance and its standard deviation between every histogram were also 
computed, showing a large decrease of all values after standardization (figure 5). For each modality, the mean 
Hellinger distance was decreased by a factor greater than 10 in WM, and by a factor greater than 2.5 in GM.

Figure 4. Concentric spheres (3 mm radius in green and 5 mm radius in red) drawn in the WM in the MNI space (top) and 
transferred to two patient scans (middle) using the inverse diffeomorphic transformation (ROI_MNI3 in green, ROI_MNI5 in red). 
Spheres (4.5 mm radius) drawn in the patient space (ROI_4.5R in golden, concentric with ROI_MNI3 and ROI_MNI5, contralateral 
sphere ROI_4.5L in cyan) are shown in the bottom.

Phys. Med. Biol. 63 (2018) 105003 (12pp)
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Impact of intensity binning
For 20 out of 240 indices, patient rankings obtained with binning di and dii were highly correlated (|r|  >  0.7). 
This number increased to 188 when comparing ranking obtained with binning di and diii and reduced to 9 when 
comparing dii and diii. Figure 6 shows the |r| values that were computed for each index. The two methods of 
binning di and diii provide quite similar results.

When analyzing the visual assessment of tumor heterogeneity, the binning methods di and diii provided a 
consistent ranking of patients for the three experts, which was not the case for dii (table 2). For instance, for the 
index T1c GLCM Homogeneity1, the mean AUC for the three experts was 0.90 for di, 0.43 for dii and 0.90 for diii. 
Figure 3 illustrates this result: Patient 1 (ranked 27 for di and diii; 2 for dii) shows a region classified as homogene-
ous by the 3 experts, while Patient 2 (ranked 1 for di and diii; 8 for dii) shows a region classified as heterogeneous 

by the 3 experts, rank 1 corresponding to the most homogeneous region.

Impact of volume of ROI
When studying textural indices measured within ROI_MNI3 and ROI_MNI5, 46/240 indices showed high 
correlation (|r|  >  0.7) with the volume of the regions. Among the 60 indices, nine indices (GLCM IMC1, GLCM 
IMC2, GLRLM Gray Level Non Uniformity, GLRLM Run Length Non Uniformity, GLSZM High Intensity 
Large Area Emphasis, GLSZM Intensity Variability, GLSZM Large Area Emphasis, GLSZM Size Zone Variability, 
GLSZM Zone Variance) were systematically correlated with volume, whatever the MR modality. Figure 7(a) 
illustrates three types of indices, which show different relationships with the volumes: FLAIR GLCM Run Length 
Non Uniformity (r  =  0.99), T2 GLCM Entropy (r  =  0.82 with decreasing correlation as volume increases), and 
T1 Homogeneity1 (r  =  0.03).

No statistically significant difference was found between indices computed within ROI_4.5R and ROI_4.5L 
(smallest p-value of 0.84), while 81 indices were significantly different (adjusted p-value  <  0.05) in ROI_MNI5 
and ROI_4.5R and 41 indices were significantly different (adjusted p-value  <  0.05) in ROI_MNI5 and ROI_4.5L. 
Among these 81 (41) indices, 34 (29) were also highly correlated with volume (table 3). Figure 7(b) shows plots of 
the three indices illustrated in figure 7(a) within ROI_4.5R and ROI_4.5L.

Tissue differentiation
A total of 224/240 indices were significantly different (adjusted p-value  <  0.05) in WM (ROI_4.5L) and in tumor 
(ROI_tumor) with binning di . Figure 7(c) shows plots of the three above selected indices within ROI_tumor and 
ROI_4.5L.

Discussion

Unlike in PET or CT for which the intensity range between patients can be compared relatively easily using SUV 
and Hounsfield units, clinical MRI data, even from mono-centric studies and using similar acquisition protocols, 
can yield quite different gray level range between patients and even in a given patient scanned at different times. 
The proposed standardization scheme is designed to deal with this problem. Most standardization techniques 
developed for MR images propose a matching of image histograms. In Nyul et al (2000), the transformation 
parameters to standardize histogram landmarks are estimated by a learning process, in Christensen (2003) even 
ordered derivatives are used to find the histogram peak corresponding to the WM, which is used to standardize 
all image intensities. Without the need of precise tissue segmentation and making use of the information across 
imaging modalities jointly, the modified hWS method proposed in this paper was successfully applied to 198 
DIPG MR scans. When compared with the original method (Shinohara et al 2014) only slight and reproducible 
modifications were introduced for a robust detection of WM peak in T2 weighted images. Before intensity 
standardization, histograms in WM and GM varied from patient-to-patient and visit-to-visit, even when scans 
were acquired using similar parameters. After hWS standardization, histograms in WM were much more similar, 
with the Hellinger distance being drastically reduced. Although the reduction of the Hellinger distance was 
smaller in GM, the standardization was also effective. Furthermore, when comparing textural features before and 
after standardization on T1 weighted images, tumor and WM tissues were better separated for a large majority of 
features (results not shown). The correction that we proposed is simple, but it proved to be efficient for the data 
studied in this paper. This approach is thus promising for meaningful longitudinal follow-up and robust inter-
patient studies.

In addition, our study shows that the choice of the intensity binning method is also crucial. Differently of the 
work reported by Molina et al (2017), this study did not directly compare textural indices values when testing dif-
ferent options of binning (since the values are different) but the ranking of patients that can be deduced from the 
different settings, similarly to Leijenaar et al (2015). For both di and diii, bin width is constant and changing the 
bounds of intensity levels (di) or keeping it constant (diii) does not modify largely the ranking of patients based 
on each index. The ranking derived from binning dii notably differs from the other two methods even when the 
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Figure 5. Histograms of intensities in WM and GM before and after standardization for T1, T2, post injection T1 (T1c) and FLAIR 
scans. Each blue line corresponds to a pre-biopsy scan and each pink line to a post-biopsy scan. For each type of MR scan, the mean 
Hellinger distance (HD) and its standard deviation between each pair of histograms are shown.

Figure 6. Spearman’s correlation coefficient between rankings of patients with binning di and dii in blue, binning di and diii in red 
and binning dii and diii in black for each of the 240 textural indices.
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same number of intensity levels was used in dii and diii. Interestingly, these results are in agreement with those 
reported by Orlhac et al (2015) in PET who compared dii with diii and also with those of Leijenaar et al (2015) in 
PET who compared di with dii. Furthermore the ranking given by di and diii is consistent with the visual assess-
ment, while the ranking provided by dii is not (figure 3), exactly as previously reported in PET (Orlhac et al 2015). 
The values for nBins and bW were set to specific values, but similar patient rankings were obtained for the large 
majority of the 240 textural features when using different values of nBins (8, 16, 32, 64, 128) or bW (0.75, 1, 2 3, 4). 
The choice of di binning (relative bounds and fixed bin width) after intensity standardization appears thus to be 
the simplest approach as it does not require the setting of some absolute lower and upper bounds. For that reason, 
di was chosen for the remaining analyses.

Table 2. Mean of the AUCs obtained for the 240 textural indices according to the three experts and to the three binning indices.

Binning di Binning dii Binning diii

Expert 1 0.87 0.63 0.83

Expert 2 0.83 0.61 0.79

Expert 3 0.76 0.59 0.74

Figure 7. (a) Three different indices plotted according to region of interest (ROI) volumes (ROI_MNI3 in green, ROI_MNI5 in red): 
FLAIR GLRLM RunLengthNonUniformity (left) is highly correlated with volume; T2 GLCM Entropy (middle) is correlated with 
volume, with decreasing correlation when volume increases; T1 GLCM Homogeneity (right) is not correlated with ROI volume. (b) 
The same indices plotted by patients sorted by volumes of their ROI_MNI5, showing corresponding indices for ROI_4.5R (golden) 
and ROI_4.5L (cyan): FLAIR GLRLM RunLengthNonUniformity (left), T2 GLCM Entropy (middle), and T1 GLCM Homogeneity 
(right) have similar values for ROI_4.5R and ROI_4.5L. (c) The same indices plotted by patients sorted by volumes of their ROI_
MNI5, showing values in ROI_4.5L (cyan) and ROI_tumor (purple): FLAIR GLRLM RunLengthNonUniformity (left), T2 GLCM 
Entropy (middle) and T1 GLCM Homogeneity (right) have different values for ROI_tumor and ROI_4.5L.
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This study also shows that the volume of the ROI in which texture analysis is performed can bias many tex-
tural indices. Similar results were obtained in Sikio et al (2015) for 2D regions in MRI. This volume dependency 
may lead to erroneous conclusions in comparative studies, as it is showed in our investigations: when compar-
ing textural indices computed from two WM regions of constant volume whatever the patient (ROI_4.5R and 
ROI_4.5L), no statistically significant difference between the two regions was found whatever the textural index. 
Meanwhile the comparison of textural indices computed from a WM region of variable volume (ROI_MNI5) 
with those computed on a WM region of constant volume (ROI_4.5L) showed that 41 textural indices were sig-
nificantly different in the two regions, and among these 41 indices, 70% were previously identified as highly cor-
related with volume (|r|  >  0.7). When comparing ROI_MNI5 and ROI_4.5R, which are concentric, even more 
indices were significantly different, which may be explained by the great intersection of the two ROIs, making 
any small difference discriminant. This study also demonstrates that the comparison of textural indices must be 
performed carefully when regions have different volumes. For instance, GLRLM Gray Level Non Uniformity is 
highly correlated with volume as found in the present study and in Orlhac et al (2014). This implies that radiomic 
models proposing this index (e.g. Michoux et al 2015) should be revisited to establish its real role when compared 
with the ROI volumes.

Finally using regions with identical volume and shape, the comparison of textural indices in the WM and in 
the tumor within the same scan was powerful to separate the two kinds of tissue even for textural indices that are 

Table 3. Forty-one and eighty-one textural indices for which statistically significant differences were found between ROI_MNI5 
and ROI_4.5L (left) and between ROI_MNI5 and ROI_4.5R (right). The 29 among these 41 and 34 among these 81 indices for which 
Spearman’s correlation coefficient with volume (in absolute value) is greater than 0.7 are in bold.

Texture 

matrix

Textural index namea  

(ROI_MNI5 versus ROI_4.5L) Textural index namea (ROI_MNI5 versus ROI_4.5R)

T1 GLCM Correlation, Idmn, Idn Correlation, Idmn, Idn, ClusterShade, ClusterProminence,  

AverageIntensity, Autocorrelation, SumVariance, SumAverage

GLRLM GrayLevelNonUniformity,  

LongRunHighGrayLevelEmphasis,  

LowGrayLevelRunEmphasis,  

RunLengthNonUniformity,  

ShortRunLowGrayLevelEmphasis 

GrayLevelNonUniformity, LongRunHighGrayLevelEmphasis,  

LowGrayLevelRunEmphasis, RunLengthNonUniformity,  

ShortRunLowGrayLevelEmphasis, HighGrayLevelRunEmphasis,  

LongRunLowGrayLevelEmphasis, RunEntropy,  

ShortRunHighGrayLevelEmphasis

GLSZM HighIntensityLargeAreaEmphasis, 

LargeAreaEmphasis, ZoneVariance

HighIntensityLargeAreaEmphasis, LargeAreaEmphasis,  

ZoneVariance, GrayLevelVariance, HighIntensityEmphasis,  

HighIntensitySmallAreaEmphasis, LowIntensityEmphasis,  

LowIntensitySmallAreaEmphasis, SizeZoneVariability, ZoneEntropy

T2 GLCM Entropy, Imc1, Imc2 Entropy, Imc1, Idn, Idnm, MaximumProbability

GLRLM GrayLevelNonUniformity,  

RunLengthNonUniformity

GrayLevelNonUniformity, RunLengthNonUniformity, RunEntropy

GLSZM HighIntensityLargeAreaEmphasis, 

IntensityVariability,  

LargeAreaEmphasis,  

SizeZoneVariability, ZoneEntropy, 

ZoneVariance

HighIntensityLargeAreaEmphasis, IntensityVariability,  

SizeZoneVariability, ZoneEntropy, ZoneVariance, GrayLevelVariance, 

IntensityVariabilityNormalized

T1c GLCM Correlation, Idmn, Idn Correlation, Idmn, Idn, ClusterShade, ClusterProminence, AverageInte

nsity,Autocorrelation, SumAverage, SumVaraince

GLRLM GrayLevelNonUniformity,  

LongRunHighGrayLevelEmphasis,  

LowGrayLevelRunEmphasis,  

RunLengthNonUniformity

GrayLevelNonUniformity, LongRunHighGrayLevelEmphasis,  

LowGrayLevelRunEmphasis, RunLengthNonUniformity,  

ShortRunLowGrayLevelEmphasis, ShortRunHighGrayLevelEmphasis, 

RunEntropy, LongRunLowGrayLevelEmphasis,  

HighGrayLevelRunEmphasis

GLSZM GrayLevelVariance,  

HighIntensityLargeAreaEmphasis, 

HighIntensitySmallAreaEmphasis, 

LargeAreaEmphasis,  

SizeZoneVariability, ZoneVariance

GrayLevelVariance, HighIntensityLargeAreaEmphasis,  

HighIntensitySmallAreaEmphasis, LargeAreaEmphasis,  

SizeZoneVariability, ZoneVariance, ZoneEntropy,  

LowIntensityEmphasis, IntensityVariabilityNormalized,  

HighIntensityEmphasis

FLAIR GLCM Imc1 Idn, Idmn

GLRLM GrayLevelNonUniformity,  

RunLengthNonUniformity

GrayLevelNonUniformity, RunLengthNonUniformity, RunEntropy

GLSZM HighIntensityLargeAreaEmphasis,  

IntensityVariability,  

SizeZoneVariability

HighIntensityLargeAreaEmphasis, IntensityVariability,  

SizeZoneVariability, ZoneEntropy, GrayLevelVariance

a Naming of indices is similar to PyRadiomics naming.
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highly correlated with volume. Of note, first-order features should also be investigated to determine whether 
they could also contribute to the identification of tissue types.

Although this work was based on a rare pediatric cancer, some results can be translated to other studies. For 
instance, the standardization method has already been used in other brain diseases, and is exploitable indepen-
dently of textural analysis. The correlation of some textural indices with the volume of the ROI was analyzed in 
healthy WM and thus does not depend on the pathology and this result was already reported in PET and MR 
studies. The present study shows that this dependence can bias further comparisons. Finally the intensity binning 
focused on heterogeneity comparisons and ranking of patients (not on specificities of DIPG tumors), and the 
choice of a constant bin width seem to be primordial to quantify heterogeneity.

This study relies on datasets from 30 patients scanned with the same scanner and our results should thus be 
confirmed by multi-scanner data. The modified hWS method could also be improved to better take the GM into 
account. However, a finer segmentation would be needed and the main advantage of the current method is that 
it does not depend on any sophisticated segmentation technique. Furthermore similar investigation should be 
performed in studies outside the brain. Our present study also focused on a series of textural indices, but others 
could be used, or the same could be calculated from pre-processed images (e.g. filtered images using wavelets or 
Laplacian of Gaussian as proposed in PyRadomics). Many of the textural indices are also correlated and depend-
ing on the intended approach (e.g. tumor segmentation, tumor classification), proper index selection will be 
needed. Finally the volume dependency that was highlighted in this study could be reduced when considering 
regions with larger volumes as suggested by some results shown in figure 7. To further investigate the robustness 
of textural indices, and make results transferable across centers, other aspects need to be studied, including the 
signal to noise ratio in the images, the spatial resolution and some differences between MR acquisition sequences.

Conclusion

In conclusion, this study suggests that structural MRI radiomic quantification through textural indices can 
provide valuable information in neuro-oncological studies but shows that the processing pipeline can strongly 
affect some intra or inter-patient comparison. Therefore, we recommend: (i) to standardize MR intensities by an 
appropriate method such as the modified hWS method we propose; (ii) to use a constant bin width with relative 
bounds to quantize the standardized images before textural index calculation; (iii) to use standard regions with 

the same volume to minimize its impact in the values of textural indices.
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