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In this work, the current-voltage characteristics of a graphene-based transistor in the presence of external strain are computed with 

different methods. A simplified semi-analytic method allows fast computation of the electric parameters by granting a good accuracy. 

A more complex matrix method based on second quantized version of Schrodinger equation by means of non-equilibrium Green’s 

function is used to validate the semi-analytic one. Both models are developed to evaluate the impact of mechanical stresses on this novel 

class of nano-transistors, where they are aimed for applications in the domain of flexible electronics. 

 
Index Terms—Nanotransistors, graphene nanoribbon, deformation, non-equilibrium Green’s function, flexible electronics. 

 

I. INTRODUCTION 

arbon-based nanotransistors have recently attracted a lot 

of attention due to their remarkable electronic properties 

[1]-[3]. As one of the emerging carbon materials, graphene has 

rapidly become an ideal candidate for flexible electronic 

devices [4]. In this connection, geometric deformation of 

graphene-based active components is an important issue. 

Figs. 1 show an armchair graphene nanoribbon (aGNR), and 

an aGNR in a field-effect transistor (FET), where a strain is 

enforced on the FETs along the direction of the channel. To 

compute the drain/source current in the presence of this strain 

as a function of the voltages at the contacts, we propose two 

methods, having a different level of accuracy and complexity. 

Both methods involve a multiscale coupling between a 

macro (the electrostatic behavior of the device) and a micro-

model (the computation of the charge density in the channel). 

While the first model is formulated through Poisson equation, 

the second can be solved either with an approximated semi-

analytic solution or with a rigorous ab-initio approach. 

The first choice requires the computation of an analytic 

expression for the aGNR energy band [5]. This approach was 

proposed in [6], and is here applied for the first time to study 

the effect of deformation, by using the analytical description 

of deformed aGNR presented in [7]. Interestingly, only small 

modifications to the original method are sufficient to obtain a 

complete semi-analytic model. 

The second choice requires the numerical solution of 

Schrödinger equation in the Laplace domain, thus keeping a 

full information on the dynamic properties of the device. 

However, the current computation is done with a static 

approach, since only static characteristics of the transistors are 

computed [8]. Also in this case, a “deformed” Hamiltonian 

based on experimental data is proposed for the first time. 

The general multiscale computational approach is discussed 

in Section II. The semi-analytical compact model is described 

in Section III, and the rigorous approach based on non-

equilibriums Green’s function (NEGF) is presented in Section 

IV. The two models will be used to study the impact of 

mechanical strains on the transistor properties in Section V. 

 
(a) 

 

(b) 

 

Fig. 1. (a) Armchair graphene nanoribbon. (b) Sketch of strain on double-gate 

aGNR FET. 

II. COMPUTATIONAL APPROACH 

In this section, the multiscale coupling between the micro-

model and the macro-model is discussed. As shown in Fig. 2, 

both models solve Poisson’s equation in order to calculate the 

potential along the channel c, starting from an initial guess 

value c0. The main difference is in the micro-model block, 

necessary to compute the charge density stored in the channel. 

On one hand, in the semi-analytic micro-model we calculate 

analytical expressions for the energy bands of a graphene 

nanoribbon through a nearest-neighbor approach, which 

means that only the adjacent atoms interact with each other. 

This leads to closed form quantities (effective masses, 

densities of states), used to numerically calculate potentials 

and currents in the nano-device. On the other hand, the NEGF 

approach is a dynamical formulation based on the solution of 

Schrödinger equation, describing energy bands by using 
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proper atomic orbitals for the coupling between carbon atoms, 

and between the source/drain and the graphene. 

Once the charge is calculated with the relevant micro-

model, the Poisson equation is solved again, and the loop is 

iterated until a convergence is obtained on the channel 

potential c. Finally, the drain-source current Ids is calculated 

(by using the potential c) with a static model by considering 

the electron path inside the structure by means of creation and 

annihilation operators. 

 

 
 

Fig. 2. Diagram used in both models to compute source-drain current. 

III. COMPACT MODEL 

In this section, we propose a semi-analytical model to study 

the effect of deformation in a graphene-nanoribbon transistor. 

In the absence of any deformation, graphene energy bands can 

be calculated with tight binding model [5]. 
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. α=1,…, N defines the energy band, 

a = 2.46 Å, and V =  2.7 eV is the tight-binding hopping 

energy without deformation. k, being the reciprocal of a length, 

is the momentum variable, directed in the nanoribbon 

direction. 

Starting from (1), the effective mass, density of states and 

transmissivity coefficients Ts and Td through the source and 

drain can be derived. These parameters are used to calculate 

the current by using the Landauer–Büttiker approach [8]: 

 

  
 

   

max 0

0

  d
π

E E

s d
i c s c d c

T Tq
I f f E

T

 



  



 


    (2) 

 

where s d s dT T T T T    , q is the electronic charge, f are 

Fermi-Dirac distributions of source and drain. The integration 

is performed over all the allowed energies in (1). The surface 

potential c  can be calculated by equating the microscopic 

charges Qe/h and the macroscopic charge Qmacro [7]: 
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and Cg, Cs and Cd are the capacitances of gate, source and 

drain, Vg, Vs, Vd are the voltage of gate, source and drain, 

respectively, and VFB,i  are the relevant flat band voltages. 

This approach can be simply modified in the presence of a 

relative deformation, or strain, d (–0.1 ≤ d ≤ 0.1). d is here the 

variation of distance between adjacent atoms normalized with 

respect to the non-deformed distance. In this case the hopping 

parameters change accordingly, thus determining a shift of 

Fermi points [7]. The energy bands of the graphene 

nanoribbon can be obtained: 
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St = 1.2 and  is the Poisson’s coefficient of the graphene, 

approximately equal to 0.145 [7]. 

Due to the importance of the energy gap value on the 

transistor performance, the impact of a uniaxial strain on the 

gap is further studied. The energy gap variation with respect to 

the strain is shown in Fig. 3. 

 

 
Fig. 3. The calculated energy gap of aGNR with uniaxial strain d. 
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IV. NON EQUILIBRIUM GREEN’S FUNCTION METHOD 

An extensive treatment of NEGF can be found in [8]-[9]; 

here we give a few definitions necessary to formulate our 

problem. The general form of the Green’s function is given by: 

 

   †c

ij i jG iS c t c t         (8) 

 

where 𝑐𝑗
†(𝑡′) creates one electron at site 𝑗 at time 𝑡′ and 𝑐𝑖(𝑡) 

annihilates an electron at site 𝑖 at time 𝑡. 𝑆 is a time-ordering 

operator that guarantees causality. Using expression (8) we 

can define the retarded Green’s functions [9], 
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where 𝜃(𝑡) is the Heaviside function and  ,A B AB BA  . 

Every atom in the lattice can be indexed by a couple of 

integers, and the interaction between sites by the indices mn, 

ij. To apply (9) to the nanoribbon, the equation of motion must 

be enforced: 
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All the physics will be described by the operator 𝐻 in (10): 
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where 𝑞  is the electron charge and ℏ is the reduced Plank’s 

constant. The first term in (11) is the kinetic energy of each 

electron, whit 𝑚𝑒  being the free electron mass. The second 

term is the Coulomb potential between an electron and a 

carbon nucleus, with 𝑍𝑐  the effective atomic number and 𝜀0 

the vacuum permittivity; 𝑟𝑖 − 𝑅𝑗  is the distance between an 

electron and a nucleus, and 0a  is the maximum radius of a 

carbon atom, significant when 𝑖 = 𝑗 . The last term is the 

localized channel potential that must be found following the 

technique described in Section II.  

By using (8) and path integrals properly defined by time 

ordering operators [9], it is possible to show that current can 

be calculated by the following equation 
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where 𝚺𝑆  and 𝚺𝐷 appearing in the trace of (12) capture the 

coupling between source/drain and graphene nanoribbon, and  

the symbol 
†

 stands for the Hermitian complex conjugate. By 

performing a Laplace transformation in (10) we obtain a 

matrix equation of the following form 
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where E is the energy discretization and  is an infinitesimal 

number necessary to guarantee convergence, and 1 is the unity 

matrix. S,D are obtained from (10) as 
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where Vc is a matrix where the elements are the coupling 

energies between channel and source/drain, 𝒈𝑆,𝐷
𝑟  are the 

source/drain Green matrix, and is calculated also by (13) in the 

absence of the contacts, and with c = S/D.  

To find the matrix form of 𝑯(𝜇𝑐) we project (11) in a 𝜋 

orbital basis for the channel given by 
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where  = 2.18 is a constant enforcing orthonormality. For the 

contacts, we consider a coupling between a carbon atom and 

gold atom.  

When a strain is applied, we use the elastic energy potential 

based on Hook’s law, which is a Taylor expansion around the 

minimum of the energy bounding two atoms. This expansion, 

ignoring higher orders terms, has a parabolic form, where 

second derivative is known as the spring constant K. K is 

found by considering the Poisson ratio and the graphene 

Young’s module 𝑌 by [10] 
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The Young’s module is based on experimental data [11]. 

Also, the positions used in (11) must be modified, thus 

defining a “deformed” Hamiltonian. 

V. NUMERICAL RESULTS 

The same physical device is considered in both models. We 

plot in Fig. 4 the band diagram for the nanoribbon. Where 

dashed lines show the analytical approach used in (1), while 

solid lines come from the ab initio technic considering second 

nearest neighbors. 

Despite the differences in the highest sub-bands, which for 

transport analyses are not important, we can see a very good 

match between the models. This result guarantees that the 

orbitals chosen for the ab-initio procedure described in the 

previous sections are capturing the correct physical effects, 

and that the near-neighbor approximation used in the semi-

analytic approach is sufficiently accurate. 

In order to compute the drain-source current, we use the 

multiscale iterative coupling shown in Fig. 2. Since a ballistic 

regime is considered, the channel potential is assumed 

constant along the channel, so that the Poisson equation can be 

analytically solved. 
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Fig. 4. Band diagram of aGNR without deformation. Ab-initio procedure 

(solid lines), analytic equation (dashed lines). 

 
 

(a)

 

(b) 
 

Fig. 5. (a) Current Ids vs. drain-source voltage Vds. Vg = 0.75 V. (b) Current 

Ids vs. drain-source voltage Vgs. Vds = 0. 5 V.Semi-analytic (dashed lines) and 
ab-initio results (solid lines). No deformation (blue lines), d = 0.0658 (green 

lines), d = 0.08 (red lines), d = 0.0348 (yellow lines). 

In Fig. 5 (a) the drain-source current Ids is calculated by 

keeping a constant gate potential Vg = 0.75 V and changing the 

drain-source potential. In Fig. 5 (b) a constant gate potential 

Vds = 0.5 V is kept and the drain-source potential varies. In 

both figures, dashed lines come from the semi-analytic 

procedure, while solid lines from the ab-initio technique. By 

varying the parameter 𝑑 the difference between the models is 

very small, meaning that the semi-analytic model correct 

captures the variation of the current with a reduced 

computational complexity. 

Interestingly, the green case (d = 0.0658) has the same 

energy gap for the blue case (d = 0, as shown in Fig. 3), but 

even so we can capture some differences in their current levels. 

This difference comes from the Schottky barrier present at the 

contacts in both models. This means that, even in the presence 

of the same energy gap, the semi-analytic model is able to 

capture the effects of a strain. 

The semi-analytic method is by far faster than the ab-initio 

one. On an Intel Core i5-6300HQ @ 2.3GHzx4 and 8GiB of 

memory, the former requires around 1 minute of computation, 

while the latter takes more than 2 hours to compute 72 values 

of currents in the curves of Figs. 5. 

VI. CONCLUSION 

A simple semi-analytical compact model has been 

compared with an accurate ab initio method based on NEGF, 

yielding very good agreement. The semi-analytic model 

captures the strain effects even in the presence of Schottky 

contacts, as proved by modeling the interaction between a 

carbon and gold atom in the ab-initio technique. Furthermore, 

the semi-analytic method being much faster than the ab-initio 

one, it can be used for CAD programs for the design of new 

architectures based on graphene where strain phenomena are 

relevant. 
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