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THE INTRINSIC THEORY OF LINEARLY ELASTIC
PLATES

PHILIPPE G. CIARLET AND CRISTINEL MARDARE

ABSTRACT. In an intrinsic approach to a problem in elasticity, the only
unknown is a tensor field representing an appropriate ‘measure of strain’,
instead of the displacement vector field in the classical approach.

The objective of this paper is to study the displacement traction-
problem in the special case where the elastic body is a linearly elastic
plate of constant thickness, clamped over a portion of its lateral face. In
this respect, we first explicitly compute the intrinsic three-dimensional
boundary condition of place in terms of the Cartesian components of
the linearized strain tensor field, thus avoiding the recourse to covari-
ant components in curvilinear coordinates and providing an interesting
example of actual computation of an intrinsic boundary condition of
place in three-dimensional elasticity. Second, we perform a rigorous as-
ymptotic analysis of the three-dimensional equations as the thickness
of the plate, considered as a parameter, approaches zero. As a result,
we identify the intrinsic two-dimensional equations of a linearly elastic
plate modeled by the Kirchhoff-Love theory, with the linearized change
of metric and change of curvature tensor fields of the middle surface of
the plate as the new unknowns, instead of the displacement field of the
middle surface in the classical approach.

Keywords: Displacement-traction problem, intrinsic elasticity, intrin-
sic boundary condition of place

1. THE CLASSICAL AND INTRINSIC THREE-DIMENSIONAL EQUATIONS OF A
LINEARLY ELASTIC BODY

In what follows, Latin indices and exponents range in the set {1,2,3}
save when they are used for indexing sequences; while Greek indices and
exponents range in the set {1,2} save in the notations 9, and 9, and the
summation convention with respect to repeated indices is systematically
used. For brevity, “three-dimensional” and “two-dimensional” will be usu-
ally abbreviated as “3d” and “2d”, respectively. ‘

All functions, vector fields, etc., considered here are real. As usual, 6/ =
6% :=11ifi=jand 6/ = §Y :=01if i # j. Spaces of vector fields are denoted
by boldface letters while spaces of symmetric 3 x 3 or 2 x 2 matrix fields are
denoted by special Roman capital letters.
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2 Philippe G. Ciarlet and Cristinel Mardare

The notation E3 designates the Euclidean three-dimensional vector space,
equipped with an orthonormal basis (€*). The Euclidean inner product and
tensor product of vectors a,b € E3 are respectively denoted a-b and a ® b,
and |a| = y/a - a denotes the Euclidean norm of a vector a € E?; a unit
vector @ € [E? is one such that |a| = 1. The notation S?, resp. A3, designates
the space of all 3 x 3 symmetric, resp. antisymmetric, matrices. The notation
(ai;) designates a matrix with a;; as its component at the i-th row and j-th
column.

Given two vector spaces X,Y and a linear operator A : X — Y, the kernel
and image of A are respectively denoted Ker A and Im A. The notation
(X,]]"]|) designates a vector space X equipped with a norm ||-||, then also
denoted ||-|y. Given two normed vector spaces X and Y, the space of
continuous linear operators from X into Y is denoted £(X;Y), and an
isomorphism A : X — Y is a continuous linear operator that is one-to-one
and onto and such that its inverse operator A~ : Y — X is also continuous.

A domain in R™, n > 2, is a connected and bounded open subset of R"
whose boundary is Lipschitz-continuous in the sense of Necas [1] or Adams
[2], the set Q being locally on the same side of its boundary.

Let 2 be a domain E? with a smooth enough boundary I (specific smooth-
ness assumptions on I' will be made later). The closure Q of the set Q is
the reference configuration, assumed to be a natural state, of a homoge-
neous and isotropic linearly elastic body, thus characterized by two Lamé
constants A > 0 and p > 0. The body is subjected to applied body forces of
density (f%) : 2 — R3 and to a homogeneous boundary condition of place
(i.e., of vanishing displacement vector field) on a relatively open subset 'y
of the boundary I'; for simplicity, it is assumed that there are no applied
surface forces acting on the remaining portion I'y := I' —I'g of the boundary,
but the subsequent analysis can be easily extended to accommodate such
applied surface forces.

Let x = (z;) denote a generic point in the set Q, let 0; := 0/0z; and
dij = 0?/0x;0z;, and let (n;) : T — R3 denote the unit outer normal vector
along I'. Then, according to the well-known classical theory of 3d-linearized
elasticity, the unknown displacement u = (u;) := Q — E? should be the
solution, possibly only in a weak sense, of the following boundary value
problem, which constitutes the classical 3d-equations of linearized elasticity:

—8j(AijM€kg(u)) = fl n Q,

Uu; = 0 on Fo,
AR y(u)n; = 0 on Ty,
where

1
sij(u) = 5(6Zu3+8jul)
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respectively denote the components of the elasticity tensor of the material
constituting the linearly elastic body under consideration and the compo-
nents of the linearized strain tensor (e;;(u)) associated with the displace-
ment vector field w = (u;). The partial differential equations in 2 and the
boundary conditions on I'y constitute the 3d-equations of equilibrium while
the boundary conditions on I'y constitute the (homogeneous) 3d-boundary
condition of place.

It is classical that, if Ty # ¢ and f* € L?(Q), there exists a unique solution

ueV(Q):={ve H(Q); v=0o0n Ty}

to the variational formulation of the above boundary value problem, thanks
to Korn’s inequality and to the Lax-Milgram lemma.

It is less known that the same problem can be modeled through a com-
pletely different approach, called the intrinsic approach. In such an ap-
proach, the idea of which goes back to Chien [3, 4, 5] (who proposed it for
modeling linearly elastic plates and shells), appropriate “measures of strain”,
such as the linearized change of metric and change of curvature tensors in the
case of shells for instance, are considered to be the only unknowns, instead
of the components of the displacement vector field in the classical approach.
When applied to the above 3d-equations of linearized elasticity, the intrinsic
approach consists in considering the components

eij = ij(u)
of the linearized strain tensor field as the new, and only, unknowns.

The first mathematical justifications of this intrinsic approach to three-
dimensional elasticity was given in 2005 by Ciarlet & Ciarlet, Jr. [6], who
applied it to the “pure traction problem”, i.e., when I'g = ¢, and in 2014
by Ciarlet & Mardare [7], who applied it to genuine “displacement-traction
problems”; i.e., when 'y # ¢. What follows is a brief account of the main
results of [6, 7] (more details are provided at the beginning of Sect. 2).

Assume that the set € is a simply-connected domain in R3 and that the
open subset I'y of its boundary I' is connected and of class C*. Then the
matrix field

e = (e;;) € L*(Q)
satisfies the following intrinsic 3d-equations of linearized elasticity:
—0,(ATMe) = flinQ,
Ojeer; + Oirerj — Oyer; — Ojrey; = 01in €,
’yiﬁ(e) = 0on Yy,
ﬁiﬂ(e) = 0Oon Iy,
Aijkgekgnj = 0OonlI}y,

where (3 4) : E(Q) — H™1(Ty) and (5 5) : E(Q) — H2(Ty) are specific

continuous linear operators (the construction of which is recalled in Sect. 2),
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the space E(Q2) being defined by
E(Q) == {t = (tij) € L*(Q); Ojetri + Ditej — Oistr;
—0jte; = 0in H ()}
The matrix field e thus belongs to the space V() defined by
V() = {t € E(Q); 3,4(t) = 0 in H~ () and
Phs(®) =0 in H2(Tp)}.

The partial differential equations in €2 and the boundary conditions on
I’y constitute the intrinsic 3d-equations of equilibrium and the boundary
conditions on I'y constitute the intrinsic 3d-boundary condition of place.
The relations

8jg€ki + aikegj — &»gekj — 8jk€gi =0in H_Q(Q)

constitute the Saint-Venant compatibility conditions that a matrix field e =
(eij) € L*(Q) necessarily satisfy if there exists a vector field u = (u;) €
H'(Q) such that

1
€ij = 5(8]1% + @uj) in .

While it is classical that the Saint-Venant compatibility conditions be-
come sufficient if 2 is a simply-connected open subset of R? and the func-
tions e;; are smooth enough, say in C?(Q) in which case u € C*(), the main
contribution of [6] was to show that the Saint-Venant compatibility condi-
tions are also sufficient for the existence of such a vector field u € H*(Q) if
0 is a simply-connected domain in R? and the functions e;j are only assumed
to be in the space L?(S2).

The first contribution of [7], whose notations are re-used here for conve-

nience, was to give an explicit construction of mappings (’yiﬁ) € L(E(Q); HY(Ty))

and (ﬁiﬁ) € L(E(Q); H2(I'o)) such that, together the intrinsic 3d-boundary
conditions
(35 5(€)) =0 in H™}(T'o) and (4,4(e)) = 0 in H(Ty))
are equivalent to the homogeneous boundary condition of place
u=0on Ty

(up to an infinitesimal rigid displacement) of the classical approach; see The-
orem 2.1 for the explicit expressions of the components '7& ﬁ(e) and ﬁiﬁ(e).
Otherwise, we refer to [7] for the detailed, and fairly lengthy, derivation of
the intrinsic 3d-boundary conditions.

The second contribution of [7] was to establish that, if the domain € is
simply-connected and the set I'g is connected, there exists a unique solution

ecV(Q)
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to the variational formulation of the intrinsic 3d-equations of linearized elas-
ticity. More specifically, it was shown in [7] that in this case, the continuous
linear operator

1
Fiv= (1) € V(Q) = Flv) = (Fy(v)) = (5(8]-% +0w))) € V(@)
is one-to-one and onto, so that the inverse operator
G=(G):V(Q) = V(Q)

is also continuous (both spaces V' (§2) and V(Q2) are Hilbert spaces) and that
there exists a unique solution e = (e;;) € V() to the intrinsic variational
equations

/ AT eyt da = / fiGi(t) da for all t = (t;;) € V(Q),
Q Q

which constitute the variational formulation of the intrinsic 3d-equations of
linearized elasticity listed earlier.

The objective of the present paper is to study the special case where the
elastic body is a linearly elastic plate of thickness 2 > 0 clamped along a
portion of its lateral face, i.e., when

N =wx]—¢,e] and I'y =y X |—¢,¢[,

where w is a domain in R? and - is a non-empty relatively open subset of
Ow that is of class C*.

First, we explicitly compute the corresponding functions vi 5(e) and pﬁa s(€)
found in this case in the intrinsic 3d-boundary condition of place when the
components €;; : @ — R of the matrix field e are smooth enough functions
(see Lemma 3.1 and 3.2). Doing so thus provides an interesting example of
actual computation of an intrinsic 3d-boundary condition of place.

Second, we perform an asymptotic analysis as € — 0 of the intrinsic vari-
ational equations corresponding to this special case (see Theorem 4.1). As
expected, our analysis relies on the well-known asymptotic analysis as € — 0
of the variational formulation of the 3d-equations of the classical approach,
i.e., with the displacement vector field as the unknown; cf. Chapter 1 in [8].

In so doing, we retrieve the intrinsic 2d-equations of a linearly elastic
plate recently identified by Ciarlet & Mardare [9] by means of a completely
different approach, which directly considers the linearized change of metric
and change of curvature tensors of the middle surface @ appearing in the
2d-equations of the Kirchhoff-Love theory of a linearly elastic plate as the
unknown, instead of the displacement field of w in the classical formulation.
These “limit” equations, the somewhat lengthy expressions of which are
given at the end of Sect. 4, include in particular explicit expressions of
the intrinsic 2d-boundary conditions that correspond to the classical 2d-
boundary conditions of clamping.
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2. GENERAL EXPRESSION OF AN INTRINSIC 3D-BOUNDARY CONDITION OF
PLACE

As a preparation to the explicit computation of an intrinsic boundary
condition of place along the lateral face of a plate (cf. Sect. 3), we briefly
review the formulation, due to [7], of a “general” intrinsic 3d-boundary
condition of place along a relatively open subset I'g of the boundary I' of
a general domain in R3. Here and subsequently, it is assumed that I'y is
of class C* and that T'g can be represented by means of a single local chart
0 : u — E? (for simplicity only; the extension to the case where several
overlapping local charts are needed to cover Iy, as in [7], offers no difficulty
other than notational; it simply requires an additional index) in such a way
that there exist an open subset v C R?, an immersion 8 € C*(u;E?), and
0 > 0 with the following properties: first,

FO = 0(u),
second, the mapping © € C3(U;E?) defined by
O((:) = 0((ya)) + ysn((ya))

at each point
(yl) = ((ya)vy?)) elU:=ux ]_575[3

where 1n((yq)) denotes the unit inner normal vector at each point 8((y,)) of
the subset I'g of the boundary of 2, is a C3-diffeomorphism onto its image;
and finally,

© (u x 10,d]) € Q.

Let 51 := 0/0y; (recall that the notation 0; designates the partial deriv-
ative with respect to each Cartesian coordinate x;; cf. Sect 1). Then one
classically defines the vectors

g; = 0:©® € C*(U; E?)
of the covariant bases, the vectors g7 € C2(U;E?) of the contravariant bases
by means of the relations
and the Christoffel symbols
Ffj = 0ig, g~ eclU).

The covariant derivatives of a smooth enough vector field tig' U — R3,
and of a smooth enough tensor field €;;g' ® g’, both given by means of their
covariant components v; and €;;, are then respectively given by

- A~ k ~
vy = 8jvi—Fijvk,

~ - 0 ~ { ~
eij”k = 8keij - Fm-egj — ijeig.
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With any tensor e;; e'®e’ expressed in terms of the Cartesian coordinates
x; of the set ©(U) is then associated a tensor €;;g° @ g’ expressed in terms of
the curvilinear coordinates y; of the set U by means of the defining relation

eij(v)e’ ® € = &;5(y)g' (y) ® ¢’ (y) for all z = O(y), y € U.

Note that the mappings

1 .
v = ('I}Z) — aij(v) = 5((%’1}2' + aﬂjj) in €,

can be also written in matrix form as
v — (g45(v)) := Vv in Q,
where V4 denotes the symmetrized gradient operator in Cartesian coordi-
nates. Recall in this respect that
KerV,={v:Q — E* v(z) = a+ Bz, z € E?,
for some a € E® and B € A%},

and that the elements of Ker V4 are called infinitesimal rigid displacements.
Define the spaces

ImV, :={V,v; veC*Q)}cC(Q) cL*Q).

Then one can show (cf. [7]) that, if Q is a domain in R3, the closure Im V4
of Im V in the space L%(Q) is given by

ImV, ={Vw;vec H(Q)} c L*(Q).
It thus follows that, if 2 is a simply-connected domain, one also has
ImV, =E(Q).

Using the various notations defined above, we are now in a position to
gather in Theorem 2.1 below the main results of [7] (viz., Theorems 4.1 and
6.1 in ibid.), to which we also refer the reader for the definition of the spaces
C'(To), H~'(To), and H—*(T).

In what follows, a notation such as €,4(-,0) designates the function (y.) €
u — €43((Ya),0). Given a tensor field e with Cartesian coordinates e;;, the
notation ¢;; designates the components of the same tensor field, but this
time expressed in terms of the curvilinear coordinates associated with the
C3-diffeomorphism © associated as above with the local chart 6.

Theorem 2.1. Let Q be a domain in E3, let Ty be a non-empty, connected,
relatively open subset of OQ of class C* that can be represented by a single
local chart 0. For each tensor field e € Im Vg, let

*yiﬁ(e) = €48(+,0) in u,
Pﬁag(e) = (Bas|p T €p3lla — Cap|s + Topfss)(,0) in u.
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Then the linear operators
7is 1 Im Vg — CY(To) and pf, 5 : Im V, — C°(T'p)
defined in this fashion admit unique continuous linear extensions
ks € LOMV; H (o) and jf; € L(Im Vy; H2(T)).

Besides, these extensions possess the following properties: Given a vector
field w € HY(Q), let
e :=V,u cL*Q).
Then
3i5(€) = 0in H™' (o) and ff4(e) = 0 in H*(Ty)
if and only if
u+r =0 on I'y for some r € Ker V.

Remark 2.2. In the particular case where I'y is a portion of the plane
{(z;); 3 = 0} and e = V,u with u = (u;) € C*(Q), the boundary condi-
tions

’yiﬁ(e) =0in H !(Ty), resp. ﬁiﬁ(e) =0 in H *(Ty),

are equivalent to the boundary conditions
Oaug + 0guq = 0 on I'y,, resp. Oypuz = 0 on Iy,
since in this case

1 . .
5(0aus + 05ua) (,0) = ean(,0) = Vi 5(e) = Figle) inu
and
Dotz (- 0) = (Daess + Ipeas — zeap) (-, 0) = plg(e) = fg(e) inu.
3. EXPLICIT COMPUTATION OF AN INTRINSIC BOUNDARY CONDITION OF
PLACE ALONG THE LATERAL FACE OF A PLATE

We assume throughout this section that Q is the reference configuration
of a partially clamped plate with constant thickness 2 > 0. This means that
Q) = w x ]—¢,¢[, where w is a domain in R?, and that Ty is a portion of the
lateral face dw X |—¢, e[ of the form I'y = 9 X |—¢, e[, where vy is a portion

of Jw assumed to be parametrized in terms of its curvilinear abscissa s by
1

means of a mapping f = ( ;2 > : I — R? defined and of class C* on an

open interval I of R. Note that f : I — R? is then an immersion, since in
this case (in what follows, differentiation with respect to s is denoted by a
prime)

|f'(s)| =1forall s €l

At each point f(s), s € I, of 79, the vector

)= ( of3) )= 7
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is thus a unit tangent vector to -y, while the vector

o= (150 ) = ()

is a unit normal vector to 9. Without loss of generality, we assume that
n(s) is the unit inner normal vector to the boundary of the set  at the
same point (otherwise it suffices to replace the parameter s by —s). Then
the curvature of yg at each point f(s), s € I, is given by

k(s) :=t'(s) - n(s).
Besides, the following well-known Frenet formulas for a planar curve hold:
t'(s) = k(s)n(s) and n'(s) = —rk(s)t(s) at each s € I.
In order to be in a setting analogous to that of Sect. 2, we then let
u:=|—e,e[x I and U :=u X |—4,0[
for some small enough ¢ > 0, and we denote by
x3 € |—¢e,¢e[,s€l, and t € ]-0,0]

the three corresponding curvilinear coordinates; in other words, we have in
this case

Yy = (y17y27y3) = (x?ns?t)a and 51 = 3/8333, 52 = 8/857 53 = 8/(975,

the notations to the left of the equality signs being those of Sect. 2. This
means that the corresponding mappings 6 : u — E? and © : U — E? of
Sect. 2 are respectively given in this case by

Fi(s)
0(x3,5) = [ f?(s) | ateach (z3,s) € u,
T3
and
Fi(s) n'(s)
O(z3,s,t) = | f2(s) | +t| n%(s) | ateach (x3,s,t) € U.
I3 0

The next lemma provides explicit relations expressing an intrinsic bound-
ary condition of place in the special case considered in this section. Note
that, as expected, these relations are independent of the “transverse” vari-
able x3 € |—¢,¢].

Recall that

denote the partial derivative with respect to the Cartesian coordinate x; of
the points z € Q2.
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Lemma 3.1. The assumptions on the sets ) and I'g and the various nota-
tions being those indicated above, let there be given a tensor field
e =(e;;) €EImV, C CHQ),
so that
Tas(€) = 7as(e) and f5(e) = pls(e)

in this case (Theorem 2.1). Then:
(a) The boundary conditions

Vgﬂ(e) =0onTy

are equivalent to the relations:

ess(x) = 0,
esa(x)t%(s) = 0,
eap(x)t*(s)t°(s) = 0,

at each point © = O(x3,s,0) € Iy, (z3,s) € |—¢,¢[ x I.
(b) The boundary conditions

piﬁ(e) =0on Ty

are equivalent to the relations:
Oness3(z)n®(s) — 203e3q(z)n"(s)
Opesa(@)(n’(s)t%(s) — t7(s)n(s)) — Dseap(x)t*(s)n” (s)
Oeas(@)t*(s) (n7 (5)t7(s) = 267 () (s) ) = (s)eas(@)n® (s)n (s)

at each point © = O(x3,s,0) € Iy, (v3,s) € |—¢,¢[ x I.

I
o o o

Proof. (i) To begin with, we compute the expressions of the vector fields
g; and g/, of the Christoffel symbols Ffj, etc., at each point (z3,s,t) € U,
using the formulas recalled in Sect. 2. For the sake of brevity, the explicit
dependence on (z3,s,t) € U is only provided in the right-hand sides of
these expressions, however. In what follows, we assume without loss of
generality that 6 > 0 is chosen small enough so that (1 — tx(s)) is > 0 for
all (s,t) € I x]-4,6][.

First, the vectors of the covariant and contravariant bases are respectively
given by

0 ti(s) nl(s)
g, = 0 |, go=(1—tk(s)) tz(s) y g3 = n2(s) )
1 0 0
1_ 8 2 _ 1 t;(s) 3 _ n;(s)
g - 1 9 g (1 _ t/{(S)) t (()S) ) g - n és) 9
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so that the Christoffel symbols Ffj =0ig; - g" are given by

Filj =0, Fzzj =0if (Z’J) ¢ {(272)7 (2'3)’ (3'2>}7 F?j =0if (Zaj) # (272)7
B tk'(s) B _ K(s) B
I3, = T th(s))’ I3 =T3 = 1= tr(s)’ I3, = r(s)(1 = tr(s)).

Second, each covariant derivative of the covariant components of the ten-
sor e, viz.,
~ 5 o~ 0 ~ 0 ~
Eijlk = Ok€ij — Ueej — Uyj€ie,

is then computed using the above expressions of the Christoffel symbols.
Third, the covariant components €;; of the tensor e are computed in

terms of the Cartesian components e;; of the same tensor e by means of the

classical formulas (k, resp. ¢, designates the row, resp. column, index)

&ij(y) = exe(z) [g:(y) ® gj(y)]kﬁ at each point = = O(y), y € U,

with
000
g1®g;=|(0 0 0 |(s),
00 1
0 0 0
g1 ®gy=(1—tr(s))| 0 0 0 ](s),
th 20
g, ® g, = (9, ©gy)7,
tht 142 0
929y = (1 —tr(s))® [ 21 22 0 | (s),
0 0 0
0 0 0
g1 ®gs = 0 0 0 |(s),
nt n? 0

9329, = (91 ®g3

92®gs = (L—tr(s)) | t*n' t*n* 0 | (s),
0 0 0
932 9> = (92 93)",
ninl nln? 0
g3 ®g;= | n?nt n?n? 0 | (s).
0 0 O
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This gives
é11 = e33(x),

€12 = €91 = (1 — tK(s))esa ()t (s),
€13 = €31 = eza(T)n”(s),

€99 = (1 — tﬁ(s))2ea5(x)ta(s)tﬁ(s),
Eoz = €39 = (1 — tr(s))eap ()t (s)n (s),

€33 = eap(x)n®(s)n”(s).
Finally, using the chain rule and the above expressions, we compute those

partial derivatives Jyé€;; that appear in the covariant derivatives €;;;, found

in the expressions piﬁ(e). This gives:

5);

t%(s) + (1 — tr(s))Opesa(a)n” (s)t(s),

Orés1 = Ozesa(z)n®(s),

Daéz1 = Dpesa ()7 (5)n(s) — k(s)esa ()t (s),

Daéay = —2k(s)(1 — tr(s))eqp(x)t*(s)t?(s)
T (1= tr(5) Boeas(@)n” ()t ()t (s),

dézy = (1 — tr(s))Bzeqp ()t (s)n (s),

Doézr = —tK'(8)eap(2)t*(s)nP () + (1 — tr(s))Opeas ()t (s)t*(s)n(s)
T ()1 — tr(s))eas(@)(n%(s)n’ (5) — 2 (5)27(5))

(the last expression uses the Frenet formulas for a planar curve).
(ii) It is then easily seen that, thanks to the computations carried out in
(i), the relations (cf. Theorem 2.1)

viﬁ(e) = €48(+,0) in u,

D3611 = Oness(x)n®(
)

53512 == —H(S)ega (ac

Pig(e) = (Eag||s + Ea3)a — Cap|s + Lopfss)(+0) in
are indeed equivalent to those given in the statement of the theorem. ([

Interestingly, the intrinsic boundary condition of place of Lemma 3.1 can
be equivalently expressed in the following matrix form:

Lemma 3.2. The assumptions and notations are the same as in Lemma
3.1. Then the boundary conditions of place

fyiﬁ(e) =0 and pﬁaﬁ(e) =0on Iy

are equivalent to the following two relations between 2 X 2 symmetric matri-

' Cap(@N()(s) esa@)t(s)) _ <0 0)
esa(x)t(s) es3(x) 00
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and

) (eag(:r)ta(s)tﬁ(s) ega(x)to‘(s)>

At \  esa(x)t?(s) e33(x)

ot
0 <2e wp (@)t (s)nP (s) e3a<x>na<s>>

" Os esa(x)n®(s) 0
L9 ( 0 ew(x)ta(s)nﬁ(s))
0x3 \eas(2)t*(s)nP(s)  2e34(z)n%(s)

eaﬁ(:c)no‘(s)nﬁ(s) 0
— K(s) ( 0 0)

at each point © = O(x3,s,0) € Iy, (z3,s) € |—¢,¢[ x I.

Proof. The first matrix relation is simply a re-statement of part (a) of
Lemma 3.1 in matrix form.
Noting that

O = 0/)0x3 = B3, Oy = 8/Ds = t%(5)D, D3 = D)0t = n(5)Da,

the equality at the first row and first column of the second matrix relation,
viz.,

2 (cap@ () = 22 (cap(@)(s)n’(5))

—Fv( Jeap(x)n®(s)n” (s),

becomes (recall that (s) = x(s)n(s) and n'(s) = —r(s)#(s)):
(Ooeap(x))n” (s)t%(5)t7(s) = 205eap (@)t (s)t (S)HB(S)
+ 26(s)eas(x) (n*(s t(s)t7(s))
— K(s)eap(x)n®(s)n ( )

But, by the first matrix relation, e,s(z)t*(s)t?(s) = 0, so we are left with

Oreas(@)t(s) (n7 (5)t7(s) = 267 () (5) ) = w(s)eap(x)n(s)n" (s).

which is precisely the third relation in Lemma 3.1(b).
Likewise, the equality at the first row and second column of the second
matrix relation, viz.,

S €30 (5) = o (esala)n(5) + 5 (can(0)(n°(5)).
becomes
Opesa(a)n” (s)t%(s) = dgesa(a)t’ (s)n(s)
— K(8)es3a(2)tY(s) + Dzeap(x)t(s)n”(s).
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But, by the first matrix relation, esq(x)t“(s) = 0; so we are left with

Osesa(@) (n ()t°(s) = 17(5)n%(5) ) — Baeas(@)t®(s)n (s) =,

which is precisely the second relation in Lemma 3.1(b).
Finally, the equality at the second row and second column of the second
matrix relation becomes

Duess()n®(s) = 205es0(2)n%(s),
which is precisely the first relation in Lemma 3.1(b). ]
The well-known Kirchhoff-Love theory of a linearly elastic plate (cf., e.g.,
Chapter 1 in [8]) clamped over a portion I'g = 79 x ]—¢, €] of the boundary
of its reference configuration Q = @ x [—¢, ¢] asserts that the displacement
vector field u = (u;) € HY(Q) is a Kirchhoff-Love displacement field, in the
sense that its components are of the form
Ua (-, 73) = (o — 2304(3 and us(-, x3) = (3,
with
(o € H(w) and ¢, = 0 on 7g, and (3 € H*(w) with 3 = 9,3 = 0 on 7.
Hence in this case, the Cartesian components of the corresponding strain
tensor (e;;) € L?(2) are of the form
eap(T) = cop(a’) — z3r0p(2") and e;3(z) =0
at each
x = (2, 23) €W x [—¢,¢],
where )
Cap = §(aBCa + aagﬂ) and TaB = aa,é’C?)-

Assume that such a Kirchhoff-Love displacement field is in the space
C%(Q) so that e € C'(Q). Then Lemma 3.1 can be applied, showing that the
boundary condition ’yi s(e) =0on g and pi 5(e) = 0 on I'g are respectively
equivalent in this case to the four relations:

cap ()1 (5)t7(5) = 0,
rag(2)t%(s)t (s) = 0,
and
ras(2)t%(s)n’(s) = 0,
Ocas(@)t?(s) (n7 ()17 (s) — 247 (s)n7(s) ) = (s)cap(@'In® (s)n"(s),

at each point 2’ = f(s) € v, s € I; note that the last relation that can be
derived from Lemma 3.1(b), viz.,
)t

Do (@ 11%(5) (07 (5)t7(5) = 207 ()07 (5) ) = K(5)ras(a’In® (s)n" (5),
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at each point 2’ = f(s) € 79, s € I, is superfluous, as it is implied by the
first and second relations and the observation that 7,3 = 0,3(3 implies that
OsTap = 0gTas in W.

Remarkably, the above four intrinsic 2d-boundary conditions, derived here
under the a priori assumption that the displacement field inside the plate
is a Kirchhoff-Love one, can be justified rigorously by means of an asymp-
totic analysis of the intrinsic 3d-equations when the thickness of the plate
approaches zero.

The objective of the next section consists in carrying out such an asymp-
totic analysis (cf. in particular Theorem 4.3 below).

4. ASYMPTOTIC ANALYSIS AS THE THICKNESS OF A PLATE APPROACHES
ZERO

Let w be a domain in R? and let vy be a non-empty relatively open subset
of Ow. For each € > 0, let

OF :=w x |—¢g,¢[, I'§ := 70 X |]—¢,¢[,
let 2° = (25) denote a generic point in the set Q, let
2
0; = 0/015, 0;; := 0%/ 0x;0xs,

and, given a smooth enough vector field v* = (v5§) : Q° — E3, define the
tensor field

1 _
Vev© = (2(a§v§ + ajvf)) 07— S8

In this section, we consider a family of linearly elastic plates, with Q° as
their reference configuration, clamped over the portion I'j of their lateral
face, and subjected to applied body forces of density (f¢) : Q° — R3, for
each € > 0. We assume that all the plates are made of the same constituting
material, characterized by two Lamé constants A > 0 and u > 0.

Our objective is to perform an asymptotic analysis of the intrinsic 3d-
equations that model such plates as € approaches zero, and in this fashion,
to recover “in the limit” the intrinsic 2d-equations of a linearly elastic plate,
directly obtained in [9] from the classical 2d-equations of such a plate.

To begin with, we show that intrinsic 3d-equations similar to, but more
general than, those of [7] hold under weaker smoothness assumptions. Note
that the next theorem (applied here to a linearly elastic clamped plate)
holds as well if F, resp. I'g, is replaced by any domain in E3, resp. by
any non-empty relatively open subset of 9Q°. Also, note that the space
V(QF) as defined in Theorem 4.1(a) below coincides with the space V()
as defined in the introduction under the additional assumption that w is
simply-connected and 7 is of class C*; this is why it is licit to designate it
by the same notation.
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Theorem 4.1. (a) Given any ¢ > 0, let the sets Q° and I'y be defined as
above. Define the spaces
V(QF) = {v°ec HY(P); v*=0o0nT§}
V(QF) = {t° € L*(Q°); there exists v° € V(QF) such that t* = Vo).
Then the space (V($2); |||l 2(qe)) s a Hilbert space, and the mapping
Fe:v® e V(QF) - F°(v°) := V& € V(QF)
18 an isomorphism.
(b) Let
G = (G) := (F) L V(QF) = V().
Let .. .. . . . .
Azjk@ — )\51]5]6@ + N(ézkéﬂ + 5z€5jk)’
and let functions (f°) € L*(Q°) be given. Then the variational equations
P(QF), viz.,

/ Aijkgeigtfj da® = / SPEGE(8°) dat for all £° = (t5;) € V(Q°),
have a unique solution e® = (e;;) € V(). Besides,
e’ =Vius,

where u® € V(QF) is the unique solution to the variational equations

/ AT (T )y (VE0®) 5 daf = / fo5us dat for all v° = (v5) € V().
(c) If the solution € to the variational equations P(QF) is smooth enough,

it satisfies the following intrinsic 3d-equations:
G4 = £ i o,
F5eli + Opey; — Oger; — Ope; =0 in QF,
G:(eF) =0 on T,
Aijkgeienj =0 ondQ° —T§,
where (nj) denotes the unit outer normal vector along 09)°.

Proof. The mapping F*° : V(Q°) — V(QF) is clearly continuous, onto by
definition of the space V(€¢), and one-to-one, since

1
v® € V(Q°) and F*°(v°) = 0 implies i(afvj + 95v7) = 0in Q,
and thus v = 0 since v® = 0 on a subset 'y of 9€2¢, whose area is > 0.
Let (ef,)n2o be a Cauchy sequence in the space (V(92); |-[|lp2(q<))- Then
the sequence (v§), where v: = G°(e) € V(£F), is a Cauchy sequence,
since, by Korn’s inequality, there exists a constant C¢ such that, for all

m,n > 0,

[v5 = VallEr o) < CFlIVEvn, = Vivglle e = Cller, — eqllizae).
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Since the space (V/(€2), ||| gr1(q<)) is complete, there exists v° € V/(€2°)

such that
vé — v in HY(QF) as n — oo.
Therefore,
€S = F°(v5) — F*(v) in L2(QF) as n — oo,

since the mapping F* is continuous. This shows that the space (V(22°), [|-[|;2(qe))
is complete; consequently, the mapping G° := (F°)~! is also continuous, by
Banach open mapping theorem. This proves (a).

It is well-known that, thanks to the assumptions A > 0 and p > 0, the

fourth-order tensor (Aijke) is positive-definite, i.e., there exists a constant
C > 0 such that

Aijketkgtij > CZ |tij‘2 for all (tij) es3.
i?j
Besides, the linear form
t° e V() — foEGE(t°)da® € R
QE

is continuous since G° = (G7) € L(V(2°); V(Q°)). Therefore the variational
equations of (b) have a unique solution e® = (ef;) € V(Q2°). That Viu® = e°
is clear. This in turn implies that the components e of e satisfy the Saint-
Venant compatibility conditions

e & & € E E & g __ : E.
0y + Oiperj — Oyerj — Ojpep; = 0 in €

J (2
see, e.g., [6].
The variational equations of (b) are equivalent to the variational equations
y 1 .
/ A”Mei@(g(aivf + afvj)) dat = | fif da for all (i) € V().
Since

y 1 g
A”Mei[(§(8§vf + 8fv§)> = AUFeE 9u0f for all (vF) € V()

the Green formula shows that, if the tensor field e® is smooth enough, it
satisfies the intrinsic 3d-equations of (c). O

We next transform the variational equations P(Q2°) posed over each do-
main Qf, ¢ > 0, into variational equations, denoted P(g;€2) in the next
theorem, posed over a fixred domain 2. To this end, we make appropriate
scalings on the unknowns (the components e;; of the tensor field e°) and as-

sumptions on the data (the components f%¢ of the applied body force density
and the Lamé constants), following in this fashion a well-known procedure
in linear plate theory (cf. Chapter 1 in [8]). More specifically, we let

Q:=wx ]—1,1[, Fo =" X }—1,1[, 6Z = 8/61:1, 8ij = 62/8%8:70]-,
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where z = (x;) denotes a generic point in the set €2, and, given a smooth
enough vector field v = (v;) € Q — E3, we define the tensor field

1 _
Vv = (§<8ﬂ)] + 8]‘1)1')) 0= S3.
Then, for each € > 0, we define the mapping

7 x = (z;) = (w1, 22,73) €Q

— m°r =2 = (af

2) = (w1, 12, ew3) € QF,

1
so that xf, = x4, 2§ = ex3, 05, = Oq, 05 = —03, and we assume that there
, 3
exist functions f? € L*(Q) such that
feon® =e2f%and f3°on® =e3f3 for all € > 0,

and that the Lamé constants A > 0 and ¢ > 0 are independent of .
The following result will be the point of departure of our asymptotic
analysis.

Lemma 4.2. Define the spaces
V(Q) = {ve H (Q); v=0onTy},
V(Q) = {teL*); there exists v € V(Q) such that t = V,v}.
Then the space (V(Q); |||l 2(q)) @s a Hilbert space, and the mapping
F:veV(Q) — F(v):=VoeV(Q)

is an isomorphism. With the tensor fields e® = (ef;) € V(Q) and u® =

(uf) € V(QF) that satisfy the variational equations of Theorem 4.1(b), we
associate for each € > 0 the scaled tensor field

1
k(e) = (kij(e)) € V() defined by k;;(e) == 5—26% o7F,

and the scaled vector field

u(e) = (ui(e)) € V(Q)
defined by

1 1

uq(e) == ?ug o7® and us(e) := gug o7°.
Then the scaled tensor k(e) € V() satisfies the variational equations

(P(g;€2)), viz.,

/ AT k10(e) xij da = / F'Gi(x) dx for all x = (xi5) € V(9),
QO Q

where
G=(G):=F1:v(Q) = V(€.
Besides,

(&) = (Vo)) as(€) = 2 (Vorl)as, se) = =5 (Vou(e))as.
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Proof. The variational equations P(e;€2) simply constitute a re-writing of
the variational equations P(£2¢) after the above scalings and assumptions
are taken into account. That (V(£); ||'HL2(Q)) is a Hilbert space and that
F :V(Q) = V(Q) is an isomorphism is established in Theorem 4.1 (with
e=1). O

The next theorem constitutes the main result of this section. It shows
that, as ¢ — 0, the solutions k(c) to the variational equations P(g;Q) of
Lemma 4.2 converge in L2(Q) to a “two-dimensional limit” k. This abus
de language means that x can be entirely recovered from the solution of
2d-variational equations (denoted ((cqg), (7)) and P(w) in Theorem 4.3
below), which constitute the scaled intrinsic 2d-equations of a linearly elastic
plate (the corresponding “de-scaled” equations are briefly discussed at the
end of this section).

In what follows, (v,) = (¥*) denotes the unit inner normal vector field
along dw and (7,) = (7%) where 71 := —vy and 7 := vy denotes a unit
tangential vector field along dw (in Sect. 3, the same vector fields were re-
spectively denoted n(s) and t(s), s € I, along a portion of dw parametrized
in terms of its curvilinear abscissa s); the associated normal and tangential
derivative operators along Jw are denoted 0, := v*d, and 9, := 7%0,; the
function k : dw — R denotes the signed curvature along Odw; and finally,
dw := dzr1dzs.

Theorem 4.3. (a) Define the spaces
V(w):={n= ()= ((na),m3) € H' (w) x H*(w);
ni = Oymz =0 on Yo},
V(w) = {((dap), (5a5)) € L?(w) x L*(w); there exists n = (1;) € V(w)
1
such that do5 = 5(8/317,1 + 0ang) and sqg = Oapn3}-

Then the space (V(w), |||l 2(w)x1.2(w)) @ a Hilbert space, and the mapping

o= () € V() > o) = (5(O1a+ Bans), (Basms)) € V()

s an tsomorphism.

(b) Let k(e) = (kij(e)) € V(Q) denote for each € > 0 the unique solution
to the variational equations P(e;Q) of Lemma 4.2. Then, as ¢ — 0, the
family (k(e)) converges in the space (V(), ||l 2(q)) towards a limit k =
(Kij) of the form

A

Rag = CaB — L3TaB, Ka3d = 0, k33 = _mﬁaay

where
((cap), (rap)) € V(w)
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is the unique solution to the variational equations P(w), viz.,

1
/ aaﬁUTchaﬁ dw + 3 / aaﬁ‘”rwsag dw
w

w

= /p%i((daﬂ), (sap))) dw for all ((dap), (sap))) € V(w),

where

A

afor . _ aff soT 9 ao BT aT sBo

a = g0 288 576,
1

v [ ridm,
-1
=) = @ 1:Vw) = V().

(c) Assume that the boundary of w is of class C*> and that the solution
((cap, (rap)) to the variational equations P(w) is smooth enough. Then the
tensor field (cop) satisfies the following (scaled) intrinsic 2d-equations:

_8B(aaﬁchCUT) = »* inw,
87’0{6/30' + ao’ﬁcorr - 80046/87— - 87—ﬁ0a0— == O in w,
capm™®™® = 0 on 1,
ao-CaﬁTa(TBl/U — 2TGVB) — ncaﬂyaljﬁ = 0 on~,
ao‘ﬁwcmy/g = 0 on~y =0Jdw— ",

and the tensor field (1) satisfies the following (scaled) intrinsic 2d-equations:

Oap (%aaﬁ‘mr(w) = p3 in w,
O0aT86 — 0gTas = 0 inw,
T'aﬁTaT’B = 0 on 7,
’I“algTaVB 0 on 7y,
a®Por TopValVg = 0 on vy,
(aa(aaﬁaprgp))ug + 8T(aa5”prapva7g) = 0 onn.

Proof. For clarity, the proof is broken into five steps, numbered (i) to (v).

(i) Define the spaces (the subscript “K L” reminds that the vector fields
in the space V() are “scaled Kirchhoff-Love displacement fields”; cf.
Theorem 1.4-4 in [8])

VKL(Q) = {('I}Z) S H1<Q); v; = 0 on Ty,
1
5(81'1)3 -+ 631}2') =0in Q},
Vir(Q) = {(kag) € L?(Q); there exists (v;) € V() such that

1
Kaf = 5(651@ + aa’u/g) in Q}.



The intrinsic theory of linearly elastic plates 21
Then the space (Vir(€0); |||l 2(q)) is a Hilbert space, and the mapping

1
@w:amevmmy%ym:{§%%+%%0em@m)
s an isomorphism.
The mapping ® : V() — Vgr(Q) is clearly continuous, onto (by
definition of the space Vg (€2)), and one-to-one, since

1
v € V() and ®(v) = 0 implies 5(8¢1}j + 0jv;) =0 in Q.

Hence v = 0 in Q since v = 0 on I.
To show that Vi, () is complete, let (k)52 be a Cauchy sequence in
Vi (Q), and let v" := & 1(k") € V1 (Q), n > 0. Since then

1 1
Hi(agvg”‘ + Oav') — 5(85112 + 8avZ)HL2(Q) — 0 asm,n — oo,

1 1
| 5@ + Ba0i™) = (Duoi + Do)

= 0 for all m,n >0,
L2(Q)

the 3d-Korn’s inequality implies that the sequence (v™)22, is a Cauchy se-
quence in V(). Consequently,
K" — ®(v) as n — oo,

where v = lim, 00 vy, € Vg (Q). Hence the space Vi, (Q2) is complete,
which in turn shows that ® : Vg(Q) — Vi (Q) is an isomorphism.

(ii) Let the spaces V(w) and V(w) and the mapping ¢ : V(w) — V(w)
be defined as in the statement of the theorem. Then the mapping ¢ is
clearly continuous, onto (by definition of the space V(w)), and one-to-one

1
since n = ((Na),n3) € V(w) and ¢(n) = 0 implies 5((%775 + 0gna) = 0
and Oupn3 = 0 in w. Hence 7, = 0 since 7, = 0 on 7y and 73 = 0 since

n3 = Oynz = 0 on Y.
To show that the space V(w) is complete, let ((dy, 5, (s,5))neo be a Cauchy

sequence in the space V(w), and let n" := ¢~ 1(( 0g): (sap)) € V(w), n > 0.
Since then
1 1
Hi(aﬁngj + 80177?) - 5(8/3772 + 80!77%)”[2(0)) — 0 asm,n — oo,
10apns" — Oapnzllrzw)y — 0 asm,n — oo,
the 2d-Korn inequality implies that the sequence ((n}))se, converges in

the space {(1a) € H'(w); 7o = 0 on 7o}, and the equivalence of the norm
H.HHQ(M) with the semi-norm n — Za,,@ H(?agnHLQ(w) over the space {n €

H%*(w); n = 8,m = 0 on 7o} implies that the sequence (7)., converges in
this space. Consequently,
((dap); (sag)) = (n) where n = ((1a),n3) := lim ((1),n3) € V().

Hence the space V(w) is complete, which in turn shows that ¢ : V(w) —
V(w) is an isomorphism. This proves (a).
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(iii) The family (k(€))e>0 converges in the space V() ase — 0 to a limit
K = (Kij), where

A
N+ 2//@707
and the tensor (kag) belongs to the space Vi1, (2) and is the unique solution
to the variational equations Py (), viz.,

Koz = 0 and k33 = —

1 .
2/ G’QBUT’QUTXCV,B dz = / fl\lli(X) dz for all x = (XO‘B) € VKL(Q)’
Q Q
where
4
afor . _ _AM caBsorT 2 ao §67 at 5o
a : /\-}-2#6 077 + M(5 0°" 4676 )
(W) = @' : Vg (Q) = V().

That the family (k(g))e>0 converges with respect to the norm ||| 2(q).

hence in the space V1, (2) which is closed in IL?(£2), to a limit & of the form
indicated above is established in the proof of Theorem 1.4-1 of [8].

It is well-known that, thanks to the assumptions A > 0 and p > 0, the
fourth-order tensor (aaﬂ‘”) is positive-definite, i.e., there exists a constant
¢ > 0 such that

aaﬁwtmtag > CZ |ta5]2 for all (ta5) € S?,
a75

where S? denotes the set of all 2 x 2 symmetric matrices.
Besides, the linear form

X = (Xap) € VkL(Q2) — /in%(x) dz

is continuous since ¥ = (¥;) € L(Vk(2); Vkr(2)) by (i). Therefore the
variational equations P, (€2) have a unique solution (k.g) € Vir,(€).
(iv) It also follows from the proof of Theorem 1.4-1 in [8] that the functions
kap are of the form
1
Kag = 5(8au5 + 85’11,(1),

where the functions u, are of the form

Ua('a$3) = Ca - $36aC3,

the vector field ¢ = ((;) = ((¢a),(3) € V(w) (the space V(w) is defined in
the statement of the theorem) being the unique solution to the variational
equations

1 1 1
/ aaﬁma(@gj + 3047)5(8577a + 0amp) dw + 3 / aaBaT&,T(g@agn:s dw

_ / P duw for all ((na),73) € V(w),
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1
P’ ::/ fdas.
~1

1
Cap = 5(85@ + 0a(p) and o5 1= 0np5(3;

where

Letting

1
ERES 5(8577a + 0amp) and sqp := Oapnz for each ((n4),n3) € V(w),

then shows that ((cap), (rag)) € V(w) is the unique solution to the varia-
tional equations P(w). This proves (b).

(v) Assume that the solution ((cag), (rag)) to the variational equations
P(w) is smooth enough. Since these equations are equivalent to the varia-
tional equations

1 1
/ aaﬂcﬂ'cm—§(8ﬂ77a + 30/175) dw + g /
w

w

aaﬂm—r(ﬂ'aozﬂn?) dw = /pim‘ dw
w

for all ((na),n3) € V(w), and since

afoT

1
aaﬂUTCUTi(aBT]a + aanﬁ) =a 007'667]04’
the Green formula and the definition of the mapping () := ¢! : V(w) —
V (w) together show that ((cag), (7)) satisfies the following boundary value
problem (by construction, the components 1, depend only on (cqg), while
the component 13 depends only on (743)):

~05(a*T ) = p*  inw,

O0raCBo + OvgCar — OsaCsr — OrgCac = 0 in w,
Vo((cap)) = 0 on o,

aaﬁwcmuﬁ = 0 on"y,

aaﬁ(aaﬁ”rm) = p° inw,

O0aTBo — 08Tag = 0 in w,

V3((rap)) = Ob3((rag)) = 0 on o,
aO‘B”TTUTUQVB = 0 onm,

(aa(aaﬂ”rm))ug + aT(aa'g”prapyal/ﬁ) = 0 onmy.

Note that the second and sixth equations of the above boundary value
problem are necessarily satisfied by any element ((cqg), (cas)) of the space
V(w); cf. [11].

It was shown in [9] that, if Ow is of class C2, the boundary conditions

wa((caﬁ)) =0 on ",
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or equivalently (, = 0 on 7, are equivalent to the boundary conditions
CagTa’T’B = 0 on 7,
3Uca57a(76u” - 27‘71/6) — /icaguo‘uﬁ = 0 on ",
and that the boundary conditions

Y3((rag)) = 0ub3((rap)) = 0 on 7,

or equivalently (3 = 0,3 = 0 on 7y, are equivalent to the boundary condi-
tions
rapTm? =0 on v,

ragTaufB =0 on 7.
This proves (c). O
In order to retrieve physically significant unknowns and equations, it re-

mains to “de-scale” the unknowns and equations found in Theorem 4.3.
More specifically, let

Cap = &tzcag and 745 1= €Tag,

3
€
nobe = Eaaﬁ‘”cfﬁ and  m®%e .= —aaﬁmriﬂ

where ((cag), (rag)) € V(w) denotes the unique solution to the variational
equations P(w) found in Theorem 4.3(b), and let

€
1,E . 1, e
p T / f d.’E3,
—&

where the functions f*¢ are those appearing in Theorem 4.1. Then it imme-
diately follows from Theorem 4.3(c) that, if ((cag), (rag)) is smooth enough,
the following intrinsic 2d-equations of a linearly elastic plate are satisfied:

—é%no‘/j’g =p®° inw,

070C30 + 055C0r — 050Chr — O7pC0, =0 inw,
02/370‘7'5 =0 on v,
aUCZBTa(TBVU — 27700 — chﬂyayﬁ =0 on o,
no‘ﬁ’fug =0 onnm,

Ogﬁmo‘ﬁ’a =p>* inw,

0aThs — OToe =0 inw,
TZﬁTaT’B =0 on v,
T BTQVB = on o,
mo‘ﬁ’gl/aug =0 onn,

(Dam®P)vg 4 0r (Oam®vams) =0 on 7.
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We have thus retrieved the intrinsic 2d-equations found in [9] through a com-
pletely different approach (based on an asymptotic analysis of the intrinsic
3d-equations).

The functions CZB, resp. TZB, represent the linearized change of metric,
resp., change of curvature tensors, of the middle surface @ of the plate, while
the functions n®?¢, resp. m®?<, represent the stress resultants, resp. the
bending moments, inside the plate. The boundary value problem satisfied
by the tensor field (n®%F), resp. the tensor field (m®”¢), constitutes the
intrinsic membrane, resp. flexural, equations of a linearly elastic plate.

5. CONCLUDING REMARKS

Consider again a linearly elastic plate with Q° = @ x [—e,e],e > 0, as
its reference configuration and clamped over the portion I'§ = 79 x |—¢, €]
of its lateral face, where w is a simply-connected domain in R? and vy is a
non-empty relatively open connected subset of class C* of the boundary dw.
As recalled in the Introduction, it follows from [7] that the space

V(QF) = {ef € L3(QF); there exists v° € V(QF)
such that e® = Vv®}
as defined in Theorem 4.1(a) can be given another equivalent definition in
this case, viz.,
V(QF) = {t° € E*(Q°); iiﬁ(tg) =0 in HY(T%)
and 5 5(t°) = 0 in H2(T)},
where
E(QF) := {t° = (t5;) € L*(°);
Djothi + O5to; — Oith; — Oty = 0 in H72 (%)}

and the operators

(¥p) € LIE(Q);HTH(TG)) and (h,) € L(E(Q7); H*(T5))

are defined as recalled in Sect. 2. More specifically, the Saint- Venant com-
patibility conditions
Siine(t°) := F5yti; + 05ty — Oty — ity = 0 in H ()

are necessary, and sufficient under the additional assumptions that the do-
main QF is simply-connected (cf. [6]), for a tensor field ¢ = ({f;) € L2(0¢)
to be of the form

t° = V<o© for some v° € H'(Q)®,

and that the definition of the operators ’yiﬁ and ﬁiﬁ as given in [7] hinges
essentially on the additional assumption that o is of class C*.
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We briefly discuss in this section the effect of the asymptotic analysis
carried out in Sect. 4 from the above perspective. To begin with, we consider
the above compatibility conditions Sf;,(t°) = 0 in H=2(Q9).

The notations used below are those of Sect. 4. Under the scalings per-
formed at the beginning of Sect. 4, these compatibility conditions become

Orakipe(€) + Ovplar(€) — Osakpr(€) — Orgkac(e) =0 in H2(Q),
6(83al'€3,3(6) + 853:"6&3(6)) — 628a51<633(8) — 8331€a5(8)) =0 in H_2(Q),
agaﬁﬁg(S) + €(aggl€a3(6) — agaﬁﬁg(e)) - 835/6(10(6) =0 in H_2(Q).

Then the convergence k(c) = (k;(€)) — K = (k;;) in L2(Q) established
in Theorem 4.3(b) implies that (simply by taking the limits as ¢ — 0 in the
above relations):

Oratipo + Dopkar — Osakigr — Orpkias =0 in H2(Q),
—033kq3 = 0 in H_Q(Q),
Rakge — O3gkac =0 in H 2(Q).

It is then an easy matter to show that, together, the above “limit rela-
tions” are necessary and sufficient for a tensor field

(kij) € L?(Q) such that k3 =0 in Q
to be such that there exists a vector field
v = (v;) € H'(Q) such that kap = (Vsv)ap and ki3 = (Vev);3 in Q.
Note that the limit relations
D3kias =0 in H2(Q)

satisfied by the 2 x 2 tensor field (kag) € L*(Q) implies that there exist
functions cap € L*(w) and rop € L?*(w) such that

Kap(+, 3) = Cap — X374 in

(cf., e.g., [10]), a conclusion that was also reached, but through a different
means, in the course of the proof of Theorem 4.3.

Inserted into the limit equations d3qkgs, — O38kas = 0, the above specific
form of the functions kg implies that

3a7‘/30 = 057"ag in H_l(w),
while, inserted into the limit equations 0-nkgs +0s8Kar — Ovakgr —Orglac =
0, it implies that
8Tacﬁo' + 8UBCaT - 80040,87- - aﬂ-ﬁcaa =0 in H_Q(w)
(the factors of x3 in the resulting equations vanish thanks to the already
established relations 0,7, = 08700, Which imply that On,75, = 0gr7ae and
acrﬂrow = 8&0T5T)-
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Interestingly, the above compatibility conditions, which are necessarily
satisfied by the 2 x 2 tensor fields

r = (rap) € L*(w) and ¢ = (cag) € L2 (w)

become also sufficient, if the domain w is simply-connected, for the existence
of functions (3 € H?(w) and vector fields (¢,) € H'(w) such that

1
Taf = 3Q5C3 and Caf = 5(8/3(@ + 8a<ﬁ)

(cf. Theorem 2.4 in [11]).

Under the additional assumption that the subset vy of Ow is of class C?
and connected, it was shown in Theorem 4.1 of [9] (and already mentioned
at the end of Sect. 3) that the boundary conditions on vy appearing in
Theorem 4.3(c), viz.,

capT? =0 on 7,
8oCa,BTa(TBVJ — QTUVB) — mcaﬁuauﬁ = 0 on 7y,
and
’I“aﬂTaTB =0 on 7y,
Tagro‘yﬂ =0 on 7y,
are respectively equivalent to the boundary conditions
Cotna=0o0n7 and (3+n3=0,(C+n3) =0 on o,
for some infinitesimal rigid displacement 1 = ((74),73) : w — E3 of the form
m(z1,r2) = a1 —bize, m2(z1,72) =az + biz1, and
n3(z1,22) = az + bowy + bzze, (71,72) € w,

for some constants a; € R and b; € R.

The above boundary conditions, which are thus expressed in terms of the
restrictions to v of the tensor fields ¢ = (c4g) and r = (rqg) thus play the
same role for the intrinsic 2d-equations of Theorem 4.3(d) as that played by
the boundary conditions

~gé/3(e) =0 and ﬁﬁaﬁ(e) =0on Iy
for the intrinsic 3d-equations (Sects. 2 and 3). This observation is the basis
for the following result (for simplicity, only scaled equations are considered
here).

Theorem 5.1. Let w be a simply-connected domain in R?, and let vy be a
nonempty relatively open subset of class C? of the boundary Ow. Define the
spaces

Ki1(w) 1= { (5050 + ) € C'@): () € (@)},
X3(w) = {(Dapns) € C°@); 13 € C*(@)}.
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Then the linear operators

Vi Xu(w) — CHy0) x (1),
% Xs(w) — C%(70) x C°(0),

'ygq(da,g) = ((daﬂTO‘Tﬁ)\%, (OgdagTa(Tﬂua —2790P%) — /@daﬁyo‘yﬁ)\%),
’Y?S(SO&B) = ((SCXBTQTB)HN (SaﬁTQVﬂ)HO)’
admit unique continuous linear extensions
Y :Br(w) = H ™' (y0) x H (1),
Y3 :Ba(w) — H () x H (1),
over the spaces
Epn(w) == {(dap) € L*(W); Oradss + Orpdar
— Opadpr — Orpdas =0 € H?(w)},
Es(w) := {(5ap) € L*(w); 0aSps — 0pSac =0 € H 1 (w)}.
Besides, the space
V(w) := {((dap), (sap)) € L*(w) x L?(w); there exists
n = (1;) € V(w) such that d,p = %(8577& + 0anp) and so3 = apn3}
where
V(W)= {n=(m) = ((na),m3) € H'(w) x H*(w);
ni = Oynz =0 on Yo},
appearing in Theorem 4.3 can be equivalently defined in this case as
V(w) = {((dap), (sap)) € Err(w) x E3(w);
Fir((dag)) = 0 in H™"(30) x H*(70),
Yi((sa)) =0 in H(70) x H™*(3)}.

Proof. The proof, long and technical, is otherwise similar to that of Theo-

rems 3.2 and 4.1 in [7]; for this reason, it is omitted.
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