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THE INTRINSIC THEORY OF LINEARLY ELASTIC

PLATES

PHILIPPE G. CIARLET AND CRISTINEL MARDARE

Abstract. In an intrinsic approach to a problem in elasticity, the only
unknown is a tensor field representing an appropriate ‘measure of strain’,
instead of the displacement vector field in the classical approach.

The objective of this paper is to study the displacement traction-
problem in the special case where the elastic body is a linearly elastic
plate of constant thickness, clamped over a portion of its lateral face. In
this respect, we first explicitly compute the intrinsic three-dimensional
boundary condition of place in terms of the Cartesian components of
the linearized strain tensor field, thus avoiding the recourse to covari-
ant components in curvilinear coordinates and providing an interesting
example of actual computation of an intrinsic boundary condition of
place in three-dimensional elasticity. Second, we perform a rigorous as-
ymptotic analysis of the three-dimensional equations as the thickness
of the plate, considered as a parameter, approaches zero. As a result,
we identify the intrinsic two-dimensional equations of a linearly elastic
plate modeled by the Kirchhoff-Love theory, with the linearized change
of metric and change of curvature tensor fields of the middle surface of
the plate as the new unknowns, instead of the displacement field of the
middle surface in the classical approach.

Keywords: Displacement-traction problem, intrinsic elasticity, intrin-
sic boundary condition of place

1. The classical and intrinsic three-dimensional equations of a
linearly elastic body

In what follows, Latin indices and exponents range in the set {1, 2, 3}
save when they are used for indexing sequences; while Greek indices and
exponents range in the set {1, 2} save in the notations ∂ν and ∂τ , and the
summation convention with respect to repeated indices is systematically
used. For brevity, “three-dimensional” and “two-dimensional” will be usu-
ally abbreviated as “3d” and “2d”, respectively.

All functions, vector fields, etc., considered here are real. As usual, δji =

δij := 1 if i = j and δji = δij := 0 if i 6= j. Spaces of vector fields are denoted
by boldface letters while spaces of symmetric 3×3 or 2×2 matrix fields are
denoted by special Roman capital letters.
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The notation E3 designates the Euclidean three-dimensional vector space,
equipped with an orthonormal basis (ei). The Euclidean inner product and
tensor product of vectors a, b ∈ E3 are respectively denoted a · b and a⊗ b,
and |a| =

√
a · a denotes the Euclidean norm of a vector a ∈ E3; a unit

vector a ∈ E3 is one such that |a| = 1. The notation S3, resp. A3, designates
the space of all 3×3 symmetric, resp. antisymmetric, matrices. The notation
(aij) designates a matrix with aij as its component at the i-th row and j-th
column.

Given two vector spaces X,Y and a linear operator A : X → Y , the kernel
and image of A are respectively denoted KerA and ImA. The notation
(X, ‖·‖) designates a vector space X equipped with a norm ‖·‖, then also
denoted ‖·‖X . Given two normed vector spaces X and Y , the space of
continuous linear operators from X into Y is denoted L(X;Y ), and an
isomorphism A : X → Y is a continuous linear operator that is one-to-one
and onto and such that its inverse operator A−1 : Y → X is also continuous.

A domain in Rn, n ≥ 2, is a connected and bounded open subset of Rn
whose boundary is Lipschitz-continuous in the sense of Nečas [1] or Adams
[2], the set Ω being locally on the same side of its boundary.

Let Ω be a domain E3 with a smooth enough boundary Γ (specific smooth-
ness assumptions on Γ will be made later). The closure Ω of the set Ω is
the reference configuration, assumed to be a natural state, of a homoge-
neous and isotropic linearly elastic body, thus characterized by two Lamé
constants λ ≥ 0 and µ > 0. The body is subjected to applied body forces of
density (f i) : Ω → R3 and to a homogeneous boundary condition of place
(i.e., of vanishing displacement vector field) on a relatively open subset Γ0

of the boundary Γ; for simplicity, it is assumed that there are no applied
surface forces acting on the remaining portion Γ1 := Γ−Γ0 of the boundary,
but the subsequent analysis can be easily extended to accommodate such
applied surface forces.

Let x = (xi) denote a generic point in the set Ω, let ∂i := ∂/∂xi and
∂ij := ∂2/∂xi∂xj , and let (ni) : Γ→ R3 denote the unit outer normal vector
along Γ. Then, according to the well-known classical theory of 3d-linearized
elasticity, the unknown displacement u = (ui) := Ω → E3 should be the
solution, possibly only in a weak sense, of the following boundary value
problem, which constitutes the classical 3d-equations of linearized elasticity :

−∂j(Aijk`εk`(u)) = f i in Ω,

ui = 0 on Γ0,

Aijk`εk`(u)nj = 0 on Γ1,

where

Aijk` := λδijδk` + µ(δikδj` + δi`δjk),

εij(u) :=
1

2
(∂iuj + ∂jui)
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respectively denote the components of the elasticity tensor of the material
constituting the linearly elastic body under consideration and the compo-
nents of the linearized strain tensor (εij(u)) associated with the displace-
ment vector field u = (ui). The partial differential equations in Ω and the
boundary conditions on Γ1 constitute the 3d-equations of equilibrium while
the boundary conditions on Γ0 constitute the (homogeneous) 3d-boundary
condition of place.

It is classical that, if Γ0 6= φ and f i ∈ L2(Ω), there exists a unique solution

u ∈ V (Ω) := {v ∈H1(Ω); v = 0 on Γ0}

to the variational formulation of the above boundary value problem, thanks
to Korn’s inequality and to the Lax-Milgram lemma.

It is less known that the same problem can be modeled through a com-
pletely different approach, called the intrinsic approach. In such an ap-
proach, the idea of which goes back to Chien [3, 4, 5] (who proposed it for
modeling linearly elastic plates and shells), appropriate “measures of strain”,
such as the linearized change of metric and change of curvature tensors in the
case of shells for instance, are considered to be the only unknowns, instead
of the components of the displacement vector field in the classical approach.
When applied to the above 3d-equations of linearized elasticity, the intrinsic
approach consists in considering the components

eij := εij(u)

of the linearized strain tensor field as the new, and only, unknowns.
The first mathematical justifications of this intrinsic approach to three-

dimensional elasticity was given in 2005 by Ciarlet & Ciarlet, Jr. [6], who
applied it to the “pure traction problem”, i.e., when Γ0 = φ, and in 2014
by Ciarlet & Mardare [7], who applied it to genuine “displacement-traction
problems”, i.e., when Γ0 6= φ. What follows is a brief account of the main
results of [6, 7] (more details are provided at the beginning of Sect. 2).

Assume that the set Ω is a simply-connected domain in R3 and that the
open subset Γ0 of its boundary Γ is connected and of class C4. Then the
matrix field

e := (eij) ∈ L2(Ω)

satisfies the following intrinsic 3d-equations of linearized elasticity :

−∂j(Aijk`ek`) = f i in Ω,

∂j`eki + ∂ike`j − ∂i`ekj − ∂jke`i = 0 in Ω,

γ̃]αβ(e) = 0 on Γ0,

ρ̃]αβ(e) = 0 on Γ0,

Aijk`ek`nj = 0 on Γ1,

where (γ̃]αβ) : E(Ω) → H−1(Γ0) and (ρ̃]αβ) : E(Ω) → H−2(Γ0) are specific

continuous linear operators (the construction of which is recalled in Sect. 2),
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the space E(Ω) being defined by

E(Ω) := {t = (tij) ∈ L2(Ω); ∂j`tki + ∂ikt`j − ∂i`tkj
−∂jkt`i = 0 in H−2(Ω)}.

The matrix field e thus belongs to the space V(Ω) defined by

V(Ω) := {t ∈ E(Ω); γ̃]αβ(t) = 0 in H−1(Γ0) and

ρ̃]αβ(t) = 0 in H−2(Γ0)}.

The partial differential equations in Ω and the boundary conditions on
Γ1 constitute the intrinsic 3d-equations of equilibrium and the boundary
conditions on Γ0 constitute the intrinsic 3d-boundary condition of place.
The relations

∂j`eki + ∂ike`j − ∂i`ekj − ∂jke`i = 0 in H−2(Ω)

constitute the Saint-Venant compatibility conditions that a matrix field e =
(eij) ∈ L2(Ω) necessarily satisfy if there exists a vector field u = (ui) ∈
H1(Ω) such that

eij =
1

2
(∂jui + ∂iuj) in Ω.

While it is classical that the Saint-Venant compatibility conditions be-
come sufficient if Ω is a simply-connected open subset of R3 and the func-
tions eij are smooth enough, say in C2(Ω) in which case u ∈ C3(Ω), the main
contribution of [6] was to show that the Saint-Venant compatibility condi-
tions are also sufficient for the existence of such a vector field u ∈H1(Ω) if
Ω is a simply-connected domain in R3 and the functions eij are only assumed
to be in the space L2(Ω).

The first contribution of [7], whose notations are re-used here for conve-

nience, was to give an explicit construction of mappings (γ̃]αβ) ∈ L(E(Ω); H−1(Γ0))

and (ρ̃]αβ) ∈ L(E(Ω); H−2(Γ0)) such that, together the intrinsic 3d-boundary

conditions

(γ̃]αβ(e)) = 0 in H−1(Γ0) and (ρ̃]αβ(e)) = 0 in H−2(Γ0))

are equivalent to the homogeneous boundary condition of place

u = 0 on Γ0

(up to an infinitesimal rigid displacement) of the classical approach; see The-

orem 2.1 for the explicit expressions of the components γ̃]αβ(e) and ρ̃]αβ(e).

Otherwise, we refer to [7] for the detailed, and fairly lengthy, derivation of
the intrinsic 3d-boundary conditions.

The second contribution of [7] was to establish that, if the domain Ω is
simply-connected and the set Γ0 is connected, there exists a unique solution

e ∈ V(Ω)
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to the variational formulation of the intrinsic 3d-equations of linearized elas-
ticity. More specifically, it was shown in [7] that in this case, the continuous
linear operator

F : v = (vi) ∈ V (Ω)→ F(v) = (Fij(v)) :=
(1

2
(∂jvi + ∂ivj)

)
∈ V(Ω)

is one-to-one and onto, so that the inverse operator

G = (Gi) : V(Ω)→ V (Ω)

is also continuous (both spaces V (Ω) and V(Ω) are Hilbert spaces) and that
there exists a unique solution e = (eij) ∈ V(Ω) to the intrinsic variational
equations∫

Ω
Aijk`ek`tij dx =

∫
Ω
f iGi(t) dx for all t = (tij) ∈ V(Ω),

which constitute the variational formulation of the intrinsic 3d-equations of
linearized elasticity listed earlier.

The objective of the present paper is to study the special case where the
elastic body is a linearly elastic plate of thickness 2ε > 0 clamped along a
portion of its lateral face, i.e., when

Ω = ω × ]−ε, ε[ and Γ0 = γ0 × ]−ε, ε[ ,

where ω is a domain in R2 and γ0 is a non-empty relatively open subset of
∂ω that is of class C4.

First, we explicitly compute the corresponding functions γ]αβ(e) and ρ]αβ(e)

found in this case in the intrinsic 3d-boundary condition of place when the
components eij : Ω → R of the matrix field e are smooth enough functions
(see Lemma 3.1 and 3.2). Doing so thus provides an interesting example of
actual computation of an intrinsic 3d-boundary condition of place.

Second, we perform an asymptotic analysis as ε→ 0 of the intrinsic vari-
ational equations corresponding to this special case (see Theorem 4.1). As
expected, our analysis relies on the well-known asymptotic analysis as ε→ 0
of the variational formulation of the 3d-equations of the classical approach,
i.e., with the displacement vector field as the unknown; cf. Chapter 1 in [8].

In so doing, we retrieve the intrinsic 2d-equations of a linearly elastic
plate recently identified by Ciarlet & Mardare [9] by means of a completely
different approach, which directly considers the linearized change of metric
and change of curvature tensors of the middle surface ω appearing in the
2d-equations of the Kirchhoff-Love theory of a linearly elastic plate as the
unknown, instead of the displacement field of ω in the classical formulation.
These “limit” equations, the somewhat lengthy expressions of which are
given at the end of Sect. 4, include in particular explicit expressions of
the intrinsic 2d-boundary conditions that correspond to the classical 2d-
boundary conditions of clamping.
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2. General expression of an intrinsic 3d-boundary condition of
place

As a preparation to the explicit computation of an intrinsic boundary
condition of place along the lateral face of a plate (cf. Sect. 3), we briefly
review the formulation, due to [7], of a “general” intrinsic 3d-boundary
condition of place along a relatively open subset Γ0 of the boundary Γ of
a general domain in R3. Here and subsequently, it is assumed that Γ0 is
of class C4 and that Γ0 can be represented by means of a single local chart
θ : u → E3 (for simplicity only; the extension to the case where several
overlapping local charts are needed to cover Γ0, as in [7], offers no difficulty
other than notational; it simply requires an additional index) in such a way
that there exist an open subset u ⊂ R2, an immersion θ ∈ C4(u;E3), and
δ > 0 with the following properties: first,

Γ0 = θ(u);

second, the mapping Θ ∈ C3(U ;E3) defined by

Θ((yi)) = θ((yα)) + y3n((yα))

at each point

(yi) = ((yα), y3) ∈ U := u× ]−δ, δ[ ,

where n((yα)) denotes the unit inner normal vector at each point θ((yα)) of
the subset Γ0 of the boundary of Ω, is a C3-diffeomorphism onto its image;
and finally,

Θ (u× ]0, δ[) ⊂ Ω.

Let ∂̃i := ∂/∂yi (recall that the notation ∂i designates the partial deriv-
ative with respect to each Cartesian coordinate xi; cf. Sect 1). Then one
classically defines the vectors

gi := ∂̃iΘ ∈ C2(U ;E3)

of the covariant bases, the vectors gj ∈ C2(U ;E3) of the contravariant bases
by means of the relations

gj · gi = δji ,

and the Christoffel symbols

Γkij := ∂igj · gk ∈ C1(U).

The covariant derivatives of a smooth enough vector field ṽig
i : U → R3,

and of a smooth enough tensor field ẽijg
i⊗gj , both given by means of their

covariant components ṽi and ẽij , are then respectively given by

ṽi‖j := ∂̃j ṽi − Γkij ṽk,

ẽij‖k := ∂̃kẽij − Γ`kiẽ`j − Γ`kj ẽi`.
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With any tensor eije
i⊗ej expressed in terms of the Cartesian coordinates

xi of the set Θ(U) is then associated a tensor ẽijg
i⊗gj expressed in terms of

the curvilinear coordinates yk of the set U by means of the defining relation

eij(x)ei ⊗ ej = ẽij(y)gi(y)⊗ gj(y) for all x = Θ(y), y ∈ U.

Note that the mappings

v = (vi)→ εij(v) :=
1

2
(∂jvi + ∂ivj) in Ω,

can be also written in matrix form as

v → (εij(v)) := ∇sv in Ω,

where ∇s denotes the symmetrized gradient operator in Cartesian coordi-
nates. Recall in this respect that

Ker∇s = {v : Ω→ E3; v(x) = a+Bx, x ∈ E3,

for some a ∈ E3 and B ∈ A3},

and that the elements of Ker∇s are called infinitesimal rigid displacements.
Define the spaces

Im∇s := {∇sv; v ∈ C2(Ω)} ⊂ C1(Ω) ⊂ L2(Ω).

Then one can show (cf. [7]) that, if Ω is a domain in R3, the closure Im∇s

of Im∇s in the space L2(Ω) is given by

Im∇s = {∇sv; v ∈H1(Ω)} ⊂ L2(Ω).

It thus follows that, if Ω is a simply-connected domain, one also has

Im∇s = E(Ω).

Using the various notations defined above, we are now in a position to
gather in Theorem 2.1 below the main results of [7] (viz., Theorems 4.1 and
6.1 in ibid.), to which we also refer the reader for the definition of the spaces
C1(Γ0), H−1(Γ0), and H−2(Γ0).

In what follows, a notation such as ẽαβ(·, 0) designates the function (yα) ∈
u→ ẽαβ((yα), 0). Given a tensor field e with Cartesian coordinates eij , the
notation ẽij designates the components of the same tensor field, but this
time expressed in terms of the curvilinear coordinates associated with the
C3-diffeomorphism Θ associated as above with the local chart θ.

Theorem 2.1. Let Ω be a domain in E3, let Γ0 be a non-empty, connected,
relatively open subset of ∂Ω of class C4 that can be represented by a single
local chart θ. For each tensor field e ∈ Im∇s, let

γ]αβ(e) := ẽαβ(·, 0) in u,

ρ]αβ(e) := (ẽα3‖β + ẽβ3‖α − ẽαβ‖3 + Γ3
αβ ẽ33)(·, 0) in u.
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Then the linear operators

γ]αβ : Im∇s → C1(Γ0) and ρ]αβ : Im∇s → C0(Γ0)

defined in this fashion admit unique continuous linear extensions

γ̃]αβ ∈ L(Im∇s; H
−1(Γ0) and ρ̃]αβ ∈ L(Im∇s; H

−2(Γ0)).

Besides, these extensions possess the following properties: Given a vector
field u ∈H1(Ω), let

e := ∇su ∈ L2(Ω).

Then

γ̃]αβ(e) = 0 in H−1(Γ0) and ρ̃]αβ(e) = 0 in H−2(Γ0)

if and only if

u+ r = 0 on Γ0 for some r ∈ Ker∇s.

Remark 2.2. In the particular case where Γ0 is a portion of the plane
{(xi); x3 = 0} and e = ∇su with u = (ui) ∈ C2(Ω), the boundary condi-
tions

γ̃]αβ(e) = 0 in H−1(Γ0), resp. ρ̃]αβ(e) = 0 in H−2(Γ0),

are equivalent to the boundary conditions

∂αuβ + ∂βuα = 0 on Γ0, , resp. ∂αβu3 = 0 on Γ0,

since in this case
1

2
(∂αuβ + ∂βuα)(·, 0) = eαβ(·, 0) = γ]αβ(e) = γ̃]αβ(e) in u

and

∂αβu3(·, 0) = (∂αeβ3 + ∂βeα3 − ∂3eαβ)(·, 0) = ρ]αβ(e) = ρ̃]αβ(e) in u.

3. Explicit computation of an intrinsic boundary condition of
place along the lateral face of a plate

We assume throughout this section that Ω is the reference configuration
of a partially clamped plate with constant thickness 2ε > 0. This means that
Ω = ω × ]−ε, ε[, where ω is a domain in R2, and that Γ0 is a portion of the
lateral face ∂ω × ]−ε, ε[ of the form Γ0 = γ0 × ]−ε, ε[, where γ0 is a portion
of ∂ω assumed to be parametrized in terms of its curvilinear abscissa s by

means of a mapping f =

(
f1

f2

)
: I → R2 defined and of class C4 on an

open interval I of R. Note that f : I → R2 is then an immersion, since in
this case (in what follows, differentiation with respect to s is denoted by a
prime) ∣∣f ′(s)∣∣ = 1 for all s ∈ I.

At each point f(s), s ∈ I, of γ0, the vector

t(s) =

(
t1(s)
t2(s)

)
:= f ′(s)
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is thus a unit tangent vector to γ0, while the vector

n(s) =

(
n1(s)
n2(s)

)
:=

(
−t2(s)
t1(s)

)
is a unit normal vector to γ0. Without loss of generality, we assume that
n(s) is the unit inner normal vector to the boundary of the set Ω at the
same point (otherwise it suffices to replace the parameter s by −s). Then
the curvature of γ0 at each point f(s), s ∈ I, is given by

κ(s) := t′(s) · n(s).

Besides, the following well-known Frenet formulas for a planar curve hold:

t′(s) = κ(s)n(s) and n′(s) = −κ(s)t(s) at each s ∈ I.

In order to be in a setting analogous to that of Sect. 2, we then let

u := ]−ε, ε[× I and U := u× ]−δ, δ[

for some small enough δ > 0, and we denote by

x3 ∈ ]−ε, ε[ , s ∈ I, and t ∈ ]−δ, δ[

the three corresponding curvilinear coordinates; in other words, we have in
this case

y = (y1, y2, y3) := (x3, s, t), and ∂̃1 := ∂/∂x3, ∂̃2 := ∂/∂s, ∂̃3 := ∂/∂t,

the notations to the left of the equality signs being those of Sect. 2. This
means that the corresponding mappings θ : u → E3 and Θ : U → E3 of
Sect. 2 are respectively given in this case by

θ(x3, s) =

 f1(s)
f2(s)
x3

 at each (x3, s) ∈ u,

and

Θ(x3, s, t) =

 f1(s)
f2(s)
x3

+ t

 n1(s)
n2(s)

0

 at each (x3, s, t) ∈ U.

The next lemma provides explicit relations expressing an intrinsic bound-
ary condition of place in the special case considered in this section. Note
that, as expected, these relations are independent of the “transverse” vari-
able x3 ∈ ]−ε, ε[.

Recall that

∂i = ∂/∂xi

denote the partial derivative with respect to the Cartesian coordinate xi of
the points x ∈ Ω.
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Lemma 3.1. The assumptions on the sets Ω and Γ0 and the various nota-
tions being those indicated above, let there be given a tensor field

e = (eij) ∈ Im∇s ⊂ C1(Ω),

so that

γ̃]αβ(e) = γ]αβ(e) and ρ̃]αβ(e) = ρ]αβ(e)

in this case (Theorem 2.1). Then:
(a) The boundary conditions

γ]αβ(e) = 0 on Γ0

are equivalent to the relations:

e33(x) = 0,

e3α(x)tα(s) = 0,

eαβ(x)tα(s)tβ(s) = 0,

at each point x = Θ(x3, s, 0) ∈ Γ0, (x3, s) ∈ ]−ε, ε[× I.
(b) The boundary conditions

ρ]αβ(e) = 0 on Γ0

are equivalent to the relations:

∂αe33(x)nα(s)− 2∂3e3α(x)nα(s) = 0,

∂βe3α(x)(nβ(s)tα(s)− tβ(s)nα(s))− ∂3eαβ(x)tα(s)nβ(s) = 0,

∂σeαβ(x)tα(s)
(
nσ(s)tβ(s)− 2tσ(s)nβ(s)

)
− κ(s)eαβ(x)nα(s)nβ(s) = 0,

at each point x = Θ(x3, s, 0) ∈ Γ0, (x3, s) ∈ ]−ε, ε[× I.

Proof. (i) To begin with, we compute the expressions of the vector fields
gi and gj , of the Christoffel symbols Γkij , etc., at each point (x3, s, t) ∈ U ,
using the formulas recalled in Sect. 2. For the sake of brevity, the explicit
dependence on (x3, s, t) ∈ U is only provided in the right-hand sides of
these expressions, however. In what follows, we assume without loss of
generality that δ > 0 is chosen small enough so that (1 − tκ(s)) is > 0 for
all (s, t) ∈ I × ]−δ, δ[.

First, the vectors of the covariant and contravariant bases are respectively
given by

g1 =

 0
0
1

 , g2 = (1− tκ(s))

 t1(s)
t2(s)

0

 , g3 =

 n1(s)
n2(s)

0

 ,

g1 =

 0
0
1

 , g2 =
1

(1− tκ(s))

 t1(s)
t2(s)

0

 , g3 =

 n1(s)
n2(s)

0

 ,
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so that the Christoffel symbols Γkij = ∂igj · gk are given by

Γ1
ij = 0, Γ2

ij = 0 if (i, j) /∈ {(2, 2), (2.3), (3.2)}, Γ3
ij = 0 if (i, j) 6= (2, 2),

Γ2
22 = − tκ′(s)

(1− tκ(s))
, Γ2

23 = Γ2
32 = − κ(s)

1− tκ(s)
, Γ3

22 = κ(s)(1− tκ(s)).

Second, each covariant derivative of the covariant components of the ten-
sor e, viz.,

ẽij‖k = ∂̃kẽij − Γ`kiẽ`j − Γ`kj ẽi`,

is then computed using the above expressions of the Christoffel symbols.
Third, the covariant components ẽij of the tensor e are computed in

terms of the Cartesian components eij of the same tensor e by means of the
classical formulas (k, resp. `, designates the row, resp. column, index)

ẽij(y) = ek`(x)
[
gi(y)⊗ gj(y)

]k`
at each point x = Θ(y), y ∈ U,

with

g1 ⊗ g1 =

 0 0 0
0 0 0
0 0 1

 (s),

g1 ⊗ g2 = (1− tκ(s))

 0 0 0
0 0 0
t1 t2 0

 (s),

g2 ⊗ g1 = (g1 ⊗ g2)T ,

g2 ⊗ g2 = (1− tκ(s))2

 t1t1 t1t2 0
t2t1 t2t2 0
0 0 0

 (s),

g1 ⊗ g3 =

 0 0 0
0 0 0
n1 n2 0

 (s),

g3 ⊗ g1 = (g1 ⊗ g3)T ,

g2 ⊗ g3 = (1− tκ(s))

 t1n1 t1n2 0
t2n1 t2n2 0

0 0 0

 (s),

g3 ⊗ g2 = (g2 ⊗ g3)T ,

g3 ⊗ g3 =

 n1n1 n1n2 0
n2n1 n2n2 0

0 0 0

 (s).
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This gives
ẽ11 = e33(x),

ẽ12 = ẽ21 = (1− tκ(s))e3α(x)tα(s),

ẽ13 = ẽ31 = e3α(x)nα(s),

ẽ22 = (1− tκ(s))2eαβ(x)tα(s)tβ(s),

ẽ23 = ẽ32 = (1− tκ(s))eαβ(x)tα(s)nβ(s),

ẽ33 = eαβ(x)nα(s)nβ(s).

Finally, using the chain rule and the above expressions, we compute those
partial derivatives ∂̃kẽij that appear in the covariant derivatives ẽij‖k found

in the expressions ρ]αβ(e). This gives:

∂̃3ẽ11 = ∂αe33(x)nα(s),

∂̃3ẽ12 = −κ(s)e3α(x)tα(s) + (1− tκ(s))∂βe3α(x)nβ(s)tα(s),

∂̃1ẽ31 = ∂3e3α(x)nα(s),

∂̃2ẽ31 = ∂βe3α(x)tβ(s)nα(s)− κ(s)e3α(x)tα(s),

∂̃3ẽ22 = −2κ(s)(1− tκ(s))eαβ(x)tα(s)tβ(s)

+ (1− tκ(s))2∂σeαβ(x)nσ(s)tα(s)tβ(s),

∂̃1ẽ32 = (1− tκ(s))∂3eαβ(x)tα(s)nβ(s),

∂̃2ẽ32 = −tκ′(s)eαβ(x)tα(s)nβ(s) + (1− tκ(s))∂σeαβ(x)tσ(s)tα(s)nβ(s)

+ κ(s)(1− tκ(s))eαβ(x)(nα(s)nβ(s)− tα(s)tβ(s))

(the last expression uses the Frenet formulas for a planar curve).
(ii) It is then easily seen that, thanks to the computations carried out in

(i), the relations (cf. Theorem 2.1)

γ]αβ(e) := ẽαβ(·, 0) in u,

ρ]αβ(e) := (ẽα3‖β + ẽβ3‖α − ẽαβ‖3 + Γ3
αβ ẽ33)(·, 0) in u,

are indeed equivalent to those given in the statement of the theorem. �

Interestingly, the intrinsic boundary condition of place of Lemma 3.1 can
be equivalently expressed in the following matrix form:

Lemma 3.2. The assumptions and notations are the same as in Lemma
3.1. Then the boundary conditions of place

γ]αβ(e) = 0 and ρ]αβ(e) = 0 on Γ0

are equivalent to the following two relations between 2× 2 symmetric matri-
ces: (

eαβ(x)tα(s)tβ(s) e3α(x)tα(s)

e3α(x)tα(s) e33(x)

)
=

(
0 0

0 0

)
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and

∂

∂t

(
eαβ(x)tα(s)tβ(s) e3α(x)tα(s)

e3α(x)tα(s) e33(x)

)

=
∂

∂s

(
2eαβ(x)tα(s)nβ(s) e3α(x)nα(s)

e3α(x)nα(s) 0

)

+
∂

∂x3

(
0 eαβ(x)tα(s)nβ(s)

eαβ(x)tα(s)nβ(s) 2e3α(x)nα(s)

)

− κ(s)

(
eαβ(x)nα(s)nβ(s) 0

0 0

)
at each point x = Θ(x3, s, 0) ∈ Γ0, (x3, s) ∈ ]−ε, ε[× I.

Proof. The first matrix relation is simply a re-statement of part (a) of
Lemma 3.1 in matrix form.

Noting that

∂̃1 = ∂/∂x3 = ∂3, ∂̃2 = ∂/∂s = tα(s)∂α, ∂̃3 = ∂/∂t = nα(s)∂α,

the equality at the first row and first column of the second matrix relation,
viz.,

∂

∂t

(
eαβ(x)tα(s)tβ(s)

)
= 2

∂

∂s

(
eαβ(x)tα(s)nβ(s)

)
− κ(s)eαβ(x)nα(s)nβ(s),

becomes (recall that t′(s) = κ(s)n(s) and n′(s) = −κ(s)t(s)):

(∂σeαβ(x))nσ(s)tα(s)tβ(s) = 2∂σeαβ(x)tσ(s)tα(s)nβ(s)

+ 2κ(s)eαβ(x)
(
nα(s)nβ(s)− tα(s)tβ(s)

)
− κ(s)eαβ(x)nα(s)nβ(s).

But, by the first matrix relation, eαβ(x)tα(s)tβ(s) = 0, so we are left with

∂σeαβ(x)tα(s)
(
nσ(s)tβ(s)− 2tσ(s)nβ(s)

)
= κ(s)eαβ(x)nα(s)nβ(s),

which is precisely the third relation in Lemma 3.1(b).
Likewise, the equality at the first row and second column of the second

matrix relation, viz.,

∂

∂t
(e3α(x)tα(s)) =

∂

∂s
(e3α(x)nα(s)) +

∂

∂x3

(
eαβ(x)tα(s)nβ(s)

)
,

becomes

∂βe3α(x)nβ(s)tα(s) = ∂βe3α(x)tβ(s)nα(s)

− κ(s)e3α(x)tα(s) + ∂3eαβ(x)tα(s)nβ(s).
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But, by the first matrix relation, e3α(x)tα(s) = 0; so we are left with

∂βe3α(x)
(
nβ(s)tα(s)− tβ(s)nα(s)

)
− ∂3eαβ(x)tα(s)nβ(s) = 0,

which is precisely the second relation in Lemma 3.1(b).
Finally, the equality at the second row and second column of the second

matrix relation becomes

∂αe33(x)nα(s) = 2∂3e3α(x)nα(s),

which is precisely the first relation in Lemma 3.1(b). �

The well-known Kirchhoff-Love theory of a linearly elastic plate (cf., e.g.,
Chapter 1 in [8]) clamped over a portion Γ0 = γ0 × ]−ε, ε[ of the boundary
of its reference configuration Ω = ω × [−ε, ε] asserts that the displacement
vector field u = (ui) ∈H1(Ω) is a Kirchhoff-Love displacement field, in the
sense that its components are of the form

uα(·, x3) = ζα − x3∂αζ3 and u3(·, x3) = ζ3,

with

ζα ∈ H1(ω) and ζα = 0 on γ0, and ζ3 ∈ H2(ω) with ζ3 = ∂νζ3 = 0 on γ0.

Hence in this case, the Cartesian components of the corresponding strain
tensor (eij) ∈ L2(Ω) are of the form

eαβ(x) = cαβ(x′)− x3rαβ(x′) and ei3(x) = 0

at each

x = (x′, x3) ∈ ω × [−ε, ε] ,
where

cαβ =
1

2
(∂βζα + ∂αζβ) and rαβ = ∂αβζ3.

Assume that such a Kirchhoff-Love displacement field is in the space
C2(Ω) so that e ∈ C1(Ω). Then Lemma 3.1 can be applied, showing that the

boundary condition γ]αβ(e) = 0 on Γ0 and ρ]αβ(e) = 0 on Γ0 are respectively

equivalent in this case to the four relations:

cαβ(x′)tα(s)tβ(s) = 0,

rαβ(x′)tα(s)tβ(s) = 0,

and

rαβ(x′)tα(s)nβ(s) = 0,

∂σcαβ(x′)tα(s)
(
nσ(s)tβ(s)− 2tσ(s)nβ(s)

)
= κ(s)cαβ(x′)nα(s)nβ(s),

at each point x′ = f(s) ∈ γ0, s ∈ I; note that the last relation that can be
derived from Lemma 3.1(b), viz.,

∂σrαβ(x′)tα(s)
(
nσ(s)tβ(s)− 2tσ(s)nβ(s)

)
= κ(s)rαβ(x′)nα(s)nβ(s),
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at each point x′ = f(s) ∈ γ0, s ∈ I, is superfluous, as it is implied by the
first and second relations and the observation that rαβ = ∂αβζ3 implies that
∂σrαβ = ∂βrασ in ω.

Remarkably, the above four intrinsic 2d-boundary conditions, derived here
under the a priori assumption that the displacement field inside the plate
is a Kirchhoff-Love one, can be justified rigorously by means of an asymp-
totic analysis of the intrinsic 3d-equations when the thickness of the plate
approaches zero.

The objective of the next section consists in carrying out such an asymp-
totic analysis (cf. in particular Theorem 4.3 below).

4. Asymptotic analysis as the thickness of a plate approaches
zero

Let ω be a domain in R2 and let γ0 be a non-empty relatively open subset
of ∂ω. For each ε > 0, let

Ωε := ω × ]−ε, ε[ , Γε0 := γ0 × ]−ε, ε[ ,

let xε = (xεi ) denote a generic point in the set Ω
ε
, let

∂εi := ∂/∂xεi , ∂
ε
ij := ∂2/∂xεi∂x

ε
j ,

and, given a smooth enough vector field vε = (vεi ) : Ω
ε → E3, define the

tensor field

∇ε
sv
ε =

(
1

2
(∂εi v

ε
j + ∂εj v

ε
i )

)
: Ω

ε → S3.

In this section, we consider a family of linearly elastic plates, with Ω
ε

as
their reference configuration, clamped over the portion Γε0 of their lateral
face, and subjected to applied body forces of density (f i,ε) : Ωε → R3, for
each ε > 0. We assume that all the plates are made of the same constituting
material, characterized by two Lamé constants λ ≥ 0 and µ > 0.

Our objective is to perform an asymptotic analysis of the intrinsic 3d-
equations that model such plates as ε approaches zero, and in this fashion,
to recover “in the limit” the intrinsic 2d-equations of a linearly elastic plate,
directly obtained in [9] from the classical 2d-equations of such a plate.

To begin with, we show that intrinsic 3d-equations similar to, but more
general than, those of [7] hold under weaker smoothness assumptions. Note
that the next theorem (applied here to a linearly elastic clamped plate)
holds as well if Ωε, resp. Γε0, is replaced by any domain in E3, resp. by
any non-empty relatively open subset of ∂Ωε. Also, note that the space
V(Ωε) as defined in Theorem 4.1(a) below coincides with the space V(Ωε)
as defined in the introduction under the additional assumption that ω is
simply-connected and γ0 is of class C4; this is why it is licit to designate it
by the same notation.
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Theorem 4.1. (a) Given any ε > 0, let the sets Ωε and Γε0 be defined as
above. Define the spaces

V (Ωε) := {vε ∈H1(Ωε); vε = 0 on Γε0}
V(Ωε) := {tε ∈ L2(Ωε); there exists vε ∈ V (Ωε) such that tε = ∇ε

sv
ε}.

Then the space (V(Ωε); ‖·‖L2(Ωε)) is a Hilbert space, and the mapping

Fε : vε ∈ V (Ωε)→ Fε(vε) := ∇ε
sv
ε ∈ V(Ωε)

is an isomorphism.
(b) Let

Gε = (Gεi ) := (Fε)−1 : V(Ωε)→ V (Ωε).

Let
Aijk` = λδijδk` + µ(δikδj` + δi`δjk),

and let functions (f i,ε) ∈ L2(Ωε) be given. Then the variational equations
P(Ωε), viz.,∫

Ωε

Aijk`eεk`t
ε
ij dxε =

∫
Ωε

f i,εGεi (tε) dxε for all tε = (tεij) ∈ V(Ωε),

have a unique solution eε = (eεij) ∈ V(Ωε). Besides,

eε = ∇ε
su

ε,

where uε ∈ V (Ωε) is the unique solution to the variational equations∫
Ωε

Aijk`(∇ε
su

ε)k`(∇ε
sv
ε)ij dxε =

∫
Ωε

f i,εvεi dxε for all vε = (vεi ) ∈ V (Ωε).

(c) If the solution eε to the variational equations P(Ωε) is smooth enough,
it satisfies the following intrinsic 3d-equations:

−∂εj (Aijk`eεk`) = f i,ε in Ωε,

∂εj`e
ε
ki + ∂εike

ε
`j − ∂εi`eεkj − ∂εjkeε`i = 0 in Ωε,

Gεi (eε) = 0 on Γε0,

Aijk`eεk`n
ε
j = 0 on ∂Ωε − Γε0,

where (nεj) denotes the unit outer normal vector along ∂Ωε.

Proof. The mapping Fε : V (Ωε) → V(Ωε) is clearly continuous, onto by
definition of the space V(Ωε), and one-to-one, since

vε ∈ V (Ωε) and Fε(vε) = 0 implies
1

2
(∂εi v

ε
j + ∂εj v

ε
i ) = 0 in Ω,

and thus vε = 0 since vε = 0 on a subset Γ0 of ∂Ωε, whose area is > 0.
Let (eεn)∞n=0 be a Cauchy sequence in the space (V(Ωε); ‖·‖L2(Ωε)). Then

the sequence (vεn), where vεn := Gε(eεn) ∈ V (Ωε), is a Cauchy sequence,
since, by Korn’s inequality, there exists a constant Cε such that, for all
m,n ≥ 0,

‖vεm − vεn‖H1(Ω) ≤ C
ε‖∇ε

sv
ε
m −∇ε

sv
ε
n‖L2(Ωε) = Cε‖eεm − eεn‖L2(Ωε).
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Since the space (V (Ωε), ‖·‖H1(Ωε)) is complete, there exists vε ∈ V (Ωε)

such that

vεn → v in H1(Ωε) as n→∞.
Therefore,

eεn = Fε(vεn)→ Fε(v) in L2(Ωε) as n→∞,
since the mapping Fε is continuous. This shows that the space (V(Ωε), ‖·‖L2(Ωε))

is complete; consequently, the mapping Gε := (Fε)−1 is also continuous, by
Banach open mapping theorem. This proves (a).

It is well-known that, thanks to the assumptions λ ≥ 0 and µ > 0, the
fourth-order tensor (Aijk`) is positive-definite, i.e., there exists a constant
C > 0 such that

Aijk`tk`tij ≥ C
∑
i,j

|tij |2 for all (tij) ∈ S3.

Besides, the linear form

tε ∈ V(Ωε)→
∫

Ωε

f i,εGεi (tε) dxε ∈ R

is continuous since Gε = (Gεi ) ∈ L(V(Ωε);V (Ωε)). Therefore the variational
equations of (b) have a unique solution eε = (eεij) ∈ V(Ωε). That ∇ε

su
ε = eε

is clear. This in turn implies that the components eεij of eε satisfy the Saint-
Venant compatibility conditions

∂εj`e
ε
ki + ∂εike

ε
`j − ∂εi`eεkj − ∂εjkeε`i = 0 in Ωε;

see, e.g., [6].
The variational equations of (b) are equivalent to the variational equations∫
Ωε

Aijk`eεk`

(1

2
(∂εj v

ε
i + ∂εi v

ε
j )
)

dxε =

∫
Ωε

f i,εvεi dxε for all (vεi ) ∈ V (Ωε).

Since

Aijk`eεk`

(1

2
(∂εj v

ε
i + ∂εi v

ε
j )
)

= Aijk`eεk`∂jv
ε
i for all (vεi ) ∈ V (Ωε),

the Green formula shows that, if the tensor field eε is smooth enough, it
satisfies the intrinsic 3d-equations of (c). �

We next transform the variational equations P(Ωε) posed over each do-
main Ωε, ε > 0, into variational equations, denoted P(ε; Ω) in the next
theorem, posed over a fixed domain Ω. To this end, we make appropriate
scalings on the unknowns (the components eεij of the tensor field eε) and as-

sumptions on the data (the components f i,ε of the applied body force density
and the Lamé constants), following in this fashion a well-known procedure
in linear plate theory (cf. Chapter 1 in [8]). More specifically, we let

Ω := ω × ]−1, 1[ , Γ0 := γ0 × ]−1, 1[ , ∂i := ∂/∂xi, ∂ij := ∂2/∂xi∂xj ,
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where x = (xi) denotes a generic point in the set Ω, and, given a smooth
enough vector field v = (vi) ∈ Ω→ E3, we define the tensor field

∇sv :=
(1

2
(∂ivj + ∂jvi)

)
: Ω→ S3.

Then, for each ε > 0, we define the mapping

πε : x = (xi) = (x1, x2, x3) ∈ Ω

→ πεx = xε = (xεi ) := (x1, x2, εx3) ∈ Ωε,

so that xεα = xα, x
ε
3 = εx3, ∂

ε
α = ∂α, ∂

ε
3 =

1

ε
∂3, and we assume that there

exist functions f i ∈ L2(Ω) such that

fα,ε ◦ πε = ε2fα and f3,ε ◦ πε = ε3f3 for all ε > 0,

and that the Lamé constants λ ≥ 0 and µ > 0 are independent of ε.
The following result will be the point of departure of our asymptotic

analysis.

Lemma 4.2. Define the spaces

V (Ω) := {v ∈H1(Ω); v = 0 on Γ0},
V(Ω) := {t ∈ L2(Ω); there exists v ∈ V (Ω) such that t = ∇sv}.

Then the space (V(Ω); ‖·‖L2(Ω)) is a Hilbert space, and the mapping

F : v ∈ V (Ω)→ F(v) := ∇sv ∈ V(Ω)

is an isomorphism. With the tensor fields eε = (eεij) ∈ V(Ω) and uε =

(uεi ) ∈ V (Ωε) that satisfy the variational equations of Theorem 4.1(b), we
associate for each ε > 0 the scaled tensor field

κ(ε) = (κij(ε)) ∈ V(Ω) defined by κij(ε) :=
1

ε2
eεij ◦ πε,

and the scaled vector field

u(ε) = (ui(ε)) ∈ V (Ω)

defined by

uα(ε) :=
1

ε2
uεα ◦ πε and u3(ε) :=

1

ε
uε3 ◦ πε.

Then the scaled tensor κ(ε) ∈ V(Ω) satisfies the variational equations
(P(ε; Ω)), viz.,∫

Ω
Aijk`κk`(ε)χij dx =

∫
Ω
f iGi(χ) dx for all χ = (χij) ∈ V(Ω),

where
G = (Gi) := F−1 : V(Ω)→ V (Ω).

Besides,

καβ(ε) = (∇su(ε))αβ, κα3(ε) =
1

ε
(∇su(ε))α3, κ33(ε) =

1

ε2
(∇su(ε))33.
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Proof. The variational equations P(ε; Ω) simply constitute a re-writing of
the variational equations P(Ωε) after the above scalings and assumptions
are taken into account. That (V(Ω); ‖·‖L2(Ω)) is a Hilbert space and that

F : V (Ω) → V(Ω) is an isomorphism is established in Theorem 4.1 (with
ε = 1). �

The next theorem constitutes the main result of this section. It shows
that, as ε → 0, the solutions κ(ε) to the variational equations P(ε; Ω) of
Lemma 4.2 converge in L2(Ω) to a “two-dimensional limit” κ. This abus
de language means that κ can be entirely recovered from the solution of
2d-variational equations (denoted ((cαβ), (rαβ)) and P(ω) in Theorem 4.3
below), which constitute the scaled intrinsic 2d-equations of a linearly elastic
plate (the corresponding “de-scaled” equations are briefly discussed at the
end of this section).

In what follows, (να) = (να) denotes the unit inner normal vector field
along ∂ω and (τα) = (τα) where τ1 := −ν2 and τ2 := ν1 denotes a unit
tangential vector field along ∂ω (in Sect. 3, the same vector fields were re-
spectively denoted n(s) and t(s), s ∈ I, along a portion of ∂ω parametrized
in terms of its curvilinear abscissa s); the associated normal and tangential
derivative operators along ∂ω are denoted ∂ν := να∂α and ∂τ := τα∂α; the
function κ : ∂ω → R denotes the signed curvature along ∂ω; and finally,
dω := dx1dx2.

Theorem 4.3. (a) Define the spaces

V (ω) := {η = (ηi) = ((ηα), η3) ∈H1(ω)×H2(ω);

ηi = ∂νη3 = 0 on γ0},
V(ω) := {((dαβ), (sαβ)) ∈ L2(ω)× L2(ω); there exists η = (ηi) ∈ V (ω)

such that dαβ =
1

2
(∂βηα + ∂αηβ) and sαβ = ∂αβη3}.

Then the space (V(ω), ‖·‖L2(ω)×L2(ω)) is a Hilbert space, and the mapping

ϕ : η = (ηi) ∈ V (ω)→ ϕ(η) =
(1

2
(∂βηα + ∂αηβ), (∂αβη3)

)
∈ V(ω)

is an isomorphism.
(b) Let κ(ε) = (κij(ε)) ∈ V(Ω) denote for each ε > 0 the unique solution

to the variational equations P(ε; Ω) of Lemma 4.2. Then, as ε → 0, the
family (κ(ε)) converges in the space (V(Ω), ‖·‖L2(Ω)) towards a limit κ =

(κij) of the form

καβ = cαβ − x3rαβ, κα3 = 0, κ33 = − λ

λ+ 2µ
κσσ,

where

((cαβ), (rαβ)) ∈ V(ω)
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is the unique solution to the variational equations P(ω), viz.,∫
ω
aαβστ cστdαβ dω +

1

3

∫
ω
aαβστrστsαβ dω

=

∫
ω
piψi((dαβ), (sαβ))) dω for all ((dαβ), (sαβ))) ∈ V(ω),

where

aαβστ :=
4λµ

λ+ 2µ
δαβδστ + 2µ(δασδβτ + δατδβσ),

pi :=

∫ 1

−1
f i dx3,

ψ = (ψi) := ϕ−1 : V(ω)→ V (ω).

(c) Assume that the boundary of ω is of class C2 and that the solution
((cαβ, (rαβ)) to the variational equations P(ω) is smooth enough. Then the
tensor field (cαβ) satisfies the following (scaled) intrinsic 2d-equations:

−∂β(aαβστ cστ ) = pα in ω,

∂ταcβσ + ∂σβcατ − ∂σαcβτ − ∂τβcασ = 0 in ω,

cαβτ
ατβ = 0 on γ0,

∂σcαβτ
α(τβνσ − 2τσνβ)− κcαβνανβ = 0 on γ0,

aαβστ cστνβ = 0 on γ1 = ∂ω − γ0,

and the tensor field (rαβ) satisfies the following (scaled) intrinsic 2d-equations:

∂αβ

(1

3
aαβσρrσρ

)
= p3 in ω,

∂αrβσ − ∂βrασ = 0 in ω,

rαβτ
ατβ = 0 on γ0,

rαβτ
ανβ = 0 on γ0,

aαβσρrσρνανβ = 0 on γ1,

(∂α(aαβσρrσρ))νβ + ∂τ (aαβσρrσρνατβ) = 0 on γ1.

Proof. For clarity, the proof is broken into five steps, numbered (i) to (v).
(i) Define the spaces (the subscript “KL” reminds that the vector fields

in the space V KL(Ω) are “scaled Kirchhoff-Love displacement fields”; cf.
Theorem 1.4-4 in [8])

V KL(Ω) := {(vi) ∈H1(Ω); vi = 0 on Γ0,

1

2
(∂iv3 + ∂3vi) = 0 in Ω},

VKL(Ω) := {(καβ) ∈ L2(Ω); there exists (vi) ∈ V KL(Ω) such that

καβ =
1

2
(∂βvα + ∂αvβ) in Ω}.
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Then the space (VKL(Ω); ‖·‖L2(Ω)) is a Hilbert space, and the mapping

Φ : v = (vi) ∈ V KL(Ω)→ Φ(v) :=
(1

2
(∂αvβ + ∂βvα)

)
∈ VKL(Ω)

is an isomorphism.
The mapping Φ : V KL(Ω) → VKL(Ω) is clearly continuous, onto (by

definition of the space VKL(Ω)), and one-to-one, since

v ∈ V KL(Ω) and Φ(v) = 0 implies
1

2
(∂ivj + ∂jvi) = 0 in Ω.

Hence v = 0 in Ω since v = 0 on Γ0.
To show that VKL(Ω) is complete, let (κn)∞n=0 be a Cauchy sequence in

VKL(Ω), and let vn := Φ−1(κn) ∈ V KL(Ω), n ≥ 0. Since then∥∥∥1

2
(∂βv

m
α + ∂αv

m
β )− 1

2
(∂βv

n
α + ∂αv

n
β )
∥∥∥
L2(Ω)

→ 0 as m,n→∞,∥∥∥1

2
(∂iv

m
3 + ∂3v

m
i )− 1

2
(∂iv

n
3 + ∂3v

n
i )
∥∥∥
L2(Ω)

= 0 for all m,n ≥ 0,

the 3d-Korn’s inequality implies that the sequence (vn)∞n=0 is a Cauchy se-
quence in V (Ω). Consequently,

κn → Φ(v) as n→∞,
where v = limn→∞ vn ∈ V KL(Ω). Hence the space VKL(Ω) is complete,
which in turn shows that Φ : V KL(Ω)→ VKL(Ω) is an isomorphism.

(ii) Let the spaces V (ω) and V(ω) and the mapping ϕ : V (ω) → V(ω)
be defined as in the statement of the theorem. Then the mapping ϕ is
clearly continuous, onto (by definition of the space V(ω)), and one-to-one

since η = ((ηα), η3) ∈ V (ω) and ϕ(η) = 0 implies
1

2
(∂αηβ + ∂βηα) = 0

and ∂αβη3 = 0 in ω. Hence ηα = 0 since ηα = 0 on γ0 and η3 = 0 since
η3 = ∂νη3 = 0 on γ0.

To show that the space V(ω) is complete, let ((dnαβ, (s
n
αβ))∞n=0 be a Cauchy

sequence in the space V(ω), and let ηn := ϕ−1((dnαβ), (snαβ)) ∈ V (ω), n ≥ 0.
Since then

‖1

2
(∂βη

m
α + ∂αη

m
β )− 1

2
(∂βη

n
α + ∂αη

n
β )‖L2(ω) → 0 as m,n→∞,

‖∂αβηm3 − ∂αβηn3 ‖L2(ω) → 0 as m,n→∞,
the 2d-Korn inequality implies that the sequence ((ηnα))∞n=0 converges in
the space {(ηα) ∈ H1(ω); ηα = 0 on γ0}, and the equivalence of the norm
‖·‖H2(ω) with the semi-norm η →

∑
α,β ‖∂αβη‖L2(ω) over the space {η ∈

H2(ω); η = ∂νη = 0 on γ0} implies that the sequence (ηn3 )∞n=0 converges in
this space. Consequently,

((dnαβ), (snαβ))→ ϕ(η) where η = ((ηα), η3) := lim
n→∞

((ηnα), nn3 ) ∈ V (ω).

Hence the space V(ω) is complete, which in turn shows that ϕ : V (ω) →
V(ω) is an isomorphism. This proves (a).
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(iii) The family (κ(ε))ε>0 converges in the space V(Ω) as ε→ 0 to a limit
κ = (κij), where

κα3 = 0 and κ33 = − λ

λ+ 2µ
κσσ,

and the tensor (καβ) belongs to the space VKL(Ω) and is the unique solution
to the variational equations PKL(Ω), viz.,

1

2

∫
Ω
aαβστκστχαβ dx =

∫
Ω
f iΨi(χ) dx for all χ = (χαβ) ∈ VKL(Ω),

where

aαβστ :=
4λµ

λ+ 2µ
δαβδστ + 2µ(δασδβτ + δατδβσ)

(Ψi) := Φ−1 : VKL(Ω)→ V KL(Ω).

That the family (κ(ε))ε>0 converges with respect to the norm ‖·‖L2(Ω),

hence in the space VKL(Ω) which is closed in L2(Ω), to a limit κ of the form
indicated above is established in the proof of Theorem 1.4-1 of [8].

It is well-known that, thanks to the assumptions λ ≥ 0 and µ > 0, the
fourth-order tensor (aαβστ ) is positive-definite, i.e., there exists a constant
c > 0 such that

aαβστ tστ tαβ ≥ c
∑
α,β

|tαβ|2 for all (tαβ) ∈ S2,

where S2 denotes the set of all 2× 2 symmetric matrices.
Besides, the linear form

χ = (χαβ) ∈ VKL(Ω)→
∫

Ω
f iΨi(χ) dx

is continuous since Ψ = (Ψi) ∈ L(VKL(Ω);V KL(Ω)) by (i). Therefore the
variational equations PKL(Ω) have a unique solution (καβ) ∈ VKL(Ω).

(iv) It also follows from the proof of Theorem 1.4-1 in [8] that the functions
καβ are of the form

καβ =
1

2
(∂αuβ + ∂βuα),

where the functions uα are of the form

uα(·, x3) = ζα − x3∂αζ3,

the vector field ζ = (ζi) = ((ζα), ζ3) ∈ V (ω) (the space V (ω) is defined in
the statement of the theorem) being the unique solution to the variational
equations∫
ω
aαβστ

1

2
(∂τζσ + ∂σζτ )

1

2
(∂βηα + ∂αηβ) dω +

1

3

∫
ω
aαβστ∂στζ3∂αβη3 dω

=

∫
ω
piηi dω for all ((ηα), η3) ∈ V (ω),
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where

pi :=

∫ 1

−1
f i dx3.

Letting

cαβ :=
1

2
(∂βζα + ∂αζβ) and rαβ := ∂αβζ3,

dαβ :=
1

2
(∂βηα + ∂αηβ) and sαβ := ∂αβη3 for each ((ηα), η3) ∈ V (ω),

then shows that ((cαβ), (rαβ)) ∈ V(ω) is the unique solution to the varia-
tional equations P(ω). This proves (b).

(v) Assume that the solution ((cαβ), (rαβ)) to the variational equations
P(ω) is smooth enough. Since these equations are equivalent to the varia-
tional equations∫

ω
aαβστ cστ

1

2
(∂βηα + ∂αηβ) dω +

1

3

∫
ω
aαβστrστ∂αβη3 dω =

∫
ω
piηi dω

for all ((ηα), η3) ∈ V (ω), and since

aαβστ cστ
1

2
(∂βηα + ∂αηβ) = aαβστ cστ∂βηα,

the Green formula and the definition of the mapping (ψi) := ϕ−1 : V(ω)→
V (ω) together show that ((cαβ), (rαβ)) satisfies the following boundary value
problem (by construction, the components ψα depend only on (cαβ), while
the component ψ3 depends only on (rαβ)):

−∂β(aαβστ cστ ) = pα in ω,

∂ταcβσ + ∂σβcατ − ∂σαcβτ − ∂τβcασ = 0 in ω,

ψσ((cαβ)) = 0 on γ0,

aαβστ cστνβ = 0 on γ1,

∂αβ(aαβστrστ ) = p3 in ω,

∂αrβσ − ∂βrασ = 0 in ω,

ψ3((rαβ)) = ∂νψ3((rαβ)) = 0 on γ0,

aαβστrστνανβ = 0 on γ1,

(∂α(aαβστrστ ))νβ + ∂τ (aαβσρrσρνανβ) = 0 on γ1.

Note that the second and sixth equations of the above boundary value
problem are necessarily satisfied by any element ((cαβ), (cαβ)) of the space
V(ω); cf. [11].

It was shown in [9] that, if ∂ω is of class C2, the boundary conditions

ψσ((cαβ)) = 0 on γ0,
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or equivalently ζα = 0 on γ0, are equivalent to the boundary conditions

cαβτ
ατβ = 0 on γ0,

∂σcαβτ
α(τβνσ − 2τσνβ)− κcαβνανβ = 0 on γ0,

and that the boundary conditions

ψ3((rαβ)) = ∂νψ3((rαβ)) = 0 on γ0,

or equivalently ζ3 = ∂νζ3 = 0 on γ0, are equivalent to the boundary condi-
tions

rαβτ
ατβ = 0 on γ0,

rαβτ
ανβ = 0 on γ0.

This proves (c). �

In order to retrieve physically significant unknowns and equations, it re-
mains to “de-scale” the unknowns and equations found in Theorem 4.3.
More specifically, let

cεαβ := ε2cαβ and rεαβ := εrαβ,

nαβ,ε := εaαβστ cεστ and mαβ,ε :=
ε3

3
aαβστrεστ ,

where ((cαβ), (rαβ)) ∈ V(ω) denotes the unique solution to the variational
equations P(ω) found in Theorem 4.3(b), and let

pi,ε :=

∫ ε

−ε
f i,ε dxε3,

where the functions f i,ε are those appearing in Theorem 4.1. Then it imme-
diately follows from Theorem 4.3(c) that, if ((cαβ), (rαβ)) is smooth enough,
the following intrinsic 2d-equations of a linearly elastic plate are satisfied:

−∂εβnαβ,ε = pα,ε in ω,

∂εταc
ε
βσ + ∂εσβc

ε
ατ − ∂εσαcεβτ − ∂ετβcεασ = 0 in ω,

cεαβτ
ατβ = 0 on γ0,

∂σc
ε
αβτ

α(τβνσ − 2τσνβ)− κcεαβνανβ = 0 on γ0,

nαβ,ενβ = 0 on γ1,

∂εαβm
αβ,ε = p3,ε in ω,

∂εαr
ε
βσ − ∂εβrεασ = 0 in ω,

rεαβτ
ατβ = 0 on γ0,

rεαβτ
ανβ = 0 on γ0,

mαβ,ενανβ = 0 on γ1,

(∂αm
αβ,ε)νβ + ∂τ (∂αm

αβ,ενατβ) = 0 on γ1.
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We have thus retrieved the intrinsic 2d-equations found in [9] through a com-
pletely different approach (based on an asymptotic analysis of the intrinsic
3d-equations).

The functions cεαβ, resp. rεαβ, represent the linearized change of metric,
resp., change of curvature tensors, of the middle surface ω of the plate, while
the functions nαβ,ε, resp. mαβ,ε, represent the stress resultants, resp. the
bending moments, inside the plate. The boundary value problem satisfied
by the tensor field (nαβ,ε), resp. the tensor field (mαβ,ε), constitutes the
intrinsic membrane, resp. flexural, equations of a linearly elastic plate.

5. Concluding remarks

Consider again a linearly elastic plate with Ω
ε

= ω × [−ε, ε] , ε > 0, as
its reference configuration and clamped over the portion Γε0 = γ0 × ]−ε, ε[
of its lateral face, where ω is a simply-connected domain in R2 and γ0 is a
non-empty relatively open connected subset of class C4 of the boundary ∂ω.
As recalled in the Introduction, it follows from [7] that the space

V(Ωε) = {eε ∈ L2(Ωε); there exists vε ∈ V (Ωε)

such that eε = ∇ε
sv
ε}

as defined in Theorem 4.1(a) can be given another equivalent definition in
this case, viz.,

V(Ωε) = {tε ∈ E2(Ωε); γ̃]αβ(tε) = 0 in H−1(Γε0)

and ρ̃]αβ(tε) = 0 in H−2(Γε0)},

where

E(Ωε) := {tε = (tεij) ∈ L2(Ωε);

∂εj`t
ε
ki + ∂εikt

ε
`j − ∂εi`tεkj − ∂εjktε`i = 0 in H−2(Ωε)}

and the operators

(γ̃]αβ) ∈ L(E(Ωε);H−1(Γε0)) and (ρ̃]αβ) ∈ L(E(Ωε);H−2(Γε0))

are defined as recalled in Sect. 2. More specifically, the Saint-Venant com-
patibility conditions

Sεijk`(tε) := ∂εj`t
ε
ki + ∂εikt

ε
`j − ∂εi`tεkj − ∂εjktε`i = 0 in H−2(Ωε)

are necessary, and sufficient under the additional assumptions that the do-
main Ωε is simply-connected (cf. [6]), for a tensor field tε = (tεij) ∈ L2(Ωε)
to be of the form

tε = ∇ε
sv
ε for some vε ∈H1(Ω)ε,

and that the definition of the operators γ̃]αβ and ρ̃]αβ as given in [7] hinges

essentially on the additional assumption that γ0 is of class C4.
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We briefly discuss in this section the effect of the asymptotic analysis
carried out in Sect. 4 from the above perspective. To begin with, we consider
the above compatibility conditions Sεijk`(tε) = 0 in H−2(Ωε).

The notations used below are those of Sect. 4. Under the scalings per-
formed at the beginning of Sect. 4, these compatibility conditions become

∂τακβσ(ε) + ∂σβκατ (ε)− ∂σακβτ (ε)− ∂τβκασ(ε) = 0 in H−2(Ω),

ε(∂3ακ3β(ε) + ∂β3κα3(ε))− ε2∂αβκ33(ε)− ∂33καβ(ε)) = 0 in H−2(Ω),

∂3ακβσ(ε) + ε(∂σβκα3(ε)− ∂σακβ3(ε))− ∂3βκασ(ε) = 0 in H−2(Ω).

Then the convergence κ(ε) = (κij(ε)) → κ = (κij) in L2(Ω) established
in Theorem 4.3(b) implies that (simply by taking the limits as ε→ 0 in the
above relations):

∂τακβσ + ∂σβκατ − ∂σακβτ − ∂τβκασ = 0 in H−2(Ω),

−∂33καβ = 0 in H−2(Ω),

∂3ακβσ − ∂3βκασ = 0 in H−2(Ω).

It is then an easy matter to show that, together, the above “limit rela-
tions” are necessary and sufficient for a tensor field

(κij) ∈ L2(Ω) such that κi3 = 0 in Ω

to be such that there exists a vector field

v = (vi) ∈H1(Ω) such that καβ = (∇sv)αβ and κi3 = (∇sv)i3 in Ω.

Note that the limit relations

∂33καβ = 0 in H−2(Ω)

satisfied by the 2 × 2 tensor field (καβ) ∈ L2(Ω) implies that there exist
functions cαβ ∈ L2(ω) and rαβ ∈ L2(ω) such that

καβ(·, x3) = cαβ − x3rαβ in Ω

(cf., e.g., [10]), a conclusion that was also reached, but through a different
means, in the course of the proof of Theorem 4.3.

Inserted into the limit equations ∂3ακβσ − ∂3βκασ = 0, the above specific
form of the functions καβ implies that

∂αrβσ = ∂βrασ in H−1(ω),

while, inserted into the limit equations ∂τακβσ+∂σβκατ−∂σακβτ−∂τβκασ =
0, it implies that

∂ταcβσ + ∂σβcατ − ∂σαcβτ − ∂τβcασ = 0 in H−2(ω)

(the factors of x3 in the resulting equations vanish thanks to the already
established relations ∂αrβσ = ∂βrασ, which imply that ∂ατrβσ = ∂βτrασ and
∂σβrατ = ∂ασrβτ ).
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Interestingly, the above compatibility conditions, which are necessarily
satisfied by the 2× 2 tensor fields

r = (rαβ) ∈ L2(ω) and c = (cαβ) ∈ L2(ω)

become also sufficient, if the domain ω is simply-connected, for the existence
of functions ζ3 ∈ H2(ω) and vector fields (ζα) ∈H1(ω) such that

rαβ = ∂αβζ3 and cαβ =
1

2
(∂βζα + ∂αζβ)

(cf. Theorem 2.4 in [11]).
Under the additional assumption that the subset γ0 of ∂ω is of class C2

and connected, it was shown in Theorem 4.1 of [9] (and already mentioned
at the end of Sect. 3) that the boundary conditions on γ0 appearing in
Theorem 4.3(c), viz.,

cαβτ
ατβ = 0 on γ0,

∂σcαβτ
α(τβνσ − 2τσνβ)− κcαβνανβ = 0 on γ0,

and
rαβτ

ατβ = 0 on γ0,

rαβτ
ανβ = 0 on γ0,

are respectively equivalent to the boundary conditions

ζα + ηα = 0 on γ0 and ζ3 + η3 = ∂ν(ζ3 + η3) = 0 on γ0,

for some infinitesimal rigid displacement η = ((ηα), η3) : ω → E3 of the form

η1(x1, x2) = a1 − b1x2, η2(x1, x2) = a2 + b1x1, and

η3(x1, x2) = a3 + b2x1 + b3x2, (x1, x2) ∈ ω,
for some constants ai ∈ R and bi ∈ R.

The above boundary conditions, which are thus expressed in terms of the
restrictions to γ0 of the tensor fields c = (cαβ) and r = (rαβ) thus play the
same role for the intrinsic 2d-equations of Theorem 4.3(d) as that played by
the boundary conditions

γ̃]αβ(e) = 0 and ρ̃]αβ(e) = 0 on Γ0

for the intrinsic 3d-equations (Sects. 2 and 3). This observation is the basis
for the following result (for simplicity, only scaled equations are considered
here).

Theorem 5.1. Let ω be a simply-connected domain in R2, and let γ0 be a
nonempty relatively open subset of class C2 of the boundary ∂ω. Define the
spaces

XH(ω) :=
{(1

2
(∂βηα + ∂αηβ)

)
∈ C1(ω); (ηα) ∈ C2(ω)

}
,

X3(ω) := {(∂αβη3) ∈ C0(ω); η3 ∈ C2(ω)}.
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Then the linear operators

γ[H : XH(ω) → C1(γ0)× C0(γ0),

γ[3 : X3(ω) → C0(γ0)× C0(γ0),

defined by

γ[H(dαβ) = ((dαβτ
ατβ)|γ0 , (∂σdαβτα(τβνσ − 2τσνβ)− κdαβνανβ)|γ0),

γ[3(sαβ) = ((sαβτ
ατβ)|γ0 , (sαβτανβ)|γ0),

admit unique continuous linear extensions

γ̃[H : EH(ω) → H−1(γ0)×H−2(γ0),

γ̃[3 : E3(ω) → H−1(γ0)×H−1(γ0),

over the spaces

EH(ω) := {(dαβ) ∈ L2(ω); ∂ταdβσ + ∂σβdατ

− ∂σαdβτ − ∂τβdασ = 0 ∈ H−2(ω)},
E3(ω) := {(sαβ) ∈ L2(ω); ∂αsβσ − ∂βsασ = 0 ∈ H−1(ω)}.

Besides, the space

V(ω) := {((dαβ), (sαβ)) ∈ L2(ω)× L2(ω); there exists

η = (ηi) ∈ V (ω) such that dαβ = 1
2(∂βηα + ∂αηβ) and sαβ = ∂αβη3}

where

V (ω) := {η = (ηi) = ((ηα), η3) ∈H1(ω)×H2(ω);

ηi = ∂νη3 = 0 on γ0},

appearing in Theorem 4.3 can be equivalently defined in this case as

V(ω) := {((dαβ), (sαβ)) ∈ EH(ω)× E3(ω);

γ̃[H((dαβ)) = 0 in H−1(γ0)×H−2(γ0),

γ̃[3((sαβ)) = 0 in H−1(γ0)×H−1(γ0)}.

Proof. The proof, long and technical, is otherwise similar to that of Theo-
rems 3.2 and 4.1 in [7]; for this reason, it is omitted. �
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