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for Low-Dispersive Artificial Materials:

Modelling and Properties
Guido Valerio, Member, IEEE, Fatemeh Ghasemifard, Student Member, IEEE,

Zvonimir Sipus, Senior Member, IEEE, and Oscar Quevedo-Teruel, Senior Member, IEEE

Abstract—We study the wave propagation between two glide-
symmetric metallic plates drilled with periodic rectangular holes.
A mode-matching method is proposed in order to derive ef-
ficiently the dispersive properties of these periodic structures.
The method takes advantage of the higher symmetry of the
structure reducing the computational cost by enforcing boundary
conditions on the field on only one of the two surfaces. Physical
insight on specific symmetry properties of Floquet harmonics in
glide-symmetric structures is also gained. The code is validated
with commercial software assessing its accuracy when varying the
most influential/critical parameters. We confirm the potential of
glide-symmetric structures to tune the effective refractive index.
Specifically, we demonstrate that glide-symmetric structures with
rectangular shapes can be employed to synthesize anisotropic
refractive indexes with a large band of operation, which makes
such metasurface structures applicable for realization of UWB
planar lenses.

Index Terms—Metasurfaces, glide symmetry, higher symme-
tries, periodic structures, mode matching, numerical methods,
dispersive analyses.

I. INTRODUCTION

ARTIFICIAL materials made by periodic lattices are an
established solution to control wave-propagation features

of Bloch modes leading to rich properties for guided and
radiating waves [1]-[5]. After the intense work of the last
decades, recent research in the area of metamaterials and meta-
surfaces aims at the synthesis of desired dispersion diagrams.
For instance, protected propagation of confined edge waves
between artificial materials can be obtained with non-trivial
topological dispersion surfaces [6], [7]. Extreme frequency
dispersion can be obtained by suitably coupling different
periodic lines [8], [9], with applications to accelerators and
compact resonators. These results are achieved by adding finer
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details to the inner structure of each unit cell of periodicity
[10].

Specifically, symmetries can provide a number of interesting
dispersive effects. They can be defined with respect either to
space or time operators. The latter requires a lattice alternating
lossy and gain scatterers [11] and are not practical for current
low-cost and low-loss devices in mass production.

Instead, the presence of higher symmetries involving only
spatial operations can simplify the practical realizations of
low-cost devices, and still provide very interesting dispersive
properties not commonly find in periodic structures. Spatial
higher symmetries in periodic structures can be of different
kinds: the most used in electromagnetics are the twist and the
glide types [12], [13]. While the former involves a symmetry
under a translation followed by a rotation, the latter involves a
symmetry under a translation followed by a mirror, thus being
compatible with fully planar geometries of use in mm-wave
components and integrated-circuit technology [14], [15].

More specifically, the glide operator is a geometrical trans-
formation composed by a translation along one or more
directions and a mirroring with respect to the so-called glide
plane. To fix the ideas, in Fig. 1(a), two 2-D glide-symmetric
metallic surfaces with squared holes are shown. They are
invariant under the glide operation Gd:{

(x, y) →
(
x+ d

2 , y + d
2

)
z → −z

(1)

if the z = 0 plane is in the middle of the two surfaces.
Note, G2

d = Td, where Td is a translation of d along both
x and y. For this reason, a glide-symmetric structure is also
periodic. The unit cell of Fig. 1(a) is given in Fig. 1(b). When
rectangular-shape holes are assumed, the cell is extended to
the one represented in in Fig. 1(c).

Higher symmetries were at first studied decades ago in
connection to the theory of periodic waveguides [12], [16]-
[19], and a generalized Floquet theorem was stated in [12].
The interest for glide symmetric structures recently renewed
after several years in connection with the recent development
of metamaterials and metasurfaces related to backward prop-
agation [20], leaky radiation [21] and artificial materials [22],
[23]. The first 2-D glide-symmetric metasurface for antennas
was proposed in [14] (Fig. 1(a)) and used to implement a
UWB flat Luneburg lens. The glide symmetry of the unit cell
enables the propagation of a wave having a linearly varying
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phase constant in an ultrawide band (UWB) of frequencies.
This means that a remarkable absence of frequency dispersion
can be observed, and the equivalent refractive index is constant
over an UWB range of frequencies. Furthermore, even in
the absence of a dielectric between the holey surfaces, the
equivalent refractive index is dependent on several geometric
parameters [24]. By tuning their values, this refractive index
can also be easily varied along the surface in an adiabatic way
[25] -[31], thus obtaining the index variation required to realize
a Luneburg lens as in [14]. These properties make glide-
symmetric metasurfaces ideal candidates for UWB low-loss
all-metal graded-index millimeter-wave lenses: a long-desired
feature for the design of devices as increasingly required
by next generation satellite and terrestrial communication
standards [32],[33]. Other glide-symmetric topologies confirm
these UWB properties in 1-D configurations [34], [35]. While
the absence of frequency dispersion can be observed at low
frequencies, the presence of a doubly periodic load on the
two surfaces has the effect to enhance the width of the stop
band present at higher frequencies. This phenomenon opens
an opportunity for the design of electromagnetic band gap
(EBG) materials for mm-band components and integrated
technology, which exploit the presence of a very wide stop-
band for efficient field confinement. In [15],[36],[37] these
devices have been designed, fabricated and measured, thus
proving the possibility to exploit this stop-band behavior for
practical applications.

Due to the particular kind of symmetry defined in (1), the
fabrication of glide-symmetric prototypes, as explained in [15],
is done in two separated pieces, which are the two symmetric
holey plates. These pieces require a specific alignment between
them, since their reciprocal shift must be of half a period
along all the periodicity directions. Since the plates require
no dielectric in between them, they are joined together with
lateral dielectric screws, which can tune the required gap. The
alignment is further controlled by means of alignment vias
placed at the side of the structure [24]. The feasibility of such
a manufacturing process has recently been demonstrated in
[13],[15],[34],[35] where measurements have confirmed the
observation of the dispersive phenomena predicted by the
Floquet theory used here. For this reason, fabrication and
measurement issues are not in the focus in this paper, which is
rather aimed at studying the properties of Floquet harmonics in
glide-symmetric surfaces and a modeling technique exploiting
the higher symmetry.

In fact, the novelty of these structures stimulates the re-
search of simple modeling methods to describe their proper-
ties. Even if one single corrugated surface, as depicted in Fig.
2(a), can be described with a homogenized impedance [38],
[39], this model does not hold in the presence of two strongly
interacting surfaces as in a glide-symmetric configuration.
The problem was recently addressed in [40] by means of an
equivalent circuit, where an interpretation of the effect of the
glide-symmetry is given in term of an effective division by
half of the period. Furthermore, the structures of interest for
graded-index lenses applications, as in [14], are characterized
by a very large ratio size of the hole vs. gap between
surfaces. Under these conditions, conventional techniques are

very inefficient due to unusual field variations with respect
to common holey and corrugated structures. Both commercial
and ad-hoc software face convergence problems due to the
presence of the very thin air layer between the surfaces.

In this paper, we propose a mode-matching technique
[41],[42] in order to derive efficiently the dispersive features of
glide-symmetric corrugated and holey surfaces. While mode-
matching methods have been proposed for corrugated struc-
tures in the absence of glide symmetry [43] and for doubly-
corrugated structures [44], [45], the present method for the
first time uses the higher symmetry of the structure in order
to reduce the computational domain to one half of the unit
cell. The results presented in [43]-[45] show that a mode
matching method is more efficient than commercial software
based on finite-method algorithms [46] when the ratio size
of the corrugation/hole vs. gap between surfaces is large.
Furthermore, while other integral-equation-based approaches
could also be attempted [47]-[51], the present mode matching
provides physical insight on specific symmetry properties of
Floquet harmonics propagating in glide-symmetric structures,
and gives information on the behavior of the field excited
inside the holes. The code is validated by comparing the results
with commercial software. A large number of parametric
analyses validate the code and prove the possibility to simply
tuning the effective refractive index by selecting appropriate
values of relevant geometric parameters. A specific study is
performed for the first time on holes with rectangular shape,
which are proved to synthesize different equivalent refractive
index for wave propagation along the two principal axes.
The expected degeneracy of the eigenvalues at the edge of
each Brillouin zone is recovered, and a lack of frequency
dispersion on a ultra-wide range of frequencies is confirmed by
all the numerical results. This study will enable the design of
all-metal glide-symmetric metasurfaces for UWB anisotropic
wave propagation, to be easily employed for the fabrication
of low-cost and low-loss graded-index planar lenses.

In Section II, we present the formulation of the mode
matching, first in the corrugated geometry in Fig. 2 (1D glide-
symmetric structure), and after for the holey geometry in Fig.
1 (2D glide-symmetric structure). In Section III, numerical
results validate the analysis, recovering the fundamental spec-
tral properties of glide-symmetric structures, and show the
effect of parameter variations on the effective refractive index
achieved, both in the case of isotropic and anisotropic surfaces.

II. FORMULATION OF THE PROBLEM

In this section we present a mode-matching formulation
exploiting the peculiar properties of glide symmetry in metallic
metasurfaces as depicted in Fig. 1(a) and 2(a). The aim of the
study is performing a dispersive analysis of the structure, i.e.,
computing the wavenumber of modes propagating between
the glide-symmetric surfaces along an arbitrary direction.
The computation of the wavenumber in a certain range of
frequencies will give information on the equivalent refractive
index seen by the wave and its frequency dispersive properties
(frequency variations). Furthermore, a glide-symmetric mode
matching will give a physical insight about the presence of
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Fig. 1. 2-D periodic holey metallic plates with glide symmetry: (a) glide-
symmetric surfaces, (b) unit cell with squared hole, (c) unit cell with
rectangular hole (having lateral sizes a and b).

additional symmetry properties of different Floquet harmonics
inside the waveguide, as a consequence of the additional
symmetry of the periodic unit cell. Finally, the proposed
analysis requires the use of a small number of degrees of
freedom on one hole of one surface only. In fact, the glide
symmetry is taken into account by a proper symmetry of
each harmonics and the boundary conditions do not need to
be enforced on both surfaces. This approach is much faster
than meshing the whole periodic unit cell as in a commercial
software, especially in the structures of interest where the
aspect ratio a/g is very large (around 30) and very small
cells are required to describe the field variation between the
surfaces.

The two glide-symmetric metallic plates are placed at
z = −g/2 and at z = g/2. Since boundary conditions will
be enforced on horizontal components of fields (where the
vertical direction is the z in Fig. 1 and 2), vertical fields will
not be explicitly computed here. The transverse components
of fields (on the xy plane) will be indicated with the subscript
‘t’.

A. The generalized Floquet’s theorem

The standard Floquet theorem for periodic structures states
that a Bloch mode is an eigenmode of the translation operation
Td of length d along x: the field is periodic across one unit
cell apart from an exponential factor describing propagation
and/or attenuation:

E (x+ d, y, z) = Td [E (x, y, z)] = e−jkxdE (x, y, z) , (2)

(b)

(a)

x
z

d

a

Fig. 2. 1-D periodic holey metallic corrugations: (a) glide-symmetric surfaces,
(b) unit cell.

where kx = kx,0 + 2πp/d and p is an integer.
The generalized theorem states that a Bloch mode of a glide-

symmetric structure is not only an eigenmode of the translation
operator Td, but also of the glide operator Gd. In other words,
after a translation of half a period and a mirroring operation,
the field repeats itself apart from an exponential factor:

E

(
x+

d

2
, y,−z

)
= Gd [E (x, y, z)] = ±e−jk

±
x,0

d
2 E(x, y, z)

(3)
so that a the application of two glide operators is consistent
with the periodicity condition (2).

It should be remarked that the double sign in front of
the exponential does not introduce any ambiguity, neither it
defines two different sets of modes. In fact, it is easy to verify
that, if k+x,0 and E are solutions of (3) with the plus sign,
then k−x,0 = k+x,0 + 2π/d and the same field E are solutions
of (3) with the minus sign. Hence, the solutions of the two
problems coincide, apart a re-labeling of the harmonics: the
harmonic 0 becomes the harmonic -1 when switching the sign
from plus to minus. Since this relabeling does not have any
physical meaning, in the following only the plus sign will be
considered and k+x,0 will be simply named kx,0.

The spatial property (3) is responsible of the other important
spectral property of glide-symmetric structures. The X point
in the Brillouin zone (kx,0 = π/d, x being the direction of
glide symmetry) is a degenerate point, where two real solutions
merge at the same frequency without the presence of a stop
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band. In other words, glide symmetry suppresses stop-band at
even multiple of π/d (“closed stop band”).

B. Glide-symmetric corrugated surfaces

In this section, glide-symmetric corrugated surface illus-
trated in Fig. 2 is analysed using mode matching technique.
The structure is periodic along x, invariant along y and
bounded along z. The gap between two layers is g and the
plane z = 0 is located in the middle of the gap. Since
structure is invariant in the y-direction, the y-dependence of
the fields is written as exp(−jkyy) and omitted. TEy-modes
with Ey = 0 are the first dominant modes that can propagate
in this structure. Considering these modes, the tangential fields
that need to be matched are Ex, Hx, and Hy . However,
Hx ∝ ∂Hy/∂x which means continuity in z of Hy implies
continuity in z of Hx. Thus, only Ex and Hy need to be
matched.

In the gap region between the upper and the lower layer,
EGap
x and HGap

y can be expressed as a series of Floquet-
harmonics by virtue of periodicity:

EGap
x =

1

d

∑
p

e−jkx,px
[
Axp sin(kz,pz) +Bxp cos(kz,pz)

]
(4)

HGap
y =

1

d

∑
p

e−jkx,px
[
Dy
p sin(kz,pz) + F yp cos(kz,pz)

]
(5)

where kx,p = kx,0 + 2πp/d and kz,p =
√
k20 − k2y − k2x,p.

Note, in expressing EGap
x , the odd and even parts of each

harmonic along z with respect to the middle plane of the
gap region (z = 0) have been explicitly written into two
different terms. Their amplitudes are the A and B coefficients,
respectively. The sums in (4) and (5) are extended to all integer
values of p. Its truncation for numerical calculation purposes
will be described at the end of the next subsection.

Using source-free Maxwell equations ∇ · EGap = 0 and
∇× EGap = −jωµ0HGap, we have

η0D
y
p =

1

jk0
Bxp

k20 − k2y
kz,p

(6a)

η0F
y
p =

−1

jk0
Axp

k20 − k2y
kz,p

. (6b)

Note that the magnetic-field quantities have been normalized
to the free-space impedance η0 to simplify some equations.

As the next step, to enforce the continuity of Ex and Hy

among the two regions, their expression in each corrugation
must be written. A suitable way to do so is a modal expansion
of parallel plate waveguide (PPW) modes. Each corrugation in
the lower surface can be regarded as a short-circuited parallel
plate waveguide with length h along the z axis. Therefore,
on the plane z = −g/2, the x-component of the electric

field named EPPW
x and the y-component of the magnetic field

named HPPW
y can be expressed, respectively, as

EPPW
x (x, z = −g

2
) =

∑
m

r−mCmΦm(x) (7)

η0H
PPW
y (x, z = −g

2
) =

k20εr − k2y
k0

∑
m

r+m
qm

CmΦm(x) (8)

over 0 < x < a and EPPW
x (x, z = −g/2) = 0 over a < x <

d. In (7) and (8), the Cm coefficients are the undetermined
amplitudes of each mode,

Φm(x) =


√

2
a cos(mπ xa ) m 6= 0√

1
a m = 0

(9)

are the normalized modal functions, and

r±m = 1± e−j2qz,mh (10)

are the magnetic-field and electric-field reflection coefficients
due to the short circuit at the end of the corrugation. Note, a is
the width of the corrugation, εr is the dielectric constant of the
material inside the hole, and qz,m =

√
εrk20 − k2y −m2π2/a2

is the wavenumber of the m-th mode.

C. Glide-symmetric boundary conditions for the 1D structure

In this subsection, we enforce boundary conditions at the
connection between the gap region and each corrugation,
in order to obtain a dispersion equation to be numerically
solved for the wavenumbers of Bloch modes supported by
the structure.

Thanks to the periodicity of the structure, we can enforce
boundary conditions only inside one unit cell. This requires
to formulate a boundary condition on the corrugation in the
both lower surface (z = −g/2, 0 < x < a) and upper
surface (z = g/2, d/2 < x < a + d/2). Restricting the
analysis to a unit cell is justified since the Bloch modes
are eigenmodes of the translation operator Td, so that the
fields in two adjacent unit cells are proportional through the
propagation factor exp(−j(kx,0d+ ky,0d)).

However, the generalized Floquet theorem discussed in [12]
allows us to further simplify the analysis and reduce the
number of independent boundary conditions to be formulated.
The theorem states that a Bloch mode of the glide-symmetric
structure is not only an eigenmode of the translation operator
Td, but also of the glide operator Gd. In other words, after
a translation of half a period and a mirroring around the
glide plane (z = 0) the field is the same, apart a factor
± exp(−jkx,0d/2), where the ± sign depends on the Floquet
harmonic considered (without loss of generality, we continue
the formulation with the plus sign). This factor allows to
recover the correct phasing when obtaining a translation of
a period as the composition of two subsequent glide transfor-
mations.

Now, enforcing the continuity of the electric field on the
lower surface (z = −g/2, 0 < x < a), we have:

EGap
x (x, z = −g

2
) = EPPW

x (x, z = −g
2

). (11)
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On the upper surface (z = g/2, d/2 < x < a+d/2), by means
of glide-symmetry we can write,

EGap
x (x, z =

g

2
) = e−jkx,0

d
2EPPW

x (x− d

2
, z = −g

2
). (12)

When the Floquet series (4) is replaced into (11) and (12) and
inverted, we obtain, respectively,

−Axp sin(θz,p) +Bxp cos(θz,p) = ẼPPW
x (kx,p), (13)

Axp sin(θz,p) +Bxp cos(θz,p) = (−1)pẼPPW
x (kx,p), (14)

where θz,p = kz,pg/2,

ẼPPW
x (kx,p) =

∑
m

r−mCmΦ̃m(kx,p) (15)

is the Fourier transforms of EPPW
x (x, z = −g/2) expressed

in (7), i.e.

Φ̃m(kx,p) =

∫ a

0

Φm(x)ejkx,pxdx (16)

are the Fourier transforms of the modal functions Φm(x).
Equations (13) and (14) show an interesting symmetry prop-
erty of Floquet harmonics in glide-symmetric structures.

If p is odd:

Axp = − Ẽ
PPW
x (kx,p)

sin(kz,pg/2)

Bxp = 0

(17)

If p is even:

Axp = 0

Bxp =
ẼPPW
x (kx,p)

cos(kz,pg/2)
.

(18)

We can see that even (odd) harmonics have an even (odd)
transverse electric field along the z direction with respect to
the plane z = 0, which is called the glide plane.

Rewriting HGap
y on the surface z = −g/2 using (5), (6),

(17), and (18), we obtain:

η0H
Gap
y (x, z = −g

2
)

=
k20 − k2y
jk0d

∑
p

e−jkx,px
f̃p
kz,p

∑
m

r−mCmΦ̃m(kx,p), (19)

where

f̃p =

− tan
(
kz,pg

2

)
p even

cot
(
kz,pg

2

)
p odd

(20)

is called here the vertical spectral function. Indeed, this func-
tion defines the glide-symmetry of the structure. A different
stratified configuration (such as the unbounded air or a metal
plate on the top of a single corrugated surface) would only
require a different definition of f̃p.

Now, we can see that the only Cm coefficients are un-
determined. Thus, imposing boundary condition for Hy on
one surface is enough to achieve the dispersion equation.
Indeed, after imposing the continuity of Hy on one surface
(z = −g/2), the continuity condition on the other surface
(z = g/2) is automatically verified thanks to the symmetry
properties of Floquet harmonics in glide-symmetric structures.

Enforcing the continuity of the magnetic fields (8) and (19)
across the corrugation aperture and projecting this equation
on each waveguide modal function Φm′(x) (multiplying both
sides of the equation by Φm′(x) and integrating over the cor-
rugation aperture), the following linear equations are obtained:∑

m

αm′,mCm = 0, (21)

where

αm′,m =
k20 − k2y
jd

r−m
∑
p

Φ̃m(kx,p)Φ̃m′(−kx,p)
f̃p
kz,p

− δm′,m(k20εr − k2y)
r+m
qz,m

, (22)

and δm′,m is zero unless m = m′. Rewriting (22) for the case
that ky = 0, εr = 1, and only one modal function Φ is taken
into account, we obtain the dispersion equation

jd

qz,0

r+

r−
=
∑
p odd

Φ̃(kx,p)Φ̃(−kx,p)
cot (kz,pg/2)

kz,p

−
∑
p even

Φ̃(kx,p)Φ̃(−kx,p)
tan (kz,pg/2)

kz,p
. (23)

This equation shows the symmetry properties of different
harmonics in a glide-symmetric structure compared to the
dispersion relation of a corrugated surface in the air [52].
Furthermore, it is easy to realize that if g → +∞ and all
kz,p are imaginary (i.e., kz,p = −j|kz,p| for bound modes),
(23) reduces to the dispersion equation of a corrugated surface
in free space presented in [52].

It is remarkable that the truncation of summations in (4) and
(7) for numerical implementation has some implications. If in
(4) and (7), the summations are truncated, respectively, at p =
P and m = M , the most rapid modes that need to be matched
on horizontal plates z = ±g/2 are exp(−j(2P + 1)πx/d)
and cos(Mπx/a). Thus, the optimal value for the number of
modes in each region can be obtained from Mπ/a = (2P +
1)π/d or equivalently M/(2P + 1) = a/d. In other words,
the ratio of PPW modes to Floquet modes should be almost
equal to the ratio a/d.

D. Glide-symmetric holey surfaces

In this section, we introduce a mode matching technique
for analysing the glide-symmetric holey surface (2D periodic
structure) illustrated in Fig. 1. The formulation is very sim-
ilar to the one presented for the glide-symmetric corrugated
surface (1D periodic structure).

The fields in the gap region EGap
t and HGap

t can be
expressed as:

EGap
t =

1

d2

∑
pq

e−j(kx,px+ky,qy)ẽGap
t,pq (z) (24)

HGap
t =

1

d2

∑
pq

e−j(kx,px+ky,qy)h̃Gap
t,pq (z) (25)

with kx,p = kx,0 +2πp/d and ky,q = ky,0 +2πp/d by assum-
ing a rectangular lattice. The sum is extended to all integer
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values of p and q. Its truncation for numerical calculation
purposes will be described in Section III. The amplitude of
each Floquet harmonic of the transverse electric field can be
written, with no loss of generality, as

ẽGap
t,pq (z) =

(
Axpq
Aypq

)
sin(kz,pqz) +

(
Bxpq
Bypq

)
cos(kz,pqz) (26)

where kz,pq =
√
k20 − k2x,p − k2y,q is the vertical wavenumber

of the (p, q)th harmonic.
The transverse components of the magnetic-field harmonics

h̃Gap
t,pq can be easily derived from (24) and (26) in a similar

way as 1D case:

h̃Gap
t,pq (z) =

(
Dx
pq

Dy
pq

)
sin(kz,pqz) +

(
F xpq
F ypq

)
cos(kz,pqz), (27)

where

η0D
x
pq =

−1

jk0

(
Bxpq

kx,pky,q
kz,pq

+Bypq
k20 − k2x,p
kz,pq

)
(28a)

η0D
y
pq =

1

jk0

(
Bxpq

k20 − k2y,q
kz,pq

+Bypq
kx,pky,q
kz,pq

)
(28b)

η0F
x
pq =

1

jk0

(
Axpq

kx,pky,q
kz,pq

+Aypq
k20 − k2x,p
kz,pq

)
(28c)

η0F
y
pq =

−1

jk0

(
Axpq

k20 − k2y,q
kz,pq

+Aypq
kx,pky,q
kz,pq

)
. (28d)

Once an expression for the fields in the gap region has
been found, the field in each hole must be written too, in
order to enforce the continuity of the tangential electric and
magnetic fields among the two regions. Similar to 1D case, the
suitable way is a modal expansion of rectangular-waveguide
(RW) modes. Each hole in the lower surface can be regarded
as a section of rectangular waveguide of length h along the
z axis, connected to the gap region at z = −g/2 and short
circuited at the other side (at z = −g/2 − h). The electric
and magnetic fields inside the hole, named here EWG and
HWG, respectively, can be expressed as a sum of rectangular-
waveguide modes. Inside the hole on the plane z = −g/2, the
tangential electric field is

EWG
t (x, y, z = −g

2
) =

∑
mn,i=e,h

r−mnC
i
mnΦi

mn(x, y) (29)

The superscripts ‘e’ and ‘h’ refer to transverse magnetic and
transverse electric modes, respectively. The C coefficients are
the undetermined amplitudes of each mode, and the vector
modal functions Φ

h/e
mn are products of sinus and cosinus

functions according to the well-known theory of rectangular
waveguides [1]. Their expressions are given for completeness
in the Appendix.

The magnetic field is

η0H
WG
t (z = −g/2) =∑

mn

[
r+mn

qz,mn
k0

Chmn (−ẑ)×Φh
mn (x, y)

+r+mn
k0εr
qz,mn

Cemn (−ẑ)×Φe
mn (x, y)

]
(30)

where the transverse electric and magnetic modes appear in
different terms due to their different admittances (qmn/k0η0
and k0εr/qmnη0, respectively).

In (30), qz,mn =
√
εrk20 −m2π2/a2 − n2π2/a2 is the

wavenumber of the (m,n)th mode (εr being the dielectric
constant inside the hole), and

r±mn = 1± e−j2qz,mnh (31)

are, respectively, the magnetic-field and electric-field reflection
coefficients due to the short-circuit at the end of the hole.

E. Glide-symmetric boundary conditions for the 2D structure

With a way similar to the 1D case, in this subsection,
by enforcing boundary conditions at the connection between
the gap region and each hole, the dispersion equation of
the structure is achieved. The boundary conditions will be
formulated on the hole in the lower surface (z = −g/2, 0 <
x < a, 0 < y < b) and on the hole in the upper surface
(z = g/2, d/2 < x < a+d/2, d/2 < y < b+d/2). Moreover,
in this structure, the generalized Floquet theorem discussed in
[12] states that after a translation of half a period in both x and
y directions and a mirroring around the glide plane (z = 0) the
field is the same, apart a factor ± exp(−j(kx,0d/2+ky,0d/2)),
where the ± sign depends on Floquet harmonic propagating in
the structure (also in this case, we take the plus sign without
loss of generality).

Now, to obtain the dispersion equation, first, we enforce
the continuity of the electric field on the lower surface (z =
−g/2, 0 < x < a, 0 < y < b):

EGap
t (x, y, z = −g/2) = EWG

t (x, y, z = −g/2). (32)

When the Floquet series (24) is replaced into (32) and inverted,
we obtain

ẽGap
t,pq (z = −g/2) = ẼWG

t (kx,p, ky,q) , (33)

where

ẼWG
t (kx,p, ky,q) =

∑
mn,i=e,h

r−mnC
i
mnΦ̃i

mn (kx,p, ky,q) (34)

is the Fourier transforms of EWG
t (x, y, z = −g/2) expressed

in (29). Consequently, Φ̃i
mn (kx,p, ky,q) are the Fourier trans-

forms of the modal functions Φ.
On the upper surface (z = g/2, d/2 < x < a+ d/2, d/2 <

y < b+ d/2), by means of glide symmetry we can write

EGap
t (x, y, z = g/2)

= e−j(kx,0d+ky,0d)/2EWG
t (x− d

2
, y − d

2
, z = −g

2
). (35)

The Floquet series (24) is replaced into (35) and inverted by
means of the Fourier-transform properties. Then, we obtain

ẽGap
t,pq (z = g/2) = (−1)p+qẼWG

t (kx,p, ky,q) . (36)
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If the two vector equations (33) and (36) are rewritten as
four scalar equations, we can find an interesting symmetry
property of Floquet harmonics in glide-symmetric structures:

−Axpq sin (θz,pq) +Bxpq cos (θz,pq) = ẼWG
t (37)

Axpq sin (θz,pq) +Bxpq cos (θz,pq) = (−1)p+qẼWG
t (38)

−Aypq sin (θz,pq) +Bypq cos (θz,pq) = ẼWG
t (39)

Aypq sin (θz,pq) +Bypq cos (θz,pq) = (−1)p+qẼWG
t (40)

where θz,pq = kz,pqg/2. The following final expressions for
the A and B coefficients are obtained as functions of the
modal-waveguide coefficients C.

If p+ q is even:(
Axpq
Aypq

)
= 0(

Bxpq
Bypq

)
=

ẼWG
t (kx,p, ky,q)

cos
(
kz,pqg

2

) (41)

If p+ q is odd:(
Axpq
Aypq

)
= − ẼWG

t (kx,p, ky,q)

sin
(
kz,pqg

2

)
(
Bxpq
Bypq

)
= 0

(42)

By defining the parity of a (p, q) harmonic as the parity of the
number p+q, we can conclude that even (odd) harmonics have
an even (odd) transverse electric field along the z direction
with respect to the plane z = 0.

The coefficients A and B in (41) and (42) can now be
replaced in the magnetic field expression (28). Since A and B
are written in term of C, the coefficients C are now the only
quantities not yet determined. In order to solve the problem,
we enforce the continuity of the tangential magnetic fields (25)
and (30) across the hole aperture at z = −g/2. Same as the 1D
case, imposing the continuity condition on the upper surface
z = g/2 is not needed as it is automatically verified due to
the parity properties (41) and (42) of the Floquet harmonics.

This continuity equation, not reported here for brevity,
can be projected on scalar modal functions φxm′n′(x, y) and
φym′n′(x, y) (see Appendix) in order to obtain an algebraic
linear system. For this purpose, we multiply both terms of the
equation by φxm′n′(x, y) and φym′n′(x, y) and integrate over
the hole aperture. Using the orthonormal properties of scalar
modal functions, the following linear system is then obtained:(

Mh,x
mn Me,x

mn

Mh,y
mn Me,y

mn

)
· C = 0, (43)

where the relevant matrix elements are given by (i = e, h)

M i,x
mn = −r

−
mn

jd2

∑
pq

[
x̂ · Φ̃i

mnφ̃
x
m′n′

k20 − k2y,q
kz,pq

f̃pq

+ŷ · Φ̃i
mnφ̃

x
m′n′

kx,pky,q
kz,pq

f̃pq

]
− δmm′δnn′Zi,xmnr+mn (44)

M i,y
mn =

r−mn
jd2

∑
pq

[
x̂ · Φ̃i

mnφ̃
y
m′n′

kx,pky,q
kz,pq

f̃pq

+ŷ · Φ̃i
mnφ̃

y
m′n′

k20 − k2x,p
kz,pq

f̃pq

]
− δmm′δnn′Zi,ymnr+mn. (45)

In these equations, we have suppressed the (kx,p, ky,q) depen-
dence of Φ̃

e/h
mn and the (−kx,p,−ky,q) dependence of φ̃x/ym′n′

for the sake of brevity. Moreover, the following equivalent
impedances have been defined Zh,xmn = mqz,mn, Ze,xmn =
nk20εr/qz,mn, Zh,ymn = nqz,mn, Ze,ymn = mk20εr/qz,mn.

The vertical spectral function f̃pq is defined as

f̃pq =

− tan
(
kz,pqg

2

)
p+ q even

cot
(
kz,pqg

2

)
p+ q odd

(46)

Note that this function defines the glide symmetry of a 2D
periodic structure. Same as the 1D case, a different stratified
2D configuration (such as the unbounded air or a metal plate
on the top of a single holey surface) would only require a
different definition of f̃pq .

It is interesting to write explicitly the expression of the
dispersion relation obtained if only one rectangular-waveguide
mode, whose modal function is Φ, is retained in the hole
expansion:∑

p+q
even

Φ̃(kx,p, ky,q)Φ̃(−kx,p,−ky,q)
k20 − k2y,q
kz,pq

cot

(
kz,pqg

2

)

−
∑
p+q
odd

Φ̃(kx,p, ky,q)Φ̃(−kx,p,−ky,q)
k20 − k2y,q
kz,pq

tan

(
kz,pqg

2

)

=− jd2 r
+

r−
qz,01. (47)

The parity properties of different harmonics are clearly evi-
dent, if (47) is compared with the dispersion relation in the
presence of a holey surface in air [52]. Furthermore, It is
easy to realize that if g → +∞ and all kz,pq are imaginary
(i.e., kz,pq = −j|kz,pq| for bound modes), the above equations
reduce to the holey surface in free space studied in [52].

III. NUMERICAL RESULTS

In this section, we perform dispersion analyses of glide-
symmetric corrugated and holey surfaces with the mode-
matching analysis presented in the previous section, imple-
mented in Matlab. The analyses are compared for validation
with analogous results obtained with a commercial software
(CST Microwave Studio [46]).

A. 1-D glide-symmetric corrugations: Effect of parameters
variations

In this subsection, the dispersion diagrams of glide-
symmetric corrugated surfaces are computed for different
values of all relevant physical and geometrical parameters. By
testing the proposed method for different values of relevant
parameters, not only we fully validate the numerical method
presented here, but also we can investigate the effect of each
parameter on the propagation characteristics of this structure.
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This investigation helps us to achieve a variation of the equiv-
alent refractive index along the structure by smoothly varying
these parameters across the surface. A specific structure is here
used as a reference; the gap between the surfaces is g = 0.2
mm, the period is p = 4 mm, the depth and the width of each
groove is, respectively, h = 1.5 mm and a = 3 mm, and the
material filling each groove is air (εr = 1).

In Fig. 3, the dispersion diagram of the reference glide-
symmetric corrugation over the Brillouin zone is illustrated.
This structure is invariant along y. However, to be able
to compare the results of the mode matching method and
CST, periodic boundary conditions are enforced are assumed
along y-direction, with a periodicity equal to d/2. Thus, in
this figure, a straight propagation along the x direction is
considered in the interval Γ−X (βy = 0), a propagation along
the y direction is considered in the interval X−M (βx = π/d
and 0 < βy < π/(d/2). The sketch of the considered
propagation constants is given in the inset of the figure.
Comparing the propagation behavior of the glide-symmetric
corrugation surfaces with the conventional corrugation, the
absence of a stopband at the X point (βd/π = 1) of a glide-
symmetric configuration is remarkable. This means that adding
the glide symmetry to a periodic structure makes the first mode
of the structure less dispersive.

Fig. 4 shows the effect of the variation of the material filling
each groove on propagation characteristics. Three values are
selected: εr = 1, εr = 2, εr = 3. A perfect agreement between
the mode-matching code and CST is visible in this figure. As
expected, the equivalent refractive index is higher for denser
materials filling the grooves. However, achieving a spatial
variation of this refractive index by filling the grooves of the
structure with different material is not easy in fabrication.
Thus, this result is considered here mainly for the code
validation, and no specific commercial materials have been
further considered.

Fig. 5 and 6, respectively, demonstrate the dispersion di-
agrams for different values of the width and the depth of

ὥὬ

Ὠ

Fig. 3. Dispersion diagram of the glide-symmetric corrugated surfaces
illustrated in Fig. 2. Geometric parameters: d = 4 mm, a = 3 mm, g = 0.2
mm, h = 1.5 mm. Mode matching presented in this paper (solid line), CST
(dashed line), line of light (gray line).

the grooves. Three values are tested for the width of the
grooves: a = 3 mm, a = 2.5 mm, a = 2 mm. And three
values are tested for the height of the grooves: h = 3 mm,
h = 2.5 mm, h = 2 mm. The results show the equivalent
refractive index increases if the depth of the grooves increases
or the width of the grooves decreases. Note that after a
certain depth, increasing the depth does not have effect on
the dispersion diagram anymore since all PPW modes in the
grooves, which were described in Subsection II-B, will be
exponentially attenuating due to the subwavelength width of
the grooves, and the fields does not penetrate deep inside the
grooves. As a result, after a certain threshold, a variation of
the depth of the corrugation does not change significantly the
field distribution in the structure.

Finally, it should be mentioned that all the results are
obtained by considering only five PPW modes inside the

r= 1

r= 3

r= 2

Fig. 4. Dispersion diagram of the glide-symmetric corrugated surfaces
illustrated in Fig. 2. Geometric parameters: d = 4 mm, a = 3 mm, g = 0.2
mm, h = 1.5 mm. The grooves are filled with different dielectrics. Mode
matching presented in this paper (solid lines), CST (dashed lines), line of
light (gray line).

a= 3 mm
a= 2.5 mm

a= 2 mm

ὥὬ

Ὠ

Fig. 5. Dispersion diagram of the glide-symmetric corrugated surfaces
illustrated in Fig. 2. Geometric parameters: d = 4 mm, g = 0.2 mm, h = 1.5
mm. Mode matching presented in this paper (solid lines), CST (dashed lines),
line of light (gray line).
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grooves (M = 4) and seven Floquet modes in the gap region
(P = 3) except the case that smaller values of a are studied,
in which five PPW modes and eleven Floquet modes were
taken into account. As it was explained in Subsection II-C, for
smaller values of the ratio a/d, the ratio of the PPW modes
to Floquet modes should be smaller.

B. 2-D glide-symmetric holes: Effect of parameter variations

In this subsection, the dispersion diagram of 2-D holey
structures are computed to study the influence of the variation
of all relevant physical and geometrical parameters. The results
are computed with the mode-matching and with CST. A
variation of the physical parameters leads to achieve a variation
of the equivalent refractive index along the waveguide by
smoothly varying these parameters across the surface, and
assuming a local periodicity of the resulting lattice. Here, we
employ as a reference a structure with a gap between the

h= 0.5 mmh= 1 mm

h= 1.5 mm

ὥὬ

Ὠ

Fig. 6. Dispersion diagram of the glide symmetric corrugated surfaces
illustrated in Fig. 2. Geometric parameters: d = 4 mm, a = 3 mm, g = 0.2
mm. Mode matching presented in this paper (solid lines), CST (dashed lines),
line of light (gray line).
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Fig. 7. Dispersion diagram of the glide-symmetric unit cell with squared hole
in Fig. 1(b). Geometric parameters: d = 4 mm, a = b = 3 mm, g = 0.5
mm, h = 1.5 mm. Mode matching presented in this paper (solid line), CST
(dashed line), line of light (gray line).

surfaces g = 0.5 mm, period p = 4 mm, depth of hole h = 1.5
mm, lateral size of the hole a = 3 mm, and the material filling
the hole is air (εr = 1).

For completeness, the dispersion diagram of the reference
glide-symmetric structure over the irreducible Brillouin zone
is shown in Fig. 7. Together with the glide-symmetric case, the
one-sided holey structure is also analyzed in order to highlight
the different modal behaviour of the structures. In this figure, a
straight propagation along the x direction is considered in the
interval Γ−X (βy = 0), a propagation along the y direction is
considered in the interval X−M (βx = π/d, βy = 0), and a
skewed propagation is considered in the interval M−Γ (βx =
βy 6= 0). The comparison with CST validates the method in
this most general case. A one-sided structure was analyzed
with a mode-matching developed ah-hoc in [43]. In Fig. 7,
the equivalent refractive index is computed for both the glide-
symmetric and the one-sided structure, both in the straight and
in the skewed propagation. Note that the index is substantially
the same, which proves an excellent isotropy of the glide-
symmetric configuration. It is especially important to remark
the absence of a stopband at the X point βxd/π = 1, which
is a characteristic feature of glide-symmetric configurations,
in contrast with the usual stopband behavior of the one-sided
structure.

In Fig. 8, the variation of the material filling each hole is
studied. Three values are selected: εr = 1, εr = 2, εr = 3. As
shown in the figure, a perfect agreement is obtained between
the mode-matching code and CST. As expected, the equivalent
refractive index is higher for denser materials filling the holes.
However, achieving a spatial variation of this refractive index
by filling the holes of the structure with different materials
is not easy to be manufactured in microwave regimes. For
this reason, this result is considered here mainly for the code
validation, and no specific commercial materials have been
further considered.

In Fig. 9, the variation of the gap between surfaces is

0
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εr = 3 

εr = 2 

Fig. 8. Dispersion diagram of the glide-symmetric unit cell with squared hole
in Fig. 1(b). Geometric parameters: d = 4 mm, a = b = 3 mm, g = 0.5 mm,
h = 1.5 mm. The holes are filled with different dielectrics. Mode matching
presented in this paper (solid lines), CST (dashed lines), line of light (gray
line).
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studied. Three values are selected: g = 0.5 mm, g = 0.3
mm, g = 0.2 mm. A small discrepancy between CST and the
mode matching appears for extremely small values of g such
as 0.2 mm. However, in this extreme case an accurate solution
of CST is not granted either, due to the difficult meshing of
the small air region between the surfaces. Furthermore, the
refractive indexes obtained with the two methods are close
enough that the practical implementation of a lens would not
reveal a significant difference. The equivalent refractive index
increases as the thickness of the gap increases, due to stronger
interaction between the surfaces. However, also in this case
varying the gap in order to obtain a spatial variation of the
index is not practical.

In Fig. 10, the variation of the lateral size of the squared
hole is studied. Three values are selected: a = 3 mm, a = 2.5
mm, a = 2 mm. As shown in the figure, a perfect agreement
is obtained between the mode-matching code and CST. As
expected, as the size of the hole becomes smaller, propagation
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g = 0.2 mm 

Fig. 9. Dispersion diagram of the glide-symmetric unit cell with squared hole
in Fig. 1(b). Geometric parameters: d = 4 mm, a = b = 3 mm, h = 1.5
mm. Mode matching presented in this paper (solid lines), CST (dashed lines),
line of light (gray line).
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Fig. 10. Dispersion diagram of the glide-symmetric unit cell with squared
hole in Fig. 1(b). Geometric parameters: d = 4 mm, a = b, g = 0.5 mm,
h = 1.5 mm. Mode matching presented in this paper (solid lines), CST
(dashed lines), line of light (gray line).

tends to approach the free-space limit.
Finally, in Fig. 11, the variation of the depth of holes is

studied. Three values are selected: h = 3 mm, h = 2.5 mm,
h = 2 mm. Again, the perfect agreement of the methods
fully validates the mode matching. As the depth of the holes
increases, the equivalent refractive index increases too. It is
interesting to note that this increase occurs up to a certain
depth, depending on the size of the hole and on the frequency.
In fact, as explained in the previous section, the field in
each hole can be regarded as a superposition of rectangular-
waveguide modes. Due to the subwavelength size of each hole,
all these modes will be exponentially attenuating, so that the
field does not penetrate deep inside the hole. After a certain
threshold, a variation of the depth of the hole does not change
significantly the field distribution in the structure.

These last two analyses are the most important for practical
implementations since it is relatively simple to drill holes of
given lateral dimensions and depth, so that a tapering of the
refractive index can be achieved along the surface by smoothly
varying these two parameters. The refractive index variation
range is sufficient to implement well-known lenses such as the
Luneburg one, as already demonstrated in [14].

The mode matching method is much faster than CST
eigenmode analyses. This is due to the fact that CST needs
to mesh the whole volume of the periodic cell, while the
mode matching has unknowns only on one hole of the cell.
It is interesting to remark that the second glide-symmetric
hole does not require additional degrees of freedom, thanks to
the enforced symmetry condition. The number of RW modes
retained in the calculation depends on the parameters of the
structure. However, in all the structures of interest for artificial
lenses the first low-order mode (e.g., the one going from 0 to
30 GHz in Fig. 7) is always correctly tracked with the choice
n = 1, 2, 3 and m = 1, · · · , 4 in (29). This choice leads to a
mode-matching computation time for a single frequency point
of 0.7 s, compared with a CST simulation time of 47 s.

At higher frequencies, the higher-order modes (e.g., from
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Fig. 11. Dispersion diagram of the glide symmetric unit cell with squared
hole in Fig. 1(b). Geometric parameters: d = 4 mm, a = b = 3 mm, g = 0.5
mm. Mode matching presented in this paper (solid lines), CST (dashed lines),
line of light (gray line).
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30 to 50 GHz in Fig. 7) are more sensitive to the value of
the gap g: as g decreases by keeping a fixed period, more RW
modes are necessary to describe the high-frequency field in the
holes, thus slowing down the calculation. However, a similar
effect can be observed in CST, due to the need to accurately
mesh a very thin gap. It was observed that the high-frequency
analysis for the extreme case of g = 0.2 mm (Fig. 8) required
n = 1, · · · , 7 and m = 1, · · · , 9, resulting in a computation
time of 17.8 s per frequency with respect to a CST computation
of 272 s.

All the tests have been performed on an Intel Xeon CPU
X5650 @2.67 GHz with 96 GHz of RAM. The computation
time of the mode matching could be further reduced by
implementing a zero-finding algorithm to locate the zeros of
the determinant of (43) [53]. In the present computations, the
zeros have been located by simply taking the minimum of the
magnitude of the determinant on a real segment (e.g., βxd/π
in [0, 1], βy = 0, and αx = αy = 0 for a propagation along
the x direction).

C. 2-D glide-symmetric holes: Anisotropy
In this subsection, we study glide-symmetric structures hav-

ing rectangular holes rather than squared ones. As expected,
this asymmetry along the two periodicity axis leads to a certain
degree of anisotropy, which is a promising result to realize
lenses requiring anisotropic materials.

In Fig. 1(c), the unit cell of a glide-symmetric structure with
rectangular holes has been shown. Two different cases whose
lateral dimensions are a = 3 mm, b = a/2 = 1.5 mm and
a = 3 mm, b = a/4 = 0.75 mm have been studied. Moreover,
their results are compared with a case having squared hole
(Fig. 1(b)) with lateral dimensions a = b = 3 mm as the
reference case.

In Fig. 12 the full dispersion diagrams of the structures with
rectangular holes, as well as, the comparison of their disper-
sion diagrams and the dispersion diagram of the reference case
are shown. Propagation along the y direction is mainly affected
by the value of a (length of hole along x direction) since the
three curves are superimposed and the variation of b (length of
hole along y direction) does not affect the dispersion. On the
other hand, propagation along the x direction is rather related
to b: if b becomes small, the dispersion diagram approaches
the line of light as commented in Fig. 12.

Most interestingly, the curves obtained in the intervals
Γ−X and Y− Γ are extremely straight. This means that the
refractive index of the Bloch mode is constant over a ultra-
large frequency band, along both the propagation direction.
This is illustrated in Fig. 13, where the equivalent refractive
indexes are shown as a function of frequency for the three
cells. The refractive indexes referring to propagation along
the x axis are compared with those referring to propagation
along the y axis. As already said, a narrow hole leads allows
one to synthesize a desired effective refractive index along
one direction by keeping an index almost equal to 1 in the
orthogonal direction. The lack of frequency dispersion is also
visible in the figure.

This kind of behavior can pave the way for the first time to
the realization of all-metal flat UWB anisotropic lenses, thus

promising a great flexibility in the synthesis of aperture fields
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Fig. 12. Dispersion diagram of the glide-symmetric unit cell with square and
rectangular hole in Fig. 1(b)-(c). Geometric parameters: d = 4 mm, a = 3
mm g = 0.5 mm, h = 1.5 mm. Mode matching presented in this paper
(solid lines), CST (dots), line of light (gray line). (a) b = a/2 = 1.5 mm, (b)
b = a/4 = 0.75 mm, (c) comparison among the squared case (a = b = 4
mm, green line), and the rectangular cases b = a/2 = 1.5 (red line) mm and
b = a/4 = 0.75 mm (blue line).
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or antenna shape (e.g., if transformation optics is used for the
lens design [54],[55]).

IV. CONCLUSION

A mode matching method for the dispersion analysis of
glide-symmetric corrugated and holey surfaces are presented.
Using the higher symmetry of the structure and the generalized
Floquet theorem, the imposed boundary conditions are simpli-
fied compared to a periodic structure without higher symmetry.
We have also shown an interesting symmetry that exists in the
Floquet harmonics propagating in glide-symmetric structures.

The method has been validated by comparing the results
of the presented method for several cases with the results
of the commercial software CST. The effect of variation of
different parameters in the propagation characteristics of glide-
symmetric corrugated and holey structures with both square
and rectangular holes has been studied. Moreover, the full
dispersion diagrams of these structures have been obtained
to verify the accuracy of the method for propagation in all
direction. In all test cases, a good agreement between the
results of the mode matching method and the commercial
software CST is remarkable.

This study confirmed the interesting characteristics of glide-
symmetric structures, i.e. the absence of the band gap at the
point X of the Brillouin zone and a low frequency dispersion
on a wide range of frequencies. Thus, the proposed method,
which is much faster than the commercial software, can be
employed for designing all-metal glide-symmetric metasur-
faces with UWB isotropic and anisotropic features. These
metasurfaces are appropriate candidates for the fabrication of
low-cost and low-loss graded-index planar lenses and EBG
structures.

APPENDIX
MODAL FUNCTIONS OF RECTANGULAR WAVEGUIDES

According to the theory of rectangular waveguides, the
modal functions Φ

h/e
mn for a waveguide with square cross
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Fig. 13. Effective refractive index of the glide-symmetric unit cell with square
and rectangular hole in Fig. 7 (green lines), Fig. 1(b) (red lines), and 1(c)
(blue lines). Propagation along the x axis (dashed lines) and the y axis (solid
lines).

section of length a can be expressed as

Φh
mn (x, y) = x̂nφxmn(x, y)− ŷmφymn(x, y),

Φe
mn (x, y) = x̂mφxmn(x, y) + ŷnφymn(x, y), (48)

where we have defined the orthonormal scalar modal functions
as

φxmn (x, y) =


√

2
a cos

(
mπx
a

)√
2
a sin

(
nπy
a

)
m 6= 0√

1
a

√
2
a sin

(
nπy
a

)
m = 0

(49)

and φymn (x, y) = φxnm (y, x).
In the case of a rectangular waveguide with the length of a

and the width of b, the modal functions Φ
h/e
mn are

Φh
mn (x, y) = x̂nφxmn(x, y)− ŷmφymn(x, y),

Φe
mn (x, y) = x̂mφxmn(x, y) + ŷnφymn(x, y), (50)

where we have defined the orthonormal scalar modal functions
as

φxmn (x, y) =


√

2
a cos

(
mπx
a

)√
2
b sin

(
nπy
b

)
m 6= 0√

1
a

√
2
b sin

(
nπy
b

)
m = 0

(51)

and

φymn (x, y) =


√

2
a sin

(
mπx
a

)√
2
b cos

(
nπy
b

)
n 6= 0√

2
a sin

(
mπx
a

)√
1
b n = 0

. (52)
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