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1 Introduction

The computation of the quantum entropy of black holes is a particularly challenging prob-

lem in quantum gravity. For BPS black holes in string compactifications that preserve

sufficient supersymmetry, string theory provides an explicit statistical explanation for the

origin of the entropy. On taking the semi-classical limit by scaling the charges carried by the

black hole one may recover the famous Bekenstein-Hawking area law, or its generalization,

the Wald formula [1]. These computations date back to the original work of Strominger

and Vafa [2], and have been very explicitly carried out in [3–14] subsequently, and provide

important evidence for the viability of string theory as a theory of quantum gravity. We

refer the reader to the reviews [15–17] for a more detailed account of these developments.

Interestingly, since the near horizon geometry of an extremal black hole always contains

an AdS2 factor [18, 19], one may use the AdS2/CFT1 correspondence to compute the

quantum degeneracy dhor associated with the horizon of an extremal black hole carrying

charges ~q ≡ qi. This proposal, known as the quantum entropy function, states that [20, 21]

dhor (~q) ≡
〈

exp

[

i

∮

qidθAi
θ

]〉finite

AdS2

. (1.1)

Here Ai
θ is the component of the ith gauge field along the boundary of the AdS2, where

i runs over the set of all gauge fields in AdS2, including those obtained by Kaluza Klein

reduction. The path integral is carried out over all fields that asymptote to the black hole

near horizon geometry. The superscript ‘finite’ indicates that the volume divergence in

this path integral is regulated in the standard manner of the AdS/CFT correspondence.1

This proposal has already led to interesting insights into the quantum properties of

four dimensional half-BPS black holes in N = 2 supergravities [22, 23] that were previously

unavailable from microscopic analyses. Further, methods of supersymmetric localization

have been brought to bear on this path integral with results that are promising for further

investigation [24–35].

In this paper we shall evaluate the quantum entropy function in a saddle point ap-

proximation which is valid in a particular scaling limit of the black hole charges. In the

context of four dimensional black holes, it is well known that the large-charge expansion

1In particular, if we parametrize AdS2 by the coordinates

ds2 = a2 (dη2 + sinh2 η dθ2
)

, η ∈ [0,∞) , θ ∈ [0, 2π) , (1.2)

then we may regularize the AdS volume divergence by placing a cutoff η0 on the AdS2 radial coordinate η.

Then in the limit where η0 is large, we have

ln dhor (~q) = O (eη0) +O (1) +O
(

e−η0
)

. (1.3)

Now the O (eη0) term is proportional to the length of the regularized AdS2 boundary, and may be removed

by the addition of local counterterms which have support only on the boundary of AdS2. The second term,

which is O (1), cannot be removed in this manner and should be regarded as physical. This leads us to the

following renormalization prescription [20, 21]: first, we regulate the AdS2 radial coordinate as above, and

then compute the free energy associated to (1.1) in the large η0 limit. We then simply discard the term

which diverges as O (eη0), then take the limit of η0 going to infinity, which retains only the O (1) term.

– 2 –
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of the microscopic degeneracy contains extra terms which are exponentially suppressed

with respect to the leading Bekenstein-Hawking contribution [4, 36–38].2 Further, it was

proposed that these terms may be interpreted in the QEF as arising from a class of saddle

points of the quantum entropy function obtained by taking orbifolds of the near horizon

geometry [14, 21, 36, 39]. Further, it was shown that the matching persists when quantum

effects are included in the AdS2 side [23, 40], generalizing on the computations performed

about the dominant saddle point [41, 42]

Motivated by these developments, we shall attempt to construct saddle-points of the

quantum entropy function for five dimensional extremal black holes by taking particular

Zs orbifolds of the near horizon geometry by applying the results of [39]. These will again

give rise to contributions to dhor exponentially suppressed with respect to that from the

near horizon geometry. Next we shall study the microscopic formulae for the degeneracy

of these black holes and demonstrate that corresponding terms are indeed found in the

microscopic formula in the same scaling limit for black hole charges, and this matching

persists to the next-to-leading order in the large charge expansion.

The next-to-leading order term is known as the log term. It receives contributions only

from one-loop fluctuations of massless fields about the saddle point. Further, its value is

sensitive to only two-derivative terms in the quadratic action [43]. Importantly, this makes

clear that the log term is an important window into the quantum properties of black holes.

It is sensitive only to infrared physics, and yet carries information about the underlying

microscopic theory that the black hole is placed in.

A brief overview of this paper is as follows. We begin with a summary of the properties

of the near horizon geometry of the BMPV black hole and its non-rotating counterpart in

section 2. We next turn to a construction of the saddle points of the quantum entropy

function for the BMPV and Strominger-Vafa black holes in section 3. Section 4 describes

the computation of next-to-leading order corrections, known as log terms, about these sad-

dle points. This concludes our macroscopic analysis. We next turn to the microscopic side

where we first explicate the large-charge expansion of the microscopic degeneracy com-

puted in Type II string theory on T 5 in section 5 and match the results obtained with the

predictions of section 4. Further details of computations may be found in the appendices.

2Schematically, the large charge expansion of the microscopic degeneracy takes the form generic form

dmicro (Q,P ) ≈
∑

c

e
π
√

∆

c ≈ e
AH
4 , (1.4)

where ∆ = Q2P 2 − (Q.P )2 and π
√
∆ = AH

4
and ‘c’s are positive integers. As is apparent from the last

approximation, the c = 1 term yields the Bekenstein Hawking answer for the black hole entropy. In this

paper, when we talk of exponentially suppressed corrections, we refer to the terms in the above expansion

where c > 1.

– 3 –
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2 The BMPV black hole and its near horizon geometry

In this section we review the near horizon geometry of the BMPV black hole [44] embedded

into Type IIB string theory compactified on M × S1, where M is either T 4 or K3.3

These black holes carry Q5 units of D5 brane charge along M× S1, Q1 units of D1 brane

charge along S1, −n units of momentum along S1 , J
2 units of J3L charges, and finally

zero J1L, J2L, J1R, JiR charges. Here the JiL and JiR are the generators of the SO(4) ≃
SU(2)L×SU(2)R rotational symmetry that a five dimensional black hole is charged under.

2.1 The near horizon geometry of BMPV black hole

In this section we will describe the near horizon geometry of the BMPV black hole as a

solution of Type IIB string theory on M. However, since the internal directions M play

no role in our computations, they are suppressed below. Dimensional reduction on the

S1 labelled by χ results in the usual BMPV black hole, whose near horizon geometry is

paramatrized by the coordinates ρ, τ, x4, ψ, φ. For more details on the full 10 dimensional

field configuration, we refer the reader to [49–51]. The near horizon geometry of the BMPV

black hole in five-dimensional supergravity is given in [52, 53]. The Lorentzian near horizon

geometry of the black hole is given by

ds2 = ro
dρ2

ρ2
− roρ

2dτ2 + (dχ−Aρdτ)2 + ro(dx4 + cosψdφ−Bρdτ)2

+ ro(dψ
2 + sinψ2dφ2) +

J̃

4ro
(dχ−Aρdτ)(dx4 + cosψdφ−Bρdτ),

(2.1)

with the Ramond Ramond 3 form flux taking the value

F =
ro
λ

{

ǫ3 + (∗6)ǫ3 +
J̃

8r20
dχ ∧

[

sinψdψ ∧ dφ+
dρ

ρ
∧
(

dx4 + cosψdφ
)

]

}

, (2.2)

where

A =
√
ro

[

1− J̃2

64r3o

]− 1
2

, and B = − J̃

8r2o
A. (2.3)

Here ǫ3 ≡ sinψdx4∧dψ∧dφ is the volume form on three sphere and (∗)6 denotes the hodge
dual in six dimensions τ, ρ, x4, ψ, φ, χ. Notice that when J̃ 6= 0, the BMPV metric does not

factor into AdS2×S3. In fact both S3 (parametrized by x4, ψ, φ) and S1 (parametrized by

χ) are nontrivially fibred over the base AdS2. The periodicity is given by

(ψ, φ, x4) = (2π − ψ, φ+ π, x4 + π) = (ψ, φ+ 2π, x4 + 2π) = (ψ, φ, x4 + 4π) (2.4)

and

χ ≡ χ+ 2πR5, (2.5)

3The analysis also extends to orbifolds
(

M× S1
)

/ZN . Examples of such orbifolds are the CHL orb-

ifolds [45–48] and the orbifolds of [10, 12]. For this reason, in section 4 we shall work with a generic number

nV of massless U(1) gauge fields in the effective five-dimensional supergravity. In general nV = 48
N+1

+ 3.

For the cases of immediate interest, i.e. M× S1 compactifications, nV = 27.

– 4 –
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coupled with some identifications in M. The various parameters appearing in the above

metric r0, R5, J̃ are related to the string theory parameters Q1, Q5, n, J , the orbifold pa-

rameter N defined in footnote 3, and the string coupling λ, as

ro =
λQ5

4
, R5 =

√

λn

NQ1
, J̃ =

JQ5λ
3
2

2
√

Q1n/N
, VM ∼ Q1

Q5
, (2.6)

where VM denotes the size of the internal manifold M. We will work in the scaling limit

Q1, Q5 ∼ Λ, n ∼ Λ, J ∼ Λ
3
2 , Λ → ∞. (2.7)

In this limit, we see that the sizes of η, θ (the AdS2 directions), and ψ, ψ, x4 (the S3 direc-

tions) scale as
√
ro ∼ O(Λ

1
2 ), which is very large compared to the size of χ (S1 direction).

This effectively takes us to a five-dimensional limit of the six-dimensional geometry (2.1).

It is easy to compute the Bekenstein-Hawking entropy for the black hole by computing the

area of the horizon. We get

SBH = π

√

4Q1Q5n

N
− J2 (2.8)

The geometry has following Killing vectors:

J1 = sinφ∂ψ + cotψ cosφ∂φ − cosecψ cosφ∂x4 ,

J2 = cosφ∂ψ − cotψ sinφ∂φ + cosecψ sinφ∂x4 ,

J3 = ∂φ, L− = ∂τ , L0 = τ∂τ − ρ∂ρ,

L+ =
1

2

(

1

ρ2
+ τ2

)

∂τ − τρ∂ρ +
A

ρ
∂χ +

B

ρ
∂x4 ,

Ĵ3 = ∂x4 , u = ∂χ.

(2.9)

Note that the Li generate SL(2, R) obeying

[L0, L±] = ±L± [L+, L−] = −L0 (2.10)

and Ji generate SU(2)L i.e [Ji, Jj ] = ǫijkJk with ǫ123 = 1 and both u, Ĵ3 generate U(1)u,

U(1)x4 respectively. Hence the isometry of the BMPV directions is SL(2, R) × SU(2)L ×
U(1)x4 . It can also be shown that the above geometry has four killing spinors. This

results in the enhancement of symmetry (of the BMPV directions) to the supergroup

SU(1, 1|2)×U(1)x4 . Also for later use, it is more useful to consider the following complex

combinations of the Killing vectors

k(1) = J1 + iJ2, k(2) = J1 − iJ2, k(3) = J3, k(4) = Ĵ3. (2.11)

Explicitly, these are given by

k(1) = e−iφ (i ∂ψ + cotψ ∂φ − cosecψ ∂x4) ,

k(2) = eiφ (−i ∂ψ + cotψ ∂φ − cosecψ ∂x4) ,

k(3) = ∂φ, k(4) = ∂x4 .

(2.12)

– 5 –
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2.1.1 The special case of J = 0

It is also easy to see that when J = 0 (and hence B = 0), the S3 is no longer fibred over

AdS2. The geometry has extra Killing vectors, in addition to the Killing vectors listed

in (2.9), which are given by

Ĵ1 = − sinx4∂ψ +
cosx4
sinψ

∂φ − cosx4 cotψ∂x4 .

Ĵ2 = cosx4∂ψ +
sinx4
sinψ

∂φ − sinx4 cotψ∂x4

(2.13)

Note that the Ĵ1, Ĵ2, Ĵ3, generate another SU(2)R. Ji, Ĵi together generate the SO(4) =

SU(2)L ⊗ SU(2)R isometry of the three sphere S3 and the supergroup is now enhanced to

SU(1, 1|2)× SU(2)R. It is more useful to consider the complex combinations of the Killing

vectors

k̃1 = J̃1 + iJ̃2 = eix4 (i ∂ψ + cosecψ ∂φ − cotψ ∂x4) ,

k̃2 = J̃1 − iJ̃2 = e−ix4 (−i ∂ψ + cosecψ ∂φ + cotψ ∂x4) .
(2.14)

2.1.2 The algebra of isometry group

When the black hole is dimensionally reduced to AdS2 directions, the above isometry

algebra gets infinitely extended to affine algebra ŝu(1, 1|2). It will turn out later that the

computation of entropy will involve the global symmetry charges of certain generators of

the above affine algebra. We give below the relevant part of algebra.

Let Gαβ
n (where α, β ∈ 1, 2, n ∈ Z + 1

2) be the fermionic generators of the isometry

algebra. As we will show later, the computation of the entropy for fermionic zero modes

will require the charges of these fermionic generators under the cartans of the algebra. Let

us choose L̂0 = L1+L−1

2 as the Cartan of SL(2, R), J3 as the Cartan of SU(2)L and Ĵ3 as

the Cartan of U(1)x4 (or the SU(2)R for the non-rotating case). Then
[

L̂0, G
αβ
n

]

= −nG̃αβ
n ,

[

Ĵ3, G
αβ
n

]

=
β

2
Gαβ

n , (2.15)

which we also write as
[

L̂0 − Ĵ3, G
αβ
n

]

= −
(

n+
β

2

)

G̃αβ
n , (2.16)

and
[

Ĵ3R, G
αβ
n

]

= 0, (2.17)

where the last equality is because U(1)x4 (or SU(2)R in the non-rotating limit), commutes

with ŝu(1, 1|2). Hence the L̂0, J3, Ĵ3 charges of Gαβ
n are −n, β2 , 0 respectively.

2.2 The near horizon geometry in different coordinates

The near horizon geometry of the BMPV black hole as presented in (2.1) is not convenient

for computations in subsequent sections. For this reason, we change to the coordinates ρ,

θ, χ̃, x̃4 as

cosh(η) =
1

2

(

ρ+ ρ−1 − ρτ2
)

e−2θ =
(1− τ)2 − ρ−2

(1 + τ)2 − ρ−2
(2.18)

χ = χ̃−A f(η, θ) x4 = x̃4 −B f(η, θ) (2.19)

– 6 –
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where f(η, θ) ≡ 2 tanh−1
[

tanh[ θ2 ]e
−η

]

. In these coordinates the metric becomes

ds2 = r0(dη
2 − sinh2 η dθ2) + r0(dψ

2 + sin2 ψdφ2) + (dχ̃−A cosh ηdθ)2 (2.20)

+r0(dx̃4 + cosψdφ−B cosh ηdθ)2 +

+
J

4r0
(dχ̃−A cosh ηdθ)(dx̃4 + cosψdφ−B cosh ηdθ) .

It will be convenient to redefine SL(2, R) algebra. Let us define L̂i defined as

L̂0 =
L−
2

− L+ = ∂θ , (2.21)

L̂− = −L0 +
L−
2

+ L+ = e−θ

(

∂η + coth η∂θ +
A∂χ +B∂x4

sinh η

)

, (2.22)

L̂+ = L0 +
L−
2

+ L+ = eθ
(

−∂η + coth η∂θ +
A∂χ +B∂x4

sinh η

)

. (2.23)

These generators of course obey the SL(2, R) algebra

[L̂0, L̂±] = ±L̂± , [L̂+, L̂−] = −2L̂0 . (2.24)

2.3 Euclidean near horizon geometry

Since the quantum entropy function is formulated as a Euclidean path integral, it will

be convenient to have the Euclidean version of the above BMPV geometry. Consider the

following analytic continuation

θ → iθ B → −iB A → −iA (2.25)

Then the metric given in (2.20) becomes

ds2 = ro
[

dη2 + sinh2 η dθ2 + dψ2 + sin2 ψdφ2 + (dx̃4 + cosψdφ−B cosh ηdθ)2
]

+ (dχ̃−A cosh ηdθ)2 +
J

4ro
(dχ̃−A cosh ηdθ)(dx̃4 + cosψdφ−B cosh ηdθ).

(2.26)

Next, taking the limit (2.7) of (2.26), followed by dimensional reduction along the χ direc-

tion gives us the five dimensional effective geometry

ds2 = ro

{

dη2 + sinh2 η dθ2 + dψ2 + sin2 ψ dφ2 +

(

1− J2

64r3o

)

× (dx4 + cosψ dφ−B cosh η dθ)2
}

.

(2.27)

We note that the AdS2 factor above is in the form of a unit disc. We refer the reader to [54]

for a discussion of the physics associated with this fact.

3 Constructing saddle points of the QEF

In this section we shall describe how new saddle points of the quantum entropy function

associated with BMPV black holes may be constructed by taking orbifolds of the near

– 7 –
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horizon geometry. For this, we will use the results of [39], where a class of saddle points that

contribute non-vanishingly to the path integral (1.1) were identified for supersymmetric

black holes whose horizon carries the symmetry SU(1, 1|2)×H.4

We take the bosonic subgroup SL(2, R) × SU(2) of the SU(1, 1|2) supergroup to be

generated by L̂0, L̂± and J1, J2, J3, satisfying the standard commutation relations

[

L̂0, L̂±
]

= ± L̂±, [Jℓ, Jm] = iǫℓmnJn. (3.1)

Further, we denote the fermionic generators of SU(1, 1|2) by Qα, Q̃α for α ∈ 1, . . . 4. Their

commutation relations are available in section 2 of [39]. Importantly, one can show that

Q1 and L̂0 − J3 form a subgroup of SU(1, 1|2), called H1.

It may then be argued that the path integral (1.1) receives contributions from only

those saddle points which are invariant under the action of group H1 [39]. The saddle

points we shall construct are H1 invariant orbifolds of (2.26) which asymptote to the full

black hole near horizon geometry. If we construct a Zs orbifold by a U(1) generator G, the
condition that the orbifold is H1 invariant just becomes

[G, H1] = 0

One can easily check that only L̂0 − J3 ⊂ SU(1, 1|2) satisfies this property.
It will turn out that the quotient space constructed by orbifolding the near horizon

geometry with G = L̂0−J3 will contain fixed points. It is possible to cure these fixed point

singularities by passing Ramond-Ramond fluxes through them, thus making them well

defined string theory solutions. Alternately, one may choose a U(1) group U ⊂ H and define

G = L̂0 − J3 + U . (3.2)

U may then chosen so as to remove the orbifold fixed point. In that case, flux quantization

turns out to impose constraints on the charges of the black hole, i.e. the configurations

exist only when the corresponding flux quantization conditions are met.

3.1 Exponentially suppressed saddle points

We now carry out a Zs orbifold of the near horizon geometry (2.26), of the type given

in (3.2) with the choice

U = k̃Ĵ3 + ku = k̃∂x4 + k∂χ. (3.3)

This has the following action on the near horizon geometry

(θ, φ, χ, x4) ∼
(

θ +
2π

s
, φ− 2π

s
, χ+

2πk

s
, x4 +

2πk̃

s

)

(3.4)

When both k and k̃ are zero then the orbifold is generated by L̂0−J3 and has fixed points.

4For example, the geometry (2.26) has an SU(1, 1|2) symmetry generated by L̂0,± defined in (2.21) and

J0,± defined in (2.9). In addition, it also has symmetries generated by Ĵ3 and u, also defined in (2.9). In

this example, H is the algebra generated by Ĵ3 and u.

– 8 –
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Next, given the boundary conditions of (1.1), one has to ensure that the orbifold

geometry asymptotes to the near horizon geometry of the black hole. The metric after

orbifolding below along with some trivial relabelling of coordinates becomes,

ds2 = ro(dη̃
2 − sinh2 η̃ dθ̃2) + ro(dψ

2 + sin2 ψdφ̃2) + (dχ̃−A cosh η̃dθ̃)2

+ro(dx̃4 + cosψdφ̃−B cosh η̃dθ̃)2 +

+
J

4ro
(dχ̃−A cosh η̃dθ̃)(dx̃4 + cosψdφ̃−B cosh η̃dθ̃) (3.5)

with the periodicity condition (3.4). Now make a coordidnate transformation

θ = sθ̃, φ = φ̃+ (1− s)θ̃, η = η̃ − log s, χ = χ̃− kθ̃, x4 = x̃4 − k̃θ̃ (3.6)

such that the periodicity becomes

(θ, φ, χ) ≡ (θ + 2π, φ, χ) ≡ (θ, φ+ 2π, χ) ≡ (θ, φ, χ+ 2π)) (3.7)

However the metric in these coordinates takes the form

ds2 = ro

(

dη̃2−sinh2 η

(

1+
(1−s−2)e−η

2sinhη

)2

dθ2

)

+ro
(

dψ2+sin2ψ(dφ+dθ−s−1dθ)2
)

(3.8)

+

[

dχ+ks−1dθ−Acoshη

(

1+
(1+s−2)e−η

2coshη

)

dθ

]2

+ro

[

dx4+ k̃s−1dθ+cosψ(dφ+dθ−s−1dθ)−B coshη

(

1+
(1+s−2)e−η

2coshη

)

dθ

]2

+
J

4ro

[

dχ+ks−1dθ−Acoshη

(

1+
(1+s−2)e−η

2coshη

)

dθ

]

×
[

dx4+ k̃s−1dθ+cosψ(dφ+dθ−s−1dθ)−B coshη

(

1+
(1+s−2)e−η

2coshη

)

dθ

]

. (3.9)

From this we see that as η → ∞, various terms in the above orbifold geometry (like dθ2

etc) approach that in the unorbifolded geometry.5 Hence this geometry is an admissible

saddle point for the quantum entropy function (1.1).

The various possible orbifolds by their
(

k, k̃
)

values, and the arithmetic constraints

imposed on the charges are classified in table 1. The constraint on Q5 is briefly discussed in

appendix B. The constraint on n follows from orbifold invariance since n is the momentum

of string along the circle generated by u = ∂χ. It is straightforward to see that since these

are Zs orbifolds of the near horizon geometry, their leading behavior is eSWald/s. We now

turn to the next-to-leading terms.

5Note that the coefficients of terms like dθdχ do not approach those in (2.20). From the point of view

of 2d theory living on AdS2, these descend to gauge fields. However, they do not specify the boundary

asymptotics because the entropy function procedure instructs us to integrate over them.
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orbifold labelled by
(

k, k̃
)

constraints on charges

(0, 0) no constraints

(1, 0) s|n and s|Q5

(0, 1) s|Q5

(1, 1) s|n and s|Q5

Table 1. Arithmetic conditions on charges arising from flux quantization constraints.

4 Computing the log terms

In this section we shall discuss the next-to-leading order corrections to the saddle points

of the path integral (1.1) obtained by taking the orbifolds (3.4) of the near horizon geom-

etry (2.27). As mentioned previously, we are working in the regime (2.7). In this scaling

limit, the black hole near horizon geometry is characterized by a large AdS2 length scale√
r0 ∼ Λ1/2.

From the discussion in the previous section, it is apparent that to the leading approx-

imation, the horizon degeneracy may be expressed as a sum over various saddle-points of

the quantum entropy function.

dhor =
∞
∑

s=1

dhor|s, dhor|s ≃ eSWald/s. (4.1)

We are interested in a more refined computation of the horizon degeneracy, where we retain

subleading contributions about each saddle point in the large Λ limit. We then have

dhor|s ≃ eSWald/s (Λ)cs ⇒ ln dhor|s ≃
SWald

s
+ cs ln Λ. (4.2)

The coefficient cs is the log term referred to in the Introduction.

We now briefly describe how the log term c may be computed from the quantum

entropy function. In particular, since we are working on an odd-dimensional manifold, the

near horizon geometry of the BMPV black hole, the log term receives contributions only

from the zero mode sector of the kinetic operator. We refer the reader to [51] and [55] for

details about this important fact, merely quoting the final result that

lnZ =
1

2

∑

φ∈{Φ }
(βφ − 1)nφ

0 ln Λ, (4.3)

where nφ
0 is the number of zero modes of the kinetic operator over the field φ, which may

equally well be bosonic or fermionic. Now among the fields of supergravity on AdS2 ⊗M ,

only vectors, the graviton, and gravitini possess zero modes, which in turn correspond to

the discrete series of eigenmodes of the kinetic operator [22, 41, 42, 51]. The specific values

for β for these fields have been computed in d+ 2 dimensions, and are found to be [51]

βv =
d

2
, βm =

d+ 2

2
, βf = d+ 1. (4.4)
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Here the subscripts v denote the vector field, m the metric or the graviton, and f the

gravitino. Hence we see that the computation of the log term for odd-dimensional manifolds

reduces to the counting of zero modes in the spectrum of the kinetic operator. Zero modes

f (i) can in principle be readily counted by evaluating the expression6 (see e.g. [41, 42, 51])

n0 =

(

−1

2

)F
∑

i∈I0

∫

M
dd+2x

√
g f (i)∗ (x) · f (i) (x) , (4.5)

where I0 is the index set for the zero modes f (i) and ‘·’ is the invariant inner product

defined for the wave functions f . For instance, if f (i) are vectors over M, then f (i)∗ ·f (i) =

gMNf
(i)∗
M · f (i)

N . F is the fermion number, which is 0 for bosons and 1 for fermions.

4.1 Counting zero modes in exponentially suppressed saddle points

We now take the BMPV near horizon geometry written in Euclidean signature (2.27) and

implement the orbifold (3.4) on this geometry. Note that the translation along the χ

direction is purely internal in this limit. We will refer to the resulting orbifold spaces as

bmpv/s. Finally, the index M runs over the directions η, θ, ψ, φ, x4. We now compute the

number of zero modes of the vector, graviton and gravitini after this orbifold is imposed.

4.1.1 The vector field zero modes

The zero modes of the five-dimensional vector field in the BMPV near-horizon geometry

have been enumerated in [51]. They are the discrete modes of the vector field along AdS2,

carrying no support along the squashed S3 directions. In particular,

A(m)
M =

1

Nm
∇Mφm, φm =

√

1

2π|m|

[

sinh η

1 + cosh η

]|m|
eimθ, (4.6)

which is the same as (A.2), upto a normalization constant Nm, only now the covariant

derivative is now with respect to the background metric (2.27). Additionally, invariance

under the orbifold (3.4) changes the quantization condition from m ∈ Z− {0}, applicable
on the unquotiented space, to

m = sp, p ∈ Z− {0} . (4.7)

We then obtain,

gMNA(m)∗
M A(m)

N =
1

N 2
m

|m| cosech2 η tanh2|m| (η
2

)

πro
. (4.8)

6A simple way to see that this expression is a natural candidate for the number of zero modes is to note

that if it were to be evaluated on a compact manifold, and the f (i) that appear there were the complete

set of orthonormal eigenfunctions belonging to a given eigenvalue E of the operator at hand, then 4.5 is by

definition, the degeneracy of E. Somewhat tautologically, the number of zero modes is the degeneracy of

the eigenvalue zero. When evaluated on a non-compact space, (4.5) is naively divergent. Nonetheless, the

answer may be regulated in accordance with the AdS/CFT correspondence to yield a finite expression for

the number of zero modes [40].
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The normalization constant Nm is fixed by requiring that
∫

bmpv/s
d2x d3y

√
ggMNA∗

MAN = 1. (4.9)

Thus, given the normalized set of vector zero modes on bmpv/s, we may use (4.5) to

evaluate the number of zero modes. Naively the answer is divergent, but we regulate the

divergence by placing a radial cutoff η0 on the AdS2 factor. We obtain

n0 =
∑

p∈Z−{0}

1

N 2
sp

∫ η0

bmpv/s
d5x

√
ggMNAsp∗

M Asp
N

=
∑

p∈Z−{0}

(

tanh
η0
2

)2s|p|
≃ 1

2s
eη0 − 1 +O

(

e−η0
)

.

(4.10)

We drop the factor diverging with the AdS radial coordinate, and keep the order 1 term

as the number of zero modes. Hence the number of zero modes from a vector field on the

five dimensional space bmpv/s is given by

nA
0 = −1. (4.11)

4.1.2 The graviton zero modes

We next turn to the graviton zero modes, for which the number of zero modes is obtained

by applying (4.5) to find

n0 =
∑

ℓ

1

N 2
ℓ

∫

bmpv/s
d2x d3y

√
ggMP gNQwℓ ∗

MNwℓ
PQ. (4.12)

Now the zero modes of the graviton come in two sets [51]. Firstly we have the modes

enumerated in (4.13) below, which obey the quantization condition ℓ = sp, where p ≥ 1

for invariance under the orbifold (3.4). We denote these modes as w(0).

w(0)ℓ
µν =

1

Nℓ
hℓµν , w(0)ℓ

µa = 0, w
(0)ℓ
ab = 0. (4.13)

where hℓ has been defined in (A.3). Further, they now have to be normalized over the

quotient space bmpv/s. The normalization constant Nℓ is determined through

1

N 2
ℓ

∫

bmpv/s
d2x d3y

√
ggMP gNQw

(0)ℓ ∗
MN w

(0)ℓ
PQ = 1, (4.14)

With this normalization of the zero modes (4.13), we use (4.12) to count the number of zero

modes, regulating the divergence in n0 by placing a cutoff η0 on the AdS2 radial coordinate.

We eventually find that the number of zero modes is given by

n
w(0)
0 =

∞
∑

p=1

tanh2sp
(η0
2

)

(

2 + 4sp
cosh η0

sinh2 η0
+ 4(sp)2

1

sinh2 η0

)

≃ 3

2s
eη0 − 1 +O

(

e−η0
)

.

(4.15)
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Hence this contribution to the graviton zero modes is given by

n
w(0)
0 = −1. (4.16)

The next class of graviton zero modes are obtained by taking the tensor product of discrete

modes along AdS2 and Killing vectors along squashed S3. Expressions for the Killing

vectors Ji of squashed S3 have already been given in (2.9) but the basis k(i) presented

in (2.12) is more convenient for our purposes here. We will therefore consider the set of

discrete modes w(i) of the five-dimensional graviton given by

wm(i)
µa =

1

Nm(i)
Am

µ k(i)a = wm(i)
aµ , i = 1, 2, 3, 4, (4.17)

with all other components of w(i) being zero. The zero modes wm(i) have the following

(θ, φ) dependence,

wm(1) ∼ eimθe−iφ, wm(2) ∼ eimθeiφ, wm(3) ∼ eimθ, wm(4) ∼ eimθ, (4.18)

and are independent of x4. Hence we see that the orbifold invariant modes satisfy

wm(1) : m = sp− 1, p ∈ Z− {0},
wm(2) : m = sp+ 1, p ∈ Z− {0},
wm(3) : m = sp, p ∈ Z− {0},
wm(4) : m = sp, p ∈ Z− {0}.

(4.19)

We also have to normalize the zero modes appropriately over the orbifold space bmpv/s.

The procedure for doing this has already been described above, and we shall only describe

final results. It turns out that in all four cases we have to compute the sum,

nw;i
0 =

∑

m

tanh2|m|
(η0
2

)

(4.20)

over the values of m enumerated in (4.19). On doing so, and retaining the order 1 term in

the large η0 expansion as per our usual prescription, we finally obtain that

nw;1
0 = 0, nw;2

0 = 0, nw;3
0 = −1, nw;4

0 = −1. (4.21)

Then the total number of graviton zero modes is given by adding (4.16) and (4.21). We

finally obtain for the total number of graviton zero modes on bmpv/s,

nw
0 = −3. (4.22)

4.1.3 Counting gravitini zero modes

Gravitini zero modes are associated with the deformations generated by the fermionic

generators Gαβ
n of the N = 4 superconformal algebra, where α, β = ±1, and n = Z +

1
2 [21, 39]. Of these, Gαβ

± 1
2

correspond to global symmetry generators in the algebra su(1, 1|2)
of the near horizon geometry. The remaining generators may be identified to the discrete
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range of n β solution

n ≥ 3
2 ⇔ k ≥ 1, +1 k = sp− 1

n = k + 1
2 −1 k = sp

n ≤ 3
2 ⇔ k ≥ 1, +1 k = sp

n = −k − 1
2 −1 k = sp− 1

Table 2. Quantization conditions on the fermion zero modes imposed by orbifold invariance.

modes ξ
(k)+
m and ξ

(k)+
m along AdS2, enumerated in appendix A, in the following manner.

Firstly, the Gαβ
n for n ≥ 3

2 are identified to the modes ξ
(k)+
m ⊗Ψ where n = k+ 1

2 and Ψ is a

spinor along S3.7 Next, the generators Gαβ
n for n ≤ −3

2 correspond to the modes ξ̂
(k)+
m ⊗Ψ

where |n| = k + 1
2 .

To determine the zero modes that survive the orbifold projection, we will use the

expression (2.16), which may be exponentiated to yield the orbifold action on the fermion

zero modes

e−2π
s
i(L0−Ĵ3)Gαβ

n e2
π
s
i(L0−Ĵ3) = e−2π

s
i(n+β

2 )Gαβ
n . (4.23)

The orbifold invariant modes are given by the solutions in n of the equation n + β
2 = sp,

where p ∈ Z. These have been enumerated in table 2. Note that the value of α is not

constrained in the above projection. Now we proceed to the counting of fermionic zero

modes. As noted, they appear in the discrete series of gravitini modes and correspond to

the following configurations.

Ξ(k)+
η =

C

4πa
ξ(k)+η ⊗Ψ, Ξ

(k)+
θ =

C

4πa
ξ
(k)+
θ ⊗Ψ, (4.24)

and the hatted spinors are given by

Ξ̂(k)+
η =

C

4πa
ξ̂(k)+η ⊗Ψ, Ξ̂

(k)+
θ =

C

4πa
ξ̂
(k)+
θ ⊗Ψ. (4.25)

The normalization constant C is fixed by demanding that the spin-32 fields Ξ+
µ and Ξ̂+

µ

are Kronecker delta function normalized over the space bmpv/s. Now with this choice of

normalization we can compute explicitly and show that

gmn
(

ξkm

)†
ξkn = gmn

(

ξ̂km

)†
ξ̂kn =

sinh2k−2 η
2

cosh2k+4 η
2

. (4.26)

The contribution to the number of zero modes from the series ξ⊗Ψ may now be obtained

by using (4.5). We obtain

n0
ξ = −1

2
· 2

∞
∑

p=1

(∫ ∞

0
dη sinh η gmn (ξspm )† ξspn

+

∫ ∞

0
dη sinh η gmn

(

ξsp−1
m

)†
ξsp−1
n

)

.

(4.27)

7Explicit expressions for fermion zero modes for four dimensional extremal black holes are available

in [22, 42].
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The overall factor of 2 is because of the multiplicity of zero modes associated with α = ±1.

As it stands, the above expression is divergent, but may be regulated to obtain and we

regulate it by writing

n0
ξ = −

(

eη0

s
− 1 +O

(

e−η0
)

)

. (4.28)

An entirely analogous procedure may be applied to the hatted spinors, and we obtain

n0
ξ = +1, n0

ξ̂
= +1. (4.29)

Therefore, the total number of zero modes is

n0
f = +2. (4.30)

4.2 Counting zero modes for the non-rotating black hole

As mentioned in section 2.1.1, in the limit where J = 0, the near horizon geometry factors

into the tensor product AdS2 ⊗ S3 and we obtain two additional Killing vectors, given

in (2.13), which lead to extra zero modes of the five-dimensional graviton, given by

wm(i)
µa =

1

Nm(i)
Am

µ k̃(i)a = wm(i)
aµ , i = 1, 2. (4.31)

It turns out that these graviton zero modes make the log term sensitive to the choice of

orbifold, as we shall now describe. Firstly we have the Type (0, 0) and Type (1, 0) orbifolds,

which act on the five-dimensional geometry as

(θ, φ, x4) 7→
(

θ +
2π

s
, φ− 2π

s
, x4

)

. (4.32)

In this case the orbifold-invariant modes of w̃m(1) and w̃m(2) satisfy the quantization con-

dition m = Np, and contribute −1 each to the number of metric zero modes. In contrast

the Type (0, 1) and Type (1, 1) orbifolds act as

(θ, φ, x4) 7→
(

θ +
2π

s
, φ− 2π

s
, x4 +

4π

s

)

. (4.33)

In this case, the orbifold-invariant modes of w̃m(1) and w̃m(2) satisfy the quantization

condition m = sp− 2 and m = sp+ 2 respectively. From the methods outlined previously,

it may readily be seen that both w̃1 and w̃2 contribute zero to the regularized number of

discrete modes.

4.3 The log terms for the BMPV black hole

We may now put together the results of the zero mode counting with the equations (4.3)

and (4.4) to compute the log term about each exponentially suppressed saddle point.8 It

8The Type (0, 0) orbifolds have fixed point singularities which may be resolved by passing Ramond

Ramond fluxes through them. While it is possible that there are new states localized on these fixed points

corresponding to twisted sectors of the string, but the contribution of these states to the partition function

would not scale with Λ. Hence we expect our computation to hold for these orbifolds as well.
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is straightforward to obtain that if the effective five dimensional theory has nV massless

U(1) gauge fields,

lnZ1−ℓ =
1

2

[

nV

(

3

2
− 1

)

(−1) +

(

5

2
− 1

)

(−3) + (4− 1) 2

]

ln Λ

= −1

4
(nV − 3) lnΛ.

(4.34)

This is the same answer as arrived at over the dominant saddle point [51] despite the fact

that the numbers of regularized zero modes for each fields change separately. Hence, the

quantum entropy function predicts that the value of the log term should be independent of

the choice of saddle point. This is reminiscent of the result for large black holes in N = 4

and N = 8 string compactifications in four dimensions [23].

For comparison with the microscopic side, we shall focus on the compactification where

M = T 5, and hence nV = 27. For this case we find

lnZ1−ℓ = −6 lnΛ. (4.35)

4.3.1 The non-rotating case

As we have seen in section 4.2, in this case the number of orbifold invariant zero modes,

and hence the log term, becomes sensitive to the choice of orbifold. For this reason we

will organize the answers for different orbifolds (3.4) according to the arithmetic conditions

they obey.

No arithmetic constraints. These are the Type (0,0) Orbifolds of section 3.1 and using

the zero mode counting of section 4.2, we obtain that the log term about these saddle points

is given by

lnZ1−ℓ = −nv + 3

4
lnΛ. (4.36)

For the case of M = T 5, we therefore find

lnZ1−ℓ = −15

2
lnΛ. (4.37)

Constraint that s|Q5. These are the Type (0,1) Orbifolds, and again using the zero

mode counting of section 4.2, we see that the log term about these saddle points is given by

lnZ1−ℓ = −nv − 3

4
lnΛ. (4.38)

Constraint that s|n and s|Q5. These are the Type (1,0) and Type (1,1) Orbifolds.

Now the log term about the Type (1,0) orbifold is given by (4.36) and about the Type

(1,1) Orbifold is given by (4.38). Thus, the contribution of the (1,1) Orbifold to the path

integral dominates over the contribution of the (1,0) Orbifold, and we write

lnZ1−ℓ = −nv − 3

4
lnΛ. (4.39)

In particular, for the Type (0,1), (1,0) and (1,1) orbifolds for the case where M = T 5, we

obtain

lnZ1−ℓ = −6 lnΛ. (4.40)
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5 Large charge expansion in type II string on T5

This section is a review of some essential facts about the microscopic computation of

the BMPV black hole entropy in the toroidally compactified Type II string that will be

useful when making a comparison to macroscopic results. The presentation is by no means

exhaustive and for more details we refer the reader to [4, 56] where the microscopic analysis

is available. The computation of the log term about the dominant saddle point is available

in [51]. The microscopic system at hand consists of Q5 D5-branes wrapped on T 5 = T 4×S1,

along with Q1 units of D1-brane charge wrapped along S1, −n units of momentum along

the S1, as well as J3L = J/2 units of SU(2)L angular momentum. The computation of

microscopic degeneracy proceeds via the computation of an appropriate index over this

system. However, the choice of index depends crucially upon whether J is zero or non-zero

and hence we shall treat these two cases separately.

5.1 The rotating case

When J is non-zero the D1-D5 system on T 5 = T 4×S1describes a 1/8 BPS state. Defining

Q ≡ Q1Q5, the index is given by [4, 56]

∑

J

(−1)J d̃micro(n,Q, J)e2πiJv = (eiπv − e−iπv)4
∑

j∈Z

∑

s̄|n,Q,j

s̄ĉ

(

4Qn− j2

s̄2

)

e2πijv. (5.1)

Here the notation a|b denotes that a is a divisor of b. Further , the function ĉ is defined

via the Fourier coefficients of the Jacobi form

− θ1(v, τ)
2

η(τ)6
=

∑

k,ℓ

ĉ(4k − ℓ2)e2πi(kτ+ℓv), k, ℓ ∈ Z (5.2)

where θ1(v, τ) is a Jacobi Elliptic Theta Function and η(τ) is the Dedekind eta function.

Since s̄|j and s̄2|Qn in (5.1), the argument of ĉ in the r.h.s. of (5.1) is exactly of the form

given in (5.2). We may solve (5.1) for d̃micro to obtain

d̃micro (n,Q, J) = (−1)J
2

∑

q=−2

λq

∑

s̄|n,Q,J+q

s̄ ĉ

(

4Qn− (J + q)2

s̄2

)

, (5.3)

where we have defined the constants λ0 = 6, λ±1 = −4, λ±2 = 1. Note that this leads to an

arithmetic constraint on J that dictates which values of s̄ may enter the equation (5.1) for a

given J . In particular, only those values of s̄ are allowed such that at least one of J, J±1, J±
2 is ps̄ where p ∈ Z+. Let us now consider a particular term above with s satisfying s̄|Q, s̄|n

d̃micro (n,Q, J) |s̄ = (−1)J s̄
2

∑

q=−2,s̄|J+q

λq ĉ (Dq) (5.4)

where we have defined

Dq ≡ 4

(

Q

s̄

)

(n

s̄

)

−
(

J + q

s̄

)2

(5.5)
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The large charge behavior of the ĉ is dictated by the Rademacher expansion of these Fourier

coefficients, worked out for instance in [25] to which we refer the reader for background

and details. We then find that the Fourier coefficients take the form

ĉ(D) =
∞
∑

c=1

√
2Kc(D)√
cD2

e
π
√
D

c

[

1− 6c

π
√
D

+O(1/D)

]

for large D (5.6)

where Kc(D) is the Kloosterman sum. For low values of c, one may readily evaluate it to

obtain

K1(D) =
(−1)

D
2√

2
, K2(D) =

{

0 if D is odd

e
−iDπ

4 if D is even
. (5.7)

For each term (5.4) we get, we get

d̃micro (n,Q, J) |s̄ = (−1)J
√
2s̄

2
∑

q=−2,s̄|J+q

λq

∞
∑

c=1

Kc(Dq)e
π
√
Dq
c√

cD2
q

(

1− 6c

π
√

Dq

+O
(

1

Dq

)

)

.

(5.8)

Let us now define a new quantity

D ≡ 4nQ− J2 (5.9)

in terms of which we will write all the subsequent expressions. Since q(q+2J)
D ≪ 1, (5.8)

now becomes,

d̃micro (n,Q, J) |s̄ =
√
2(−1)J s̄5

D2

∞
∑

c=1

e
π
√
D

cs̄√
c

(

1− 6c
√
s̄

π
√
D

+O
(

1

D

))

×
2

∑

q=−2,s̄|J+q

λqKc(Dq)e
−πq(q+2J)

2cs̄
√

D

(

1 +O
(

J

D
3
2

))(

1 +
2q(q + 2J)

D
+O

(

J

D2

))

.

(5.10)

Focusing on the rotating case, where J ∼
√
D, we get

d̃micro (n,Q, J) |s̄ =

√
2(−1)J s̄5

D2

∞
∑

c=1

e
π
√
D

cs̄√
c

(

1− 6c
√
s̄

π
√
D

)

(5.11)

×
2

∑

q=−2,s̄|J+q

λqKc(Dq)e
− πqJ

cs̄
√

D

(

1 +
4qJ

D
+O

(

1

D

))

.

s̄ > 4 case. For simplicity, consider the case s̄ > 4 and thus s̄ can atmost divide only

one of the integers in J − 2, J − 1, , J + 2. In this case, we see that only one of the terms

in the sum over q is nonvanishing. Hence the scaling is .

d̃micro (n,Q, J) |s̄ ∼
∞
∑

c=1

e
π
√
D

cs̄

D2
(5.12)

Hence we find that for all s̄ > 4, (upto quantization conditions on n,Q, J) we have

d̃micro (n,Q, J) |s̄ ≃
∞
∑

c=1

eπ
√

4Qn−J2/cs̄
(

4Qn− J2
)−2

. (5.13)
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We therefore have a series of exponentially suppressed corrections to the leading

‘Bekenstein-Hawking’ contribution for each s̄. In particular

log d̃micro (n,Q, J) |(s̄, c) ≃ π
√

4Qn− J2

cs̄
− 2 log

(

4Qn− J2
)

. (5.14)

Hence under the scaling (2.7) of charges, the log term about each saddle point is −6 lnΛ.

Comments on s̄ ≤ 4 case. In this case it could be that s̄ divides more than one integer

in the set (J −2, . . . J +2). Then more than one term is nonvanishing in the sum in (5.10).

Generically, there are no cancellations among these terms and the result is the same as

s̄ > 4 case. Nonetheless, in principle it is possible that delicate cancellations between

individial terms might alter the log correction.9 The simplest case this might happen is for

s̄ = 4, and J+2 (and hence J−2 as well) is divisible by s̄, i.e q = ±2 terms are nonvanishing

in the sum (5.10). In this case, the log correction will be different from s̄ > 4 case if

Kc(D−2)e
−2πJ

cs̄
√
D +Kc(D2)e

2πJ

cs̄
√
D = 0 (5.15)

In practice, such cancellations do not occur when we compute explicitly, for example for

the cases of c = 1 and c = 2, but it would be interesting to study this question more

systematically using properties of the Kloosterman sum. For now, we will assume that

such delicate cancellations do not occur.

5.2 The non-rotating case

For the non-rotating case, the relevant microscopic index is dmicro, given by [51]

dmicro(n,Q, J) = d̃micro (n,Q, J)− d̃micro (n,Q, J + 2) , (5.16)

which, for J = 0 takes the form

dmicro(n,Q, 0) = d̃micro (n,Q, 0)− d̃micro (n,Q, 2)

=
∑

j∈Z

∑

s̄|n,Q,j

s̄ ĉ

(

4Qn− j2

s̄2

) 4
∑

q=−2

λ̃qδj,q,

where λ̃−2 = 1, λ̃−1 = −4, λ̃0 = 5, λ̃1 = 0, λ̃2 = −5, λ̃3 = 4, λ̃4 = −1. This is just of the

form (5.3) and hence we can read off the answer in (5.10), now with J = 0 to obtain

dmicro(n,Q, 0) =

4
∑

q=−2

λ̃q

∑

s̄|n,Q,q

√
2s̄5

D2

∞
∑

c=1

e
π
√
D

cs̄√
c

Kc

(

D − q2

s̄2

)



1−

(

πq2

2cs̄ + 6c
√
s̄

π

)

√
D



 ,

(5.17)

where we have dropped terms O( 1
D ). Again one can make a similar argument as in J 6= 0

case to say that atleast for s̄ > 4, only the q = 0 term in the sum will contribute. Hence

atleast for s̄ > 4, the log corrections are unchanged and continue to be given by −6 lnΛ.

9This possibility is not merely hypothetical. It may be shown that the change in the log term about the

dominant saddle point from −6 lnΛ for the rotating case to − 15
2
ln Λ for the non-rotating case [51] may be

traced back to precisely this cancellation between different terms that contribute to the index.
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When s̄ < 4, as in the rotating case, we may investigate the possibility of cancellations

between different contributing terms for some low values of c which we turn to below. The

values of the Kloosterman sum relevant for these computations have already been detailed

in (5.7).

The c = 1 case. This includes the case of the dominant saddle point, which corresponds

to s̄ = 1, c = 1. In this case, to leading order in D,

dmicro(n,Q, 0)|c=1,s̄|n,Q =

√
2s̄5(−1)

D
2s̄2

D2
e

π
√
D

s̄

[

5− (−1)−
8
s̄2 δs̄|4

+4
(

(−1)−
9

2s̄2 δs̄|3 − (−1)−
2
s̄2 δs̄|2 − (−1)

1
2s̄2 δs̄,1

)]

. (5.18)

Although for s̄ = 1 this is vanishing, which is the reason for the change in the log term to

−15
2 ln Λ, one can check explicitly that this is non zero for any value of s̄ > 1. Therefore,

for c = 1 and s̄ > 1, the log term will be given by −6 lnΛ.

The c = 2 case. Also note that the quantization conditions imply that D
s̄2

is always

divisible by 4. With these inputs, one can compute that the contribution to dmicro to

leading order in D gives

dmicro(n,Q,0)|c=2,s̄|n,Q=

√
2s̄5e

π
√
D

2s̄

D2

(

5K2

(

D

s̄2

)

−4δs̄|2K2

(

D−4

s̄2

)

−δs̄|4K2

(

D−16

s̄2

))

.

One can again check that this is nonvanishing for any s̄ ≥ 1, and hence the log term is

again given by −6 lnΛ.

6 Summary

In this paper we examined the large charge behavior of the quantum entropy function for the

BMPV black hole in two limits, firstly when the angular momentum of the black hole scales

uniformly with the rest of the charges, and secondly where the black hole is non-rotating. In

particular we constructed new saddle points, enumerated in table 1, of the quantum entropy

function which arise from taking orbifolds of the near horizon geometry of the black hole,

and computed their leading and next-to-leading contribution to the path integral (1.1). The

contributions to the path integral from these saddle points are exponentially suppressed

with respect to the contribution from the leading saddle point, the near horizon geometry

itself. On the microscopic side, an analysis of the appropriate index for BMPV black holes

for string theory compactified on a five-torus yields a series of exponentially suppressed

terms. Let us now compare results on the microscopic and macroscopic sides.

6.1 The rotating case

On the macroscopic side, we have Type (0,0), Type (0,1), Type (1,0) and Type (1,1)

orbifolds as in table 1, and the contribution Z|s to the path integral (1.1) from each such

orbifold for the case nV = 27 is given by10

lnZ|s =
AH

4s
− 6 ln (AH)2/3 . (6.1)

10We used the fact that AH ∼ Λ3/2.
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Meanwhile, on the microscopic side we have a class of exponentially suppressed terms with

s̄ = 1 and c > 1. These terms do not carry any arithmetic constraint and appear for all

values of charges. Their leading behaviour takes the form11

ln d̃micro|c =
AH

4c
− 6 ln (AH)2/3 . (6.2)

Hence the Type (0,0) orbifolds in the bulk are their natural counterpart with s = s̄c = c, as

they appear without arithmetic conditions and reproduce the leading and next-to-leading

behaviour correctly.

We next discuss the contribution for the degeneracy which appear for a given integer

s̄ > 1, provided the charges satisfy the following quantization conditions:

s̄|n and s̄|Q1Q5 and (s̄|J ± 2 or s̄|J ± 1 or s̄|J) , (6.3)

and their leading behaviour is of the form

ln d̃micro|̄s =
AH

4s̄
− 6 ln (AH)2/3 . (6.4)

We now discuss the macroscopic counterparts of these terms. Firstly we note that to

the extent indicated by our analysis, the flux quantization conditions on the orbifolds

do not seem to restrict J . However, since the quantum entropy function picks out the

microcanonical ensemble, we can directly fix the J charge to obey the above condition.

With this input, we see that the Type (1,0) and Type (1,1) orbifolds exist only when the

above arithmetic conditions are satisfied, with Q5 divisible by s̄. Further, they have the

same leading and next-to-leading behavior as the microscopic term at hand. This makes

them natural counterparts for this term.

While there are no obvious counterparts of Type (0,1) in the microscopic formulae,

this is not necessarily a mismatch. For example, it might as well be that the s̄ = 1 sector in

the microscopic formulae contains the contributions of these orbifolds. A similar statement

may hold for the Type (1,0), Type (1,1) orbifolds if J is does not satisfy (6.3).

6.2 The non-rotating case

On the macroscopic side we have the Type (0,0) orbifolds with the large charge behaviour

lnZ|s =
AH

4s
− 15

2
ln (AH)2/3 . (6.5)

Again, one is naturally led to identify the contribution of these saddles to that of the

microscopic terms with s̄ = 1 and c > 1 and hence s = s̄c = c. However, their leading

behaviour is of the form

ln d̃micro|̄s =
AH

4s
− 6 ln (AH)2/3 . (6.6)

It would be interesting to reconcile this mismatch.

11As mentioned above, the next-to-leading term is computed with the assumption that cancellations do

not occur between contributions to d̃micro|s.
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We next consider the Type (0,1), (1,0) and (1,1) orbifolds with the behaviour

lnZ|s =
AH

4s
− 6 ln (AH)2/3 , (6.7)

and note that on the microscopic side we have terms which appear when the charges satisfy

the arithmetic properties

s̄|n and s̄| (Q1Q5) , (6.8)

and have the leading behaviour

ln d̃micro|̄s =
AH

4s̄
− 6 ln (AH)2/3 . (6.9)

Hence these terms are the natural counterparts of the above orbifolds, following the dis-

cussion in the rotating case.

6.3 Conclusions

On comparing the microscopic and macroscopic sides, we see that the situation is only

partially satisfactory. In the rotating case, we match the leading and next-to-leading12

behaviours across an infinite set of saddle points when the black hole charges obey no

special quantization condition. This is a definite success.

Nonetheless, there are some puzzles which appear when we study saddle points which

correspond to special arithmetic properties of charges. Firstly, the quantization condi-

tion (6.3) on J which appears on the microscopic side does not appear on the macroscopic

side. It would be interesting to examine the orbifold geometries we have constructed to see

if these quantization conditions may indeed be realized in some way.

Next, in the non-rotating case it is puzzling that though the leading term matches on

both sides when there are no arithmetic conditions, the next to leading term does not.

In particular, the degeneracy for the horizon is slightly smaller than what is computed

from the microscopic counting. When the charges obey arithmetic properties, then the

leading and next-to-leading terms match on the microscopic and macroscopic sides, which

is satisfactory.

In both the rotating and non-rotating cases, the quantization condition which appears

on the D-brane charges Q1 and Q5 in (6.3) and (6.8) only appears as a condition on Q5 in

the macroscopic side. To this order in the large-charge expansion, there does not seem to

be a conflict, as it may be that the contribution of microscopic terms when s̄|Q1 and not

Q5 is simply contained in the Type (0,0) orbifolds. One would need to compute to higher

orders to settle this question.

Finally, another reason for the fact that the match we observe is only partial could

also be that the microscopic index contains contributions from 1
8 -BPS states which do not

12In principle, to compare the microscopic and macrosopic answers one has to remove hair contributions

from the microscopic side [50, 57]. In the regime of charges we are considering, the hair modes scale as O(1)

and do not contribute to the log term. This was explicitly be shown about the dominant saddle-point of the

BMPV near horizon geometry in sections 5.2 and 5.3 of [51]. The analysis may be extended to exponentially

suppressed saddle points using the techniques of [36] to show that hair modes again contribute O(1) terms

to the index and hence we do not expect them to be relevant to our analysis.
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contribute to the microscopic degeneracy of the single-centre black hole, which is what

the quantum entropy function measures. It would be of interest to examine if the match

becomes exact once this possibility is accounted for on the microscopic side.
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A Harmonics on AdS2

In this appendix we will review some essential facts about eigenfunctions of the Laplacian on

AdS2 for vector, spin
3
2 and spin 2 fields. This has been extensively studied in [58–61] and re-

viewed in [42] and we refer the reader to those papers for more detailed discussions. Further,

since we only encounter discrete modes of the Laplacian in our analysis, we will be entirely

focused on those modes here. We work in AdS2 coordinates in which the metric is given by

ds2 = a2
(

dη2 + sinh2 η dθ2
)

, η ∈ [0,∞) , θ ∈ [0, 2π) . (A.1)

Then the set of discrete modes of the vector field on AdS2 are given by

fm
a = ∇aφ

m, φm =

√

1

2π|m|

[

sinh η

1 + cosh η

]|m|
eimθ, m ∈ Z− {0}. (A.2)

Note that though φm is not a normalizable mode on AdS2 and is therefore not included in

the scalar heat kernel, fm
a is a Kronecker delta function normalizable mode of the vector

field and hence should be included in the vector heat kernel [59]. Similarly, there exists a

discrete set of eigenmodes of the spin-2 Laplacian on AdS2, with −� eigenvalue 2
a2
. These

are modes given by

wℓ,mndx
mdxn =

a√
π

√

|ℓ| (ℓ2 − 1)

2

(sinh η)|ℓ|−2

(1 + cosh η)|ℓ|
eiℓθ×

×
(

dη2 + 2i sinh ηdηdθ − sinh2 ηdθ2
)

, ℓ ∈ Z, |ℓ| ≥ 2.

(A.3)

Finally, we enumerate the discrete modes of the gravitino. These are Kronecker delta

function normalizable modes denoted by ξ and ξ̂ on AdS2 whose explicit forms are given

below. If the two dimensional Dirac matrices are chosen to be

γ0 = −τ2, γ1 = τ1, (A.4)

where the τis are the Pauli matrices, the ξ spinors are given by

ξ(k)±η =
1

8πa
ei(k+

1
2)φ





0

± sinhk−1 η
2

coshk+2 η
2



 , ξ
(k)±
θ =

1

4πa
ei(k+

1
2)φ





0

± sinhk η
2

coshk+1 η
2



 , (A.5)
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and the hatted spinors are given by

ξ̂(k)±η =
1

8πa
e−i(k+ 1

2)φ





± sinhk−1 η
2

coshk+2 η
2

0



 , ξ̂
(k)±
θ =

1

4πa
e−i(k+ 1

2)φ





± sinhk η
2

coshk+1 η
2

0



 . (A.6)

B Flux quantization for orbifolds

Since the flux is a 3-form, we shall consider the integral

∫

3 Cycle
F (B.1)

over all non-contractible 3-cycles in the geometry which are left invariant by the action of

the Zs orbifold. It is straightfoward to firstly observe that the 3-cycle must be located at

η = 0. At this point, the flux F3 takes the form

F3 = −Q5

4
sinψ dφ ∧ dψ ∧ dx4 −

Q5J sinψ dφ ∧ dψ ∧ dχ

32r20
+ . . . , (B.2)

where the ‘. . .’ denote components of the flux which are along the η or θ directions. Of

these, the first term is proportional to the volume form of S3 and gives rise to the flux

quantization condition

Q5 ∈ Z. (B.3)

This is because all the Zs orbifolds we construct reduce this S3 to 1
s of its original size.

The second term doesn’t contribute a quantization condition as the 2-cycle dφ ∧ dψ is

contractible in S3.
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