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Abstract. The western tropical South Pacific (WTSP) Ocean
has been recognized as a global hot spot of dinitrogen
(N2) fixation. Here, as in other marine environments across
the oceans, N2 fixation studies have focused on the sun-
lit layer. However, studies have confirmed the importance
of aphotic N2 fixation activity, although until now only
one had been performed in the WTSP. In order to in-
crease our knowledge of aphotic N2 fixation in the WTSP,
we measured N2 fixation rates and identified diazotrophic
phylotypes in the mesopelagic layer along a transect span-
ning from New Caledonia to French Polynesia. Because
non-cyanobacterial diazotrophs presumably need external
dissolved organic matter (DOM) sources for their nutri-
tion, we also identified DOM compounds using Fourier
transform ion cyclotron resonance mass spectrometry (FTI-
CRMS) with the aim of searching for relationships between
the composition of DOM and non-cyanobacterial N2 fixa-
tion in the aphotic ocean. N2 fixation rates were low (av-
erage 0.63± 0.07 nmol N L−1 d−1) but consistently detected
across all depths and stations, representing ∼ 6–88 % of

photic N2 fixation. N2 fixation rates were not significantly
correlated with DOM compounds. The analysis of nifH gene
amplicons revealed a wide diversity of non-cyanobacterial
diazotrophs, mostly matching clusters 1 and 3. Interestingly,
a distinct phylotype from the major nifH subcluster 1G domi-
nated at 650 dbar, coinciding with the oxygenated Subantarc-
tic Mode Water (SAMW). This consistent pattern suggests
that the distribution of aphotic diazotroph communities is to
some extent controlled by water mass structure. While the
data available are still too scarce to elucidate the distribution
and controls of mesopelagic non-cyanobacterial diazotrophs
in the WTSP, their prevalence in the mesopelagic layer and
the consistent detection of active N2 fixation activity at all
depths sampled during our study suggest that aphotic N2 fix-
ation may contribute significantly to fixed nitrogen inputs in
this area and/or areas downstream of water mass circulation.
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1 Introduction

Pelagic N2 fixation is considered the greatest input of fixed
nitrogen to the oceans, adding up to ∼ 100–107 Tg N per
year (Galloway et al., 2004; Codispoti, 2007; Gruber and
Galloway, 2008; Jickells et al., 2017). In the sunlit layer
of the warm oligotrophic tropical and subtropical oceans,
cyanobacterial diazotrophs such as Trichodesmium, UCYN-
B and diatom–diazotroph associations (DDAs) dominate
fixed nitrogen inputs via N2 fixation (Zehr, 2011). In colder
and less oligotrophic waters at higher latitudes, other dia-
zotrophs including UCYN-A and non-cyanobacterial groups
may be more competitive (Moisander et al., 2010, 2014;
Bonnet et al., 2015; Langlois et al., 2015), considerably ex-
panding the latitudinal range over which N2 fixation is con-
sidered significant in predictive biogeochemical models. In
the past decade, several studies have retrieved nifH sequences
from the dark ocean, some also accompanied by low N2 fix-
ation rates (Hamersley et al., 2011; Bonnet et al., 2013; Ra-
hav et al., 2013). Due to the immense volume of the dark
ocean, aphotic N2 fixation could influence the global nitro-
gen budget substantially. However, the number of published
aphotic N2 fixation rates is scant and our understanding of the
metabolism and ecology of aphotic diazotrophs is still lim-
ited, hindering our ability to evaluate their impact on global
fixed nitrogen inputs (Moisander et al., 2017).

Non-cyanobacterial nifH sequences fall into four estab-
lished nifH gene clusters (Chien and Zinder, 1996), are the
most numerous in nifH gene databases (Riemann et al., 2010)
and are spread throughout the global ocean (Farnelid et al.,
2011; Langlois et al., 2015). As discussed in Bombar et
al. (2016), the growth and activity of non-cyanobacterial dia-
zotrophs may be controlled by (i) the presence of oxygen be-
cause oxygen destroys the nitrogenase enzyme, (ii) the avail-
ability of fixed nitrogen because N2 fixation becomes too en-
ergetically expensive when reduced nitrogen forms are read-
ily available in the environment and (iii) the availability of
energy because non-cyanobacterial diazotrophs may not be
able to photosynthesize and thus rely on external fixed car-
bon sources. However, aphotic diazotrophic activity has been
found both in oxygen-deficient regions such as the oxygen
minimum zone of the eastern tropical South Pacific (Bon-
net et al., 2013; Loescher et al., 2014) and the fully oxy-
genated mesopelagic waters in the Mediterranean Sea (Rahav
et al., 2013; Benavides et al., 2016). Moreover, while fixed
nitrogen availability should theoretically shut down N2 fixa-
tion, significant N2 fixation rates have been measured in the
nitrate-rich mesopelagic waters of the western tropical South
Pacific (WTSP) (Benavides et al., 2015). Finally, energy is
likely made available to heterotrophic non-cyanobacterial di-
azotrophs through labile dissolved organic matter (DOM).
Aphotic N2 fixation rates have been related to the presence
of relatively labile DOM compounds such as transparent ex-
opolymeric particles (TEP) in the WTSP (Benavides et al.,
2015) or peptides and unsaturated aliphatics in the Mediter-

ranean Sea (Benavides et al., 2016). The addition of small
labile DOM molecules such as carbohydrates or amino acids
has been shown to enhance aphotic N2 fixation in various en-
vironments (Bonnet et al., 2013; Rahav et al., 2013; Loescher
et al., 2014; Benavides et al., 2015). However, some photic
non-cyanobacterial diazotrophs also bear genes for the degra-
dation of refractory DOM compounds (e.g., aromatic hydro-
carbons; Bentzon-Tilia et al., 2015). It is thus reasonable
to expect that aphotic non-cyanobacterial diazotrophs may
be able to exploit diverse DOM sources. Unfortunately, the
current lack of genome information from non-cyanobacterial
aphotic diazotrophs does not allow us to assess how they are
affected by DOM composition and lability.

The WTSP has been recently recognized as a global
hot spot of photic N2 fixation, harboring among the high-
est N2 fixation rates ever recorded (∼ 600 µmol N m−2 d−1;
Bonnet et al., 2017), mostly attributed to Trichodesmium and
UCYN-B (Bonnet et al., 2009, 2015; Berthelot et al., 2017;
Stenegren et al., 2018). To the eastern border of this region,
the ultraoligotrophic South Pacific Gyre (GY) has low photic
N2 fixation rates (Raimbault and Garcia, 2008), which have
been mainly attributed to small unicellular diazotrophs such
as UCYN-A and Gammaproteobacteria (Bonnet et al., 2009;
Halm et al., 2011; Stenegren et al., 2018). Despite its po-
tentially immense implications in global fixed nitrogen in-
puts, the aphotic N2 fixation potential of the WTSP remains
mostly unexplored (Benavides et al., 2015). Here we quantify
N2 fixation and describe the communities based on the nifH
gene in the mesopelagic layer along a ∼ 5000 km transect
in the WTSP spanning from oligotrophic to ultraoligotrophic
conditions (Moutin et al., 2017).

2 Materials and methods

2.1 Hydrography, nutrients, chlorophyll a and
dissolved organic carbon

The OUTPACE cruise (Oligotrophy to Ul-
traoligotrophy South Pacific Experiment;
https://doi.org/10.17600/15000900) took place onboard
the R/V L’Atalante from 20 February to 2 April 2015
(i.e., during austral summer), sailing westwards from New
Caledonia to French Polynesia (see Fig. 2 in Moutin et
al., 2017). Temperature, salinity, chlorophyll fluorescence
and oxygen data were obtained using an SBE 9 plus CTD
mounted on a General Oceanics rosette frame fitted with
24–12 L Niskin bottles.

Seawater samples were collected with Niskin bottles
mounted on a rosette frame at 15 short-duration (SD, 8 h)
and 3 long-duration (LD, 7 days) stations (Moutin et al.,
2017). Samples for the determination of the inorganic nu-
trients nitrate (NO−3 ), nitrite (NO−2 ) and phosphate (PO3−

4 )

were collected in 20 mL acid-washed polyethylene flasks,
poisoned with 1 % mercury chloride and analyzed onshore
using an AA3 Bran+Luebbe autoanalyzer. The detection
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limit for both NO−3 and PO3−
4 was 0.05 µM. Samples for the

determination of dissolved organic carbon (DOC) were col-
lected in combusted glass bottles and immediately filtered
through two mounted precombusted (4 h, 450 ◦C) 25 mm
GF/F filters (0.7 µm, Whatman) using a custom-made all-
glass–Teflon filtration syringe system. Filtered seawater was
directly collected in precombusted glass ampoules and acid-
ified to pH 2 with orthophosphoric acid. Ampoules were
immediately sealed and stored cold (4 ◦C) and in the dark
until analyses by high-temperature catalytic oxidation on a
Shimadzu TOC-L analyzer according to Sohrin and Sem-
péré (2005). Typical analytical precision is ±0.1–0.5 (SD)
or 0.2–0.5 % (coefficient of variation, CV). Consensus refer-
ence materials were injected every 12 to 17 samples to con-
trol for stable operating conditions. Chlorophyll a (Chl a)
concentrations were determined from 500 mL samples fil-
tered through GF/F filters. Chl a was extracted in methanol
and measured by fluorometry (Herbland et al., 1985).

2.2 DOM analysis

Samples for ultra-high-resolution mass spectrometry anal-
yses were collected in acid-cleaned 2 L transparent poly-
carbonate bottles and extracted (solid-phase) via Agilent
PPL cartridges as described in Dittmar et al. (2008). Af-
ter extraction, the cartridges were rinsed with acidified ul-
trapure water and frozen at −20 ◦C. Subsequently, the sam-
ples were dried by flushing with high-purity N2 and eluted
with 6 mL of methanol. The efficiency of the extraction
was 47.3± 3.9 % on a carbon basis. Methanol extracts were
molecularly characterized on a 15 Tesla Fourier transform
ion cyclotron resonance mass spectrometer (Solarix FTI-
CRMS) using an electrospray ionization source in negative
mode (Bruker Apollo II). Molecular formulae were ascribed
to the detected masses as outlined in Seidel et al. (2014). The
aromaticity and unsaturation degree of each compound were
evaluated according to its molecular formula and were pre-
sented as the modified aromaticity index (AI-mod) and dou-
ble bond equivalents (DBE), respectively (Koch and Dittmar,
2006). In addition, we ascribed the identified molecular for-
mulae to compound groups according to established molar
ratios, AI-mod, DBE and heteroatom contents (Seidel et al.,
2014). To reveal compositional differences among samples,
we performed a principal coordinate analysis (PCoA) on
Bray–Curtis distance matrices, including all detected molec-
ular formulae and their respective relative FTICRMS signal
intensities. The PCoA scores were correlated against all hy-
drographic and biological variables measured in our study.

2.3 N2 fixation rates

Seawater was sampled at each SD station from 200, 500,
650 and 800 dbar in quadruplicate 4.3 L transparent poly-
carbonate bottles covered with black cloth. Each bottle was
spiked with 6 mL of 15N2 gas (98.9 % Euriso-top), inverted

20–30 times and incubated in the dark at 8 ◦C in temperature-
regulated incubators onboard. After 24 h of incubation, each
pair of bottles was filtered onto two separate precombusted
GF/F filters (two bottles concentrated per filter) and stored at
−20 ◦C until analyzed with an Integra2 analyzer calibrated
every 10 samples using reference material (IAEA-N1). To
obtain accurate N2 fixation rates we (1) measured the δ15N
of background N2 in the incubation on each incubation bot-
tle by membrane inlet mass spectrometry analyses (MIMS;
Kana et al., 1994) with obtained values of 7.548± 0.557 at
% (Bonnet et al., 2018), (2) collected time zero samples in
duplicate at each depth and station to determine the natural
δ15N of ambient particulate nitrogen (PN) and (3) subtracted
blank GF/F PN values from our results. N2 fixation rates
were calculated with the equations of Montoya et al. (1996).
Considering the PN linearity limit of the mass spectrome-
ter (2.32 µg N), 3 times the standard deviation of time zero
values (natural δ15N of PN), and our usual filtration volume
(8.6 L) and incubation time (24 h), our volumetric N2 fixa-
tion rate detection limit was 0.027 nmol N L−1 d−1. The min-
imum quantifiable rate calculated using standard propagation
of errors via the observed variability between replicate sam-
ples was 0.006 nmol N L−1 d−1.

2.4 Flow cytometry

Samples for cell enumeration were collected at the same
stations and depths as samples for the quantification of
N2 fixation rates. Samples of 1.8 mL were fixed (0.25 %
electron microscopy grade paraformaldehyde, w/v) for 10–
15 min at room temperature in the dark, flash-frozen in liq-
uid nitrogen and stored at −80 ◦C for later analysis using
a BD Influx flow cytometer (BD Biosciences, San Jose,
CA, USA). Samples were thawed at room temperature in
the dark, and reference beads (Fluoresbrite, YG, 1 µm) were
added to each sample. The non-pigmented bacterioplankton
(hereafter bacteria) were discriminated in a sample aliquot
stained with SYBR Green I DNA dye (1 : 10 000 final). Be-
cause the Prochlorococcus population cannot be uniquely
distinguished in the SYBR stained samples in the upper wa-
ter column, bacteria were determined as the difference be-
tween the total cell numbers of the SYBR stained sample
and Prochlorococcus enumerated in unstained samples. Par-
ticles were excited at 488 nm (plus 457 nm for unstained
samples), and forward scatter (FSC; < 15◦) , green fluores-
cence (530 / 40 nm), orange fluorescence (580 / 30 nm) and
red fluorescence (> 650 nm) emissions were measured. Bac-
teria were discriminated based on their green fluorescence
and FSC characteristics. Cytograms were analyzed using
FCS Express 6 Flow Cytometry Software (De Novo Soft-
ware, CA, US).

www.biogeosciences.net/15/3107/2018/ Biogeosciences, 15, 3107–3119, 2018
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2.5 DNA extraction, sequencing and sequence analysis

Samples for DNA extraction were collected in duplicate in
4.3 L polycarbonate bottles and the total volume was filtered
immediately through 0.2 µm Supor filters (Pall Gelman). The
filters were stored in bead beater tubes and kept at −80 ◦C
until analysis. Samples were collected from four depths (200,
500, 650 and 850 dbar) at all SD stations, with the excep-
tion of station SD5 where seawater for DNA analyses was
only collected at 500 dbar and station SD14 where only 200
and 800 dbar were analyzed. DNA was extracted using the
Qiagen Plant kit, with additional freeze–thaw, bead beating
and Proteinase K steps for sample preparation before the kit
purification, and elution to 100 µL as previously described
(Moisander et al., 2008). PCR was conducted using degener-
ate, nested nifH primers (Zehr et al., 2001) and the second-
round primers modified for Illumina library preparation us-
ing a Bio-Rad C1000 thermocycler. The PCR mix was com-
posed of 2.5 µL of 10X Platinum Taq PCR buffer (Thermo
Fisher), MgCl (2.5 mM final), dNTPs (0.2 mM final), primers
(1 µM final), 0.11 µL Platinum Taq and 4 µL of DNA extract
(1 µL on second round) adjusted to 25 µL total volume with
nuclease free water. To alleviate PCR biases, PCR was con-
ducted in triplicate in each round of reactions for which first-
round triplicate reaction products were pooled, then 1 µL
was used as a template in triplicate reactions on the sec-
ond round. A negative PCR control with water as a template
was included and treated in parallel with samples through
all the subsequent steps. Subsamples of the amplification
products were checked via 1.2 % TAE gel electrophoresis.
The second-round products showing a band of the expected
size were pooled and purified using a magnetic bead proto-
col (Ampure, Beckman Coulter). The purified products were
barcoded for Illumina (San Diego, CA, USA) MiSeq se-
quencing with Nextera indexes using the manufacturer pro-
tocol. The indexed products were purified again with mag-
netic beads, then quantified with a plate reader (Molecular
Devices, Sunnyvale, CA, USA) using PicoGreen (Thermo
Fisher). The indexed samples were adjusted to equal con-
centrations and pooled for multiplexing during sequencing.
The pooled sample was shipped to the Tufts University se-
quencing center (Boston, MA, USA) for paired end sequenc-
ing (2× 300 bp). The quality of the pooled sample and se-
lect individual samples was checked with a bioanalyzer be-
fore the run. The resulting sequences were paired within
mothur (Schloss et al., 2009), and reads containing ambi-
guities or more than eight homopolymers were discarded.
The sequences were assigned to OTUs (at 97 % cutoff) us-
ing the UCLUST denovo picking method (Edgar, 2010) im-
plemented in MacQIIME v1.9.1 (Caporaso et al., 2010).
Low-abundance OTUs consisting of fewer than 15 sequences
across all samples were discarded from further processing. A
representative sequence of each OTU was extracted from the
data and quality processed in ARB (Ludwig et al., 2004),
removing sequences that did not conceptually translate or

were otherwise of poor quality. These OTUs were removed
from further analysis. Remaining sequences were aligned
based on protein alignment of the nifH fragments in a public
nifH database (https://www.jzehrlab.com/nifh, last access: 15
September 2017). Aligned protein sequences were assigned
to nifH clusters using a decision tree statistical model, CART
(Frank et al., 2016). The sequence data were normalized to
the proportion of total reads in each sample. Total relative
abundances of sequences that fell in major nifH clusters were
used to create a heatmap within R Studio using the “ve-
gan” statistical package (Oksanen et al., 2015). Sequences
were further classified through a locally run blastp using the
nifH database as a reference (April 2015 database update).
A neighbor-joining tree was built in ARB with the 100 most
abundant OTUs across all samples.

3 Results

3.1 Hydrography, nutrients, DOC and bacterial
abundance

Sections of hydrographic variables (temperature, salinity) are
shown in Fig. 3a–b in Moutin et al. (2017), and nutrient
concentrations (NOx – i.e., NO−3 +NO−2 – and PO3−

4 ) are
shown in Fig. 5a–b in Fumenia et al. (2018). DOC and bac-
terial abundance are shown in Fig. S1 in the Supplement.
All variables show a clear divide between the Melanesian
Archipelago waters (MA; stations SD1 to SD12) and the
South Pacific Gyre (GY; eastwards of SD12; Moutin et al.,
2017). Lower temperatures and salinity values (< 8 ◦C and
∼ 35, respectively) were measured below 450 to 600 dbar in
the MA, while they were detected at shallower depths east-
wards in the GY (Fig. 3a–b in Moutin et al., 2017). Nu-
trient concentrations were high throughout the mesopelagic
zone west of New Caledonia (> 30 µM NOx and > 2 µM
PO3−

4 ; Fig. 3a–b in Fumenia et al., 2018). Sailing east-
wards, NOx in the MA region was < 5 µM between 150
and 250 dbar, with high concentrations > 30 µM being de-
tected at ∼ 680 dbar. Such high NOx concentrations were
detected at shallower depths (500 to 600 dbar) in the GY.
PO3−

4 followed a similar pattern, with the highest con-
centrations detected at depths > 500 dbar reaching 2.5 µM
(Fig. 3a–b in Fumenia et al., 2018). DOC concentrations pre-
sented a pattern opposite to that of inorganic nutrients, with
< 300 dbar presenting concentrations of 50–60 µM, lowering
to < 40 µM below 600 dbar (Fig. S1a). Bacterial abundance
was > 1× 105 cells mL−1 down to 300 dbar in the MA wa-
ters, while its numbers decreased abruptly in the GY, espe-
cially east of SD12 (Fig. S1b)

3.2 High-resolution analysis of DOM (FTICRMS)

FTICRMS analysis of DOM yielded∼ 13 500 molecular for-
mulae in each sample, covering a mass range between 150
and 1000 Da (measured in daltons). Each molecular formula
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Figure 1. Longitudinal section of N2 fixation (nmol N L−1 d−1) rates displayed as numbers overlying sized circles. For reference, the station
numbers are displayed on top of the panel.

was assigned to a given compound group as described in Sei-
del et al. (2014). According to this grouping, 4–31 % of all
compounds detected were oxygen-poor (O /C < 0.5) unsat-
urated aliphatics, 16 % were oxygen-rich (O /C > 0.5) un-
saturated aliphatics and 13 % were polyphenols, while sat-
urated fatty acids, sugars and peptides represented < 3 %.
Compounds usually regarded as labile DOM (peptides, sug-
ars and saturated fatty acids) were relatively more abundant
in the MA (data not shown).

3.3 Aphotic N2 fixation rates

Aphotic N2 fixation rates were measurable at all stations and
depths and ranged between 0.05 and 0.68 nmol N L−1 d−1

(Fig. 1). These rates did not seem to follow any longitudi-
nal or vertical pattern. However, the rates observed at sta-
tion SD13 (where a massive surface concentration of chloro-
phyll was observed; de Verneil et al., 2017) were on av-
erage ∼ 5-fold higher than at the other stations (average
0.63± 0.07 nmol N L−1 d−1).

3.4 Diazotroph community composition

There were 3317–146 864 (mean= 88 867, SD= 42 574) se-
quences per sample after pairing and the QA /QC steps. The
negative control resulted in only eight reads belonging to six
OTUs. These sequences are likely a result of misbinning at
the time of sequencing, and therefore the negative control
was removed from downstream analysis. Shannon diversity
at the 97 % OTU level was not significantly affected by ei-
ther depth or station (one-way ANOVA p > 0.05). The major-
ity of nifH sequences fell to clusters 1 and 3, although clus-
ters 2 and 4 were represented in the transect at low relative
abundances (Fig. 2). Within cluster 1, subcluster 1G, which
contains Gammaproteobacteria, accounted for over half of
the total sequences (56 %, SD= 38 %). With a few excep-

tions, in samples with lower proportions of 1G, subcluster
3S was the most abundant group. Cluster 3S had high rela-
tive abundances at station SD10 and in the 200 and 500 dbar
depths of stations SD2 and SD12, as well as at 200 dbar
at station SD13. The cyanobacterial subcluster 1B was ob-
served at a very low relative abundance throughout all sta-
tions and depths (average 0.5 % of total community) and
included Trichodesmium, UCYN-A and Richelia. Consis-
tent variations in community composition among depths and
stations were not detected via cluster-based analysis; how-
ever, patterns emerged when observing data at the OTU level
in abundant clusters (Fig. 3). In subcluster 1G, reads most
closely matching an unclassified bacterium from the tropical
North Atlantic (Unc12217, E value= 2.82× 10−70; Table 1,
Fig. 4) in the nifH database dominated the communities in
the 650 dbar depth, and this phylotype was found only at mi-
nor proportions in other depths. This phylotype had an ap-
proximately 83 % amino acid identity with Agrobacterium
tumefaciens (Table 1, Fig. 4). This phylotype was present
at high proportions across all other 650 dbar samples except
at station SD2, the westernmost station. Although identified
as “Other 1G” in Fig. 3, this trend was also true for sev-
eral other groups present only at the 650 dbar depth (best
matches with database sequences Unc12243, Unc12270 and
UncPr491; Table 1). An additional group was found only at
650 dbar in the easternmost stations (SD10–SD13), closely
matching a sequence from the Amazon River (UncM2163,
E value= 4.22× 10−74; Table 1). Within the nifH cluster 3,
subcluster 3S was the most widespread and abundant, with
representation from three groups in the reference database:
Unc12045, UncB2403 and UncMa132. Sequences with the
best matches with Unc12045 (Genbank ID: ADV51583;
Turk et al., 2011) and UncB2403 (AAP48957; Steward et
al., 2004) were present at stations SD2, SD4, SD10 and
SD12, but had the highest relative abundance at station SD10,

www.biogeosciences.net/15/3107/2018/ Biogeosciences, 15, 3107–3119, 2018
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Figure 2. Heatmap of nifH clusters and subclusters across the stations. The Bray–Curtis distances were used to build the dendrogram on the
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abundances throughout all samples have been grouped as “other”.
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Figure 3. Relative abundance of subcluster 1G over pressure levels (depths) and stations. Each bar represents the relative abundance of
subcluster 1G in the total community for each sample. Samples are arranged by station within each of the pressure levels sampled. Blastp
was used to assign OTUs to a top hit in the nifH reference database. The major sequence types in the nifH database found in subcluster 1G
are shown with different colors.
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Figure 4. The nifH amino acid neighbor-joining tree with the 100 most abundant OTUs from this study. Sequences beginning with “denovo”,
shown in red, are randomly chosen representative sequences from these OTUs (OTUs binned at 97 % identity). The clusters in the tree are
grouped at an approximately > 95 % sequence identity. The tree includes reference sequences (if uncultivated, the names of these sequences
start with “Unc”). The reference sequences are shown with accession numbers from the nifH database and with the cluster identifier shown
in blue if indicated in the nifH database. Additional sequences are included from a previous study in the South Pacific mesopelagic layers
(Benavides et al., 2015); these clones are labeled with the original clone names M64XXAXX and depths.
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Table 1. Blastp identities to members of the 1G subcluster.

nifH ID Accession Study Location Closest cultivated relative
number reported (identity, E value)

UncM2172 ABV00657 Unpublished (Moisander and
Subramaniam et al.)

Gulf of Guinea Vibrio diazotrophicus (98 %, 1e-71)

Unc12217 ADV51755 Turk et al. (2011) Tropical eas-
tern N. Atlantic

Agrobacterium tumefaciens (83 %, 4e-55)

Unc18425 BAN66776 Unpublished (Shiozaki et al.) Northern S.
China Sea

Pseudomonas stutzeri (86 %, 1e-64)

Unc17727 ABV00657 Unpublished (Moisander and
Subramaniam et al.)

Gulf of Guinea Klebsiella pneumoniae (100 %, 4e-95)

Unc11967 ADV35118 Unpublished (Olson and
Lesser)

Florida Keys Pseudanabaena cf. persicina (97 %, 3e-78)

UncMa745 ABX39720 Moisander et al. (2008) S. China Sea Pseudomonas stutzeri (96 %, 1e-70)

UncPr802 AEA49463 Fernandez et al. (2011) Eastern S.
Pacific

Vibrio natriegens (96 %, 3e-74)

UncMa806 AAY60084 Langlois et al. (2005) Atlantic Ocean Agrobacterium tumefaciens (96 %, 1e-70)

UncM2163 ABF21183 Unpublished (Hewson and
Fuhrman)

Amazon River Vibrio diazotrophicus (81 %, 6e-55)

Unc12136 ADV51674 Turk et al. (2011) Tropical eas-
tern N. Atlantic

Agrobacterium tumefaciens (96 %, 2e-69)

Unc12270 ADV51808 Turk et al. (2011) Tropical eas-
tern N. Atlantic

Vibrio diazotrophicus (79 %, 1e-52)

UncMa747 ABX39731 Moisander et al. (2008) S. China Sea Pseudomonas stutzeri (84 %, 6e-60)

Unc12551 ADO20633 Halm et al. (2011) S. Pacific Gyre Pseudanabaena cf. persicina (95 %, 2e-70)

UncMa832 ABD62932 Unpublished (Foster et al.) Atlantic Ocean Pseudomonas stutzeri (84 %, 5e-60)

Unc15356 AER93057 Unpublished (Lopez) Mexican oasis
system soil

Pseudanabaena cf. persicina (95 %, 1e-78)

UncPr491 AEA49150 Fernandez et al. (2011) Eastern S.
Pacific

Pseudanabaena cf. persicina (98 %, 3e-76)

Unc12243 ADV51781 Turk et al. (2011) Tropical eas-
tern N. Atlantic

Vibrio diazotrophicus (80 %, 2e-54)

500 dbar at station SD2, and the 200 and 500 dbar depths
of station SD12. UncMa132 (AAS98182; unpublished) re-
lated groups were recovered from all stations at a low rel-
ative abundance, with the highest relative abundance in the
200 dbar samples from stations SD2, SD10, SD12 and SD13
as well as the 800 dbar samples from stations SD4 and SD10.
These 3S groups have no closely related cultivated isolates,
with the closest similarity with Spirochaeta aurantia (74–
78 % similarity, AF325792). All of the top 100 most abun-
dant OTUs fell in clusters 1 and 3 (Fig. 4). The majority fell
in the cluster 1G, with several additional phylotypes present
in addition to the major ones discussed above. Several OTUs
were closely related to previously described sequences from

the South Pacific Ocean mesopelagic layers (Benavides et
al., 2015). Magnetococcus sp., Methylomonas sp. and Tere-
dinibacter turnerae were among the closest cultivated repre-
sentatives to the cluster 1G OTUs recovered (Fig. 4). Among
the OTUs that fell into cluster 3, Desulfovibrio spp. were the
closest cultivated representatives in the NCBI database.

3.5 N2 fixation and diazotrophs related to in situ
environmental parameters

Bonferroni-corrected Spearman rank correlations showed
that N2 fixation rates were only significantly correlated with
temperature (ρ = 0.263, p= 0.045), salinity (ρ = 0.284,
p= 0.029) and DOC concentrations (ρ = 0.269, p= 0.042;

Biogeosciences, 15, 3107–3119, 2018 www.biogeosciences.net/15/3107/2018/



M. Benavides et al.: Aphotic N2 fixation 3115

−1.0 −0.5 0.0 0.5 1.0

−0
.6

−0
.4

−0
.2

0.
0

0.
2

0.
4

0.
6

RDA1

R
DA

2

Bacterial_ abundance N2_fixation

SD5_200

SD9_650

SD9_500

SD9_200

SD11_500

SD11_200

SD13_800

SD13_650

SD13_500

SD15_800
SD15_650

SD15_200

dbar

Salinity
Temperature

Oxygen

DOC

PO4/NOx

DOM_PC1

DOM_PC2 0

SD5_500
SD5_650
SD5_800
SD9_800
SD11_650
SD11_800
SD13_200
SD15_500

Figure 5. Redundancy analysis (RDA) ordination biplot showing the relationship between N2 fixation rates, bacterial abundance, depth,
environmental variables (temperature, salinity and oxygen), dissolved organic matter (DOM) principal coordinates, dissolved organic car-
bon (DOC) and inorganic nutrient concentrations. The samples within the grey box were so similar to each other that their labels overlapped
when plotted, so in the figure they are listed in a zoom-out box on the left bottom corner of the panel.

note that these hydrographic variables and DOC were inter-
correlated; data not shown; Table S1 in the Supplement).
A redundancy analysis (RDA; Fig. 5) including hydro-
graphic variables, inorganic nutrients, DOC, bacterial abun-
dance, N2 fixation rates and DOM PCoA scores indicated
that N2 fixation rates were not related to DOM composi-
tional variability (Table S1). N2 fixation rates from shallower
depths such as those from 200 dbar were significantly re-
lated to temperature, salinity, oxygen and DOC concentra-
tions, while the first principal coordinate of DOM related to
the majority of the samples. Stations SD13 and SD15 (east-
ernmost part of the transect, within the GY) were partly re-
lated to depth and NOx concentrations (samples from 650
and 800 dbar), while the rest of the samples of the profile ap-
peared very distant in the RDA plot (Fig. 5).

4 Discussion

The aphotic N2 fixation activity measured in the WTSP was
low (average 0.18± 0.07 nmol N L−1 d−1) but consistently
detected across all depths and stations (Fig. 1), represent-
ing on average 13 and 51 % of photic N2 fixation in the
MA and GY waters, respectively (Bonnet et al., 2018), or
6–88 % of overall photic N2 fixation across the whole OUT-
PACE transect. It is pertinent to note that aphotic N2 fixa-
tion rates may be underestimated if a significant percentage
of the non-cyanobacterial diazotroph population is smaller
than 0.7 µm (the nominal pore size of GF/F filters), as mea-

sured N2 fixation rates in non-cyanobacteria-dominated en-
vironments have been reported to be significantly higher
when smaller pore size filters are used (Bombar et al., 2018).
Aphotic N2 fixation may contribute significantly to global
fixed nitrogen inputs if widespread throughout the ocean’s
mesopelagic zone (or deeper). Unfortunately, our ability to
assess this contribution remains hindered by the lack of spe-
cific N2 fixation methods and our poor understanding of the
ecophysiology of non-cyanobacterial diazotrophs (Bombar
et al., 2016; Moisander et al., 2017).

N2 fixation rates in aphotic environments correlate with
different DOM compound groups in different regions (Be-
navides et al., 2015, 2016), and nifH gene expression varies
among non-cyanobacterial diazotroph phylotypes when ex-
posed to conditions presumed to enhance their N2 fixation
activity (Severin et al., 2015). N2 fixation was detected as low
rates across an oligotrophic-to-ultraoligotrophic transect in
the WTSP. These rates were not significantly correlated with
DOM compounds as identified by FTICRMS, although they
were positively correlated with DOC concentrations. Non-
cyanobacterial diazotroph communities are usually highly
diverse in aphotic marine waters (Hewson et al., 2007). If
such phylogenetic diversity also entails a broad metabolic
diversity and different affinities for DOM compounds, cor-
relations between DOM and non-cyanobacterial diazotroph
abundance, identity and/or N2 fixation activity will likely be
blurred. Such ecophysiological heterogeneity may also be re-
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flected by the lack of longitudinal and vertical patterns in the
N2 fixation rates observed along the transect (Fig. 1).

Some depth- and longitude-related patterns were observed
within the potential diazotroph community, one of the ma-
jor patterns being a distinct A. tumefaciens-related phylo-
type from the major nifH subcluster 1G dominating at the
650 dbar depth. These sequences were unique from the 1G
sequences found at other depths and, with the exception of
station SD2, were found uniformly across stations. A poten-
tial driver for the depth variation seen at 650 dbar is the pres-
ence of the oxygenated Subantarctic Mode Water (SAMW)
at this depth (Fumenia et al., 2018). The high concentration
of oxygen in this water mass (190–220 µmol kg−1) could po-
tentially be linked to this change in diazotroph community
to members that can withstand higher levels of oxygen. To
our knowledge, this is the first study identifying a relation-
ship between nifH community composition and large-scale
oceanographic circulation patterns in mesopelagic depths.
Unfortunately, the coverage of our samples throughout the
mesopelagic zone was not enough to represent all the differ-
ent water masses present and to identify patterns in N2 fix-
ation activity or diversity of diazotrophs according to water
mass distribution (see T/S diagram in Fig. S2).

Members of the 1G subcluster include a variety of
Gammaproteobacteria, and this group has previously been
reported at high numbers in tropical surface waters includ-
ing in the WTSP (Messer et al., 2017). In mesopelagic wa-
ters, transcripts from the 1G subcluster have been reported
in an oxygen-deficient zone in the Arabian Sea at a depth of
175 m (Jayakumar et al., 2012), and genes have been reported
from the WTSP from depths of 350–600 m (Benavides et al.,
2015). Closely related cultivated isolates to the sequences
found in this study include members of the Gammapro-
teobacterial genera Vibrio, Pseudomonas, Klebsiella and
Agrobacterium. The cyanobacterium Pseudanabaena also
had a relatively close relationship to the 650 dbar subclus-
ter 1G sequences. When the proportion of sequences from
subcluster 1G was low, members of cluster 3, primarily sub-
cluster 3S, tended to have higher relative abundances (mostly
east of the Tonga Trench, located between stations SD9 and
SD10; Fig. S1). The three major matches of sequences in
this study for subcluster 3S were sequences reported from
the surface waters in the North Pacific Subtropical Gyre, the
eastern North Atlantic and a hypersaline lake. The phylotype
most commonly observed at 200 dbar was most similar to se-
quences reported in the tropical North Pacific (AAS98182).
Cluster 3 is typically considered to contain obligate and fac-
ultative anaerobes including Spirochaeta and Desulfovibrio.
Cluster 3 diazotrophs were present in low gene copy numbers
in North Atlantic surface waters, even when NO−3 concentra-
tions were high (Langlois et al., 2008). Members of cluster 3
have also been recovered in the mesopelagic WTSP (Bena-
vides et al., 2015), although the present study reports longi-
tudinal variation as a primary driver of cluster 3 phylotype
diversity and relative abundance.

The cyanobacterial subcluster 1B including Tri-
chodesmium, UCYN-A and Richelia was observed at a
very low relative abundance throughout all stations and
depths (average 0.5 % of total community), in agreement
with the findings of Caffin et al. (2017), who detected
those phylotypes in sediment traps deployed during the
OUTPACE cruise at 150 and 325 m. Dead Trichodesmium
colonies are thought to be mainly degraded in the photic
zone (Letelier and Karl, 1998), although the detection of
Trichodesmium in sediment traps and seawater samples ob-
tained from the mesopelagic zone (Agustí et al., 2015; Chen
et al., 2003; Pabortsava et al., 2017) suggests that decayed
dense blooms likely sink fast down the water column. The
detection of cyanobacterial diazotroph nifH sequences in the
mesopelagic zone calls into question whether the N2 fixation
rates measured are solely attributable to non-cyanobacterial
diazotrophs (Moisander et al., 2017). Cyanobacterial photo-
synthetic diazotrophs reach the mesopelagic zone through
sinking and sedimentation and thus are unlikely diazotroph-
ically active when devoid of light. However, recent studies
have detected photosynthetically active diatoms at depths
overpassing the mesopelagic zone (Agustí et al., 2015),
indicating that dead cell packages can be exported vertically
at high speed. Whether cyanobacterial diazotrophs remain
active when they reach the aphotic layer or whether they
die or shut down N2 fixation on the way remains an open
question.

The data presented here are a significant contribution to
the scarce overall availability of aphotic N2 fixation rates,
specifically the few available rates from the WTSP. Despite
our limited knowledge of the ecophysiology of aphotic non-
cyanobacterial diazotrophs (Bombar et al., 2016), their ubiq-
uity in the mesopelagic layer and the consistent detection of
N2 fixation activity at all depths sampled during our study
suggest that aphotic N2 fixation may contribute to fixed ni-
trogen input in this area.

Data availability. All data and metadata are available at the French
INSU/CNRS LEFE CYBER database (scientific coordinator: Hervé
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outpace/outpace.php (INSU/CNRS LEFE CYBER, 2017).

The Supplement related to this article is available online
at https://doi.org/10.5194/bg-15-3107-2018-supplement.

Competing interests. The authors declare that they have no conflict
of interest.

Special issue statement. This article is part of the special issue “In-
teractions between planktonic organisms and biogeochemical cy-

Biogeosciences, 15, 3107–3119, 2018 www.biogeosciences.net/15/3107/2018/

http://www.obs-vlfr.fr/proof/php/outpace/outpace.php
http://www.obs-vlfr.fr/proof/php/outpace/outpace.php
https://doi.org/10.5194/bg-15-3107-2018-supplement


M. Benavides et al.: Aphotic N2 fixation 3117

cles across trophic and N2 fixation gradients in the western tropical
South Pacific Ocean: a multidisciplinary approach (OUTPACE ex-
periment)”. It is not associated with a conference.

Acknowledgements. This is a contribution of the OUTPACE
(Oligotrophy from Ultra-oligoTrophy PACific Experiment) project
(https://outpace.mio.univ-amu.fr/, last access: May 2018) funded
by the French research national agency (ANR-14-CE01-0007-01),
the LEFE-CYBER program (CNRS-INSU), the GOPS program
(IRD) and the CNES (BC T23, ZBC 4500048836). The OUTPACE
cruise (https://doi.org/10.17600/15000900) was managed by MIO
(OSU Institut Pythéas, AMU) from Marseilles (France). The au-
thors thank the crew of the R/V L’Atalante for outstanding on-ship
operations. Mar Benavides was funded by the People Programme
(Marie Skłodowska-Curie Actions) of the European Union’s
Seventh Framework Programme (FP7/2007-2013) under REA
grant agreement number 625185. The NSF OCE-1733610 award
to Pia H. Moisander supported Pia H. Moisander and Katyanne M.
Shoemaker. Solange Duhamel was funded by National Science
Foundation award OCE-1434916 and by support from the Vetlesen
Foundation.

Edited by: Douglas G. Capone
Reviewed by: Luisa I. Falcon and two anonymous referees

References

Agustí, S., González-Gordillo, J. I., Vaqué, D., Estrada, M., Cerezo,
M. I., Salazar, G., Gasol, J. M., and Duarte, C. M.: Ubiq-
uitous healthy diatoms in the deep sea confirm deep car-
bon injection by the biological pump, Nat. Commun., 6, 1–8,
https://doi.org/10.1038/ncomms8608, 2015.

Benavides, M., H. Moisander, P., Berthelot, H., Dittmar, T.,
Grosso, O., and Bonnet, S.: Mesopelagic N2 fixation re-
lated to organic matter composition in the Solomon and
Bismarck Seas (Southwest Pacific), PLOS ONE, 10, 1–19,
https://doi.org/10.1371/journal.pone.0143775, 2015.

Benavides, M., Bonnet, S., Hernández, N., Martínez-Pérez, A. M.,
Nieto-Cid, M., Álvarez-Salgado, X. A., Baños, I., Montero, M.
F., Mazuecos, I. P., Gasol, J. M., Osterholz, H., Dittmar, T.,
Berman-Frank, I., and Arístegui, J.: Basin-wide N2 fixation in
the deep waters of the Mediterranean Sea, Global Biogeochem.
Cy., 30, 1–19, https://doi.org/10.1002/2015GB005326, 2016.

Bentzon-Tilia, M., Severin, I., Hansen, L. H., and Riemann, L.:
Genomics and Ecophysiology of Heterotrophic Nitrogen-Fixing
Bacterial Isolated from Estuarine Surface Water, Am. Soc. Mi-
crobiol., 6, 1–11, https://doi.org/10.1128/mBio.00929-15, 2015.

Berthelot, H., Benavides, M., Moisander, P. H., Grosso, O.,
and Bonnet, S.: High-nitrogen fixation rates in the particulate
and dissolved pools in the Western Tropical Pacific (Solomon
and Bismarck Seas), Geophys. Res. Lett., 44, 8414–8423,
https://doi.org/10.1002/2017GL073856, 2017.

Bombar, D., Paerl, R. W., and Riemann, L.: Marine
Non-Cyanobacterial Diazotrophs: Moving beyond
Molecular Detection, Trends Microbiol., 24, 916–927,
https://doi.org/10.1016/j.tim.2016.07.002, 2016.

Bombar, D., Paerl, R. W., Anderson, R., and Riemann, L.: Filtration
via Conventional Glass Fiber Filters in 15N2 Tracer Assays Fails
to Capture All Nitrogen-Fixing Prokaryotes, Front. Mar. Sci., 5,
https://doi.org/10.3389/fmars.2018.00006, 2018.

Bonnet, S., Biegala, I. C., Dutrieux, P., Slemons, L. O., and
Capone, D. G.: Nitrogen fixation in the western equatorial Pa-
cific: Rates, diazotrophic cyanobacterial size class distribution,
and biogeochemical significance, Global Biogeochem. Cy., 23,
1–13, https://doi.org/10.1029/2008GB003439, 2009.

Bonnet, S., Dekaezemacker, J., Turk-Kubo, K. A., Moutin,
T., Hamersley, R. M., Grosso, O., Zehr, J. P., and
Capone, D. G.: Aphotic N2 fixation in the eastern
tropical South Pacific Ocean, PLOS ONE, 8, 1–14,
https://doi.org/10.1371/journal.pone.0081265, 2013.

Bonnet, S., Rodier, M., Turk-Kubo, K. A., Germineaud, C.,
Menkes, C., Ganachaud, A., Cravatte, S., Raimbault, P.,
Campbell, E., Quéroué, F., Sarthou, G., Desnues, A., Maes,
C., and Eldin, G.: Contrasted geographical distribution of
N2 fixation rates and nifH phylotypes in the Coral and
Solomon Seas (southwestern Pacific) during austral win-
ter conditions, Global Biogeochem. Cy., 29, 1874–1892,
https://doi.org/10.1002/2015GB005117, 2015.

Bonnet, S., Caffin, M., Berthelot, H., and Moutin, T.: Hot spot
of N2 fixation in the western tropical South Pacific pleads
for a spatial decoupling between N2 fixation and denitri-
fication, P. Natl. Acad. Sci. USA, 114(14), E2800–E2801,
https://doi.org/10.1073/pnas.1619514114, 2017.

Bonnet, S., Caffin, M., Berthelot, H., Grosso, O., Benavides, M.,
Helias-Nunige, S., Guieu, C., Stenegren, M., and Foster, R. A.: In
depth characterization of diazotroph activity across the Western
Tropical South Pacific hot spot of N2 fixation, Biogeosciences
Discuss., https://doi.org/10.5194/bg-2017-567, in review, 2018.

Caffin, M., Moutin, T., Foster, R. A., Bouruet-Aubertot, P., Dogli-
oli, A. M., Berthelot, H., Grosso, O., Helias-Nunige, S., Leblond,
N., Gimenez, A., Petrenko, A. A., de Verneil, A., and Bon-
net, S.: Nitrogen budgets following a Lagrangian strategy in
the Western Tropical South Pacific Ocean: the prominent role
of N2 fixation (OUTPACE cruise), Biogeosciences Discuss.,
https://doi.org/10.5194/bg-2017-468, in review, 2017.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bush-
man, F. D., Costello, E. K., Fierer, N., Peña, A. G., Goodrich, J.
K., Gordon, J. I., Huttley, G. a, Kelley, S. T., Knights, D., Koenig,
J. E., Ley, R. E., Lozupone, C. a, Mcdonald, D., Muegge, B. D.,
Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Wal-
ters, W. a, Widmann, J., Yatsunenko, T., Zaneveld, J., and Knight,
R.: correspondence QIIME allows analysis of high- throughput
community sequencing data Intensity normalization improves
color calling in SOLiD sequencing, Nat. Publ. Gr., 7, 335–336,
https://doi.org/10.1038/nmeth.f.303, 2010.

Chen, Y. L. L., Chen, H. Y., and Lin, Y. H.: Distribution and down-
ward flux of Trichodesmium in the South China Sea as influenced
by the transport from the Kuroshio Current, Mar. Ecol. Prog. Ser.,
259, 47–57, https://doi.org/10.3354/meps259047, 2003.

Chien, Y.-T. and Zinder, S. H.: Cloning, functional organization,
transcript studies, and phylogenetic analysis of the complete ni-
trogenase structural genes (nifHDK2) and associated genes in the
archaeon Methanosarcina barkeri 227, J. Bacteriol., 178, 143–
148, 1996.

www.biogeosciences.net/15/3107/2018/ Biogeosciences, 15, 3107–3119, 2018

https://outpace.mio.univ-amu.fr/
https://doi.org/10.17600/15000900
https://doi.org/10.1038/ncomms8608
https://doi.org/10.1371/journal.pone.0143775
https://doi.org/10.1002/2015GB005326
https://doi.org/10.1128/mBio.00929-15
https://doi.org/10.1002/2017GL073856
https://doi.org/10.1016/j.tim.2016.07.002
https://doi.org/10.3389/fmars.2018.00006
https://doi.org/10.1029/2008GB003439
https://doi.org/10.1371/journal.pone.0081265
https://doi.org/10.1002/2015GB005117
https://doi.org/10.1073/pnas.1619514114
https://doi.org/10.5194/bg-2017-567
https://doi.org/10.5194/bg-2017-468
https://doi.org/10.1038/nmeth.f.303
https://doi.org/10.3354/meps259047


3118 M. Benavides et al.: Aphotic N2 fixation

Codispoti, L. A.: An oceanic fixed nitrogen sink exceed-
ing 400 Tg N a−1 vs the concept of homeostasis in the
fixed-nitrogen inventory, Biogeosciences, 4, 233–253,
https://doi.org/10.5194/bg-4-233-2007, 2007.

de Verneil, A., Rousselet, L., Doglioli, A. M., Petrenko, A. A., and
Moutin, T.: The fate of a southwest Pacific bloom: gauging the
impact of submesoscale vs. mesoscale circulation on biologi-
cal gradients in the subtropics, Biogeosciences, 14, 3471–3486,
https://doi.org/10.5194/bg-14-3471-2017, 2017.

Dittmar, T., Koch, B., Hertkorn, N., and Kattner, G.: A simple and
efficient method for the solid-phase extraction of dissolved or-
ganic matter (SPE-DOM) from seawater, Limnol. Oceanogr.-
Meth., 6, 230–235, https://doi.org/10.4319/lom.2008.6.230,
2008.

Edgar, R. C.: Search and clustering orders of magnitude
faster than BLAST, Bioinformatics, 26, 2460–2461,
https://doi.org/10.1093/bioinformatics/btq461, 2010.

Farnelid, H., Andersson, A. F., Bertilsson, S., Al-Soud,
W. A., Hansen, L. H., Sørensen, S., Steward, G. F.,
Hagström, Å., and Riemann, L.: Nitrogenase gene am-
plicons from global marine surface waters are dominated
by genes of non-cyanobacteria, PLOS ONE, 6, e19223,
https://doi.org/10.1371/journal.pone.0019223, 2011.

Fernandez, C., Farías, L., and Ulloa, O.: Nitrogen fixa-
tion in denitrified marine waters, PLoS One, 6, e19223,
https://doi.org/10.1371/journal.pone.0020539, 2011.

Frank, I. E., Turk-Kubo, K. A., and Zehr, J. P.: Rapid annota-
tion of nifH gene sequences using classification and regression
trees facilitates environmental functional gene analysis, Envi-
ron. Microbiol. Rep., 8, 905–916, https://doi.org/10.1111/1758-
2229.12455, 2016.

Fumenia, A., Moutin, T., Bonnet, S., Benavides, M., Petrenko, A.,
Helias Nunige, S., and Maes, C.: Excess nitrogen as a marker
of intense dinitrogen fixation in the Western Tropical South Pa-
cific Ocean: impact on the thermocline waters of the South Pa-
cific, Biogeosciences Discuss., https://doi.org/10.5194/bg-2017-
557, in review, 2018.

Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W.,
Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, C.
C., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. F.,
Porter, J. H., Townsend, A. R., and Vo, C. J.: Nitrogen cycles:
past, present, and future, Biogeochemistry, 70, 53–226, 2004.

Gruber, N. and Galloway, J. N.: An Earth-system perspec-
tive of the global nitrogen cycle, Nature, 451, 293–296,
https://doi.org/10.1038/nature06592, 2008.

Halm, H., Lam, P., Ferdelman, T. G., Lavik, G., Dittmar, T.,
Laroche, J., D’Hondt, S., and Kuypers, M. M. M.: Heterotrophic
organisms dominate nitrogen fixation in the south pacific gyre,
ISME J., 6, 1238–1249, https://doi.org/10.1038/ismej.2011.182,
2011.

Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J.
P., Gunderson, T., and Capone, D. G.: Nitrogen fixation within
the water column associated with two hypoxic basins in the
Southern California Bight, Aquat. Microb. Ecol., 63, 193–205,
https://doi.org/10.3354/ame01494, 2011.

Herbland, A., Le Bouteiller, A., and Raimbault, P.: Size
structure of phytoplankton biomass in the equato-
rial Atlantic Ocean, Deep-Sea Res., 32, 819–836,
https://doi.org/10.1016/j.dsr2.2013.07.011, 1985.

Hewson, I., Moisander, P. H., Achilles, K. M., Carlson, C. A.,
Jenkins, B. D., Mondragon, E. A., Morrison, A. E., and Zehr,
J. P.: Characteristics of diazotrophs in surface to abyssopelagic
waters of the Sargasso Sea, Aquat. Microb. Ecol., 46, 15–30,
https://doi.org/10.3354/ame046015, 2007.

INSU/CNRS LEFE CYBER: OUTPACE (Oligotrophy to UlTra-
oligotrophy PACific Experiment), available at: http://www.
obs-vlfr.fr/proof/php/outpace/outpace.php (last access: 8 May
2018), 2017.

Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B., and Mulhol-
land, M. R.: Diversity, distribution, and expression of diazotroph
nifH genes in oxygen-deficient waters of the Arabian Sea, FEMS
Microbiol. Ecol., 82, 597–606, https://doi.org/10.1111/j.1574-
6941.2012.01430.x, 2012.

Jickells, T. D., Buitenhuis, E., Altieri, K., Baker, A. R., Capone, D.,
Duce, R. A., Dentener, F., Fennel, K., Kanakidou, M., LaRoche,
J., Lee, K., Liss, P., Middelburg, J. J., Moore, J. K., Okin, G., Os-
chlies, A., Sarin, M., Seitzinger, S., Sharples, J., Singh, A., Sun-
tharalingam, P., Uematsu, M., and Zamora, L. M.: A reevalua-
tion of the magnitude and impacts of anthropogenic atmospheric
nitrogen inputs on the ocean, Global Biogeochem. Cy., 31, 289–
305, https://doi.org/10.1002/2016GB005586, 2017.

Kana, T. M., Darkangelo, C., Hunt, M. D., Oldham, J. B., Bennett,
G. E., and Cornwell, J. C.: Membrane lnlet Mass Spectrome-
ter for Rapid Environmental Water Samples, Anal. Chem., 66,
4166–4170, 1994.

Koch, B. P. and Dittmar, T.: From mass to structure: An
aromaticity index for high-resolution mass data of natural
organic matter, Rapid Commun. Mass Sp., 20, 926–932,
https://doi.org/10.1002/rcm.2386, 2006.

Langlois, R., Großkopf, T., Mills, M., Takeda, S. and
LaRoche, J.: Widespread distribution and expression
of Gamma A (UMB), an uncultured, diazotrophic, γ -
proteobacterial nifH phylotype, PLOS ONE, 10, 1–17,
https://doi.org/10.1371/journal.pone.0128912, 2015.

Langlois, R. J., Hümmer, D., and LaRoche, J.: Abundances and
distributions of the dominant nifH phylotypes in the North-
ern Atlantic Ocean, Appl. Environ. Microb., 74, 1922–1931,
https://doi.org/10.1128/AEM.01720-07, 2008.

Letelier, R. M. and Karl, D. M.: Trichodesmium spp. physiology
and nutrient fluxes in the North Pacific subtronical gyre, Aquat.
Microb. Ecol., 15, 265–276, https://doi.org/10.3354/ame015265,
1998.

Loescher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H.,
Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik,
G., Kuypers, M. M. M., Laroche, J., and Schmitz, R. A.: Facets of
diazotrophy in the oxygen minimum zone waters off Peru, ISME
J., 8, 2180–2192, https://doi.org/10.1038/ismej.2014.71, 2014.

Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yad-
hukumar, A., Buchner, A., Lai, T., Steppi, S., Jacob, G., Förster,
W., Brettske, I., Gerber, S., Ginhart, A. W., Gross, O., Gru-
mann, S., Hermann, S., Jost, R., König, A., Liss, T., Lüßb-
mann, R., May, M., Nonhoff, B., Reichel, B., Strehlow, R., Sta-
matakis, A., Stuckmann, N., Vilbig, A., Lenke, M., Ludwig,
T., Bode, A., and Schleifer, K. H.: ARB: A software environ-
ment for sequence data, Nucleic Acids Res., 32, 1363–1371,
https://doi.org/10.1093/nar/gkh293, 2004.

Messer, L. F., Brown, M. V., Furnas, M. J., Carney, R. L., McK-
innon, A. D., and Seymour, J. R.: Diversity and activity of dia-

Biogeosciences, 15, 3107–3119, 2018 www.biogeosciences.net/15/3107/2018/

https://doi.org/10.5194/bg-4-233-2007
https://doi.org/10.4319/lom.2008.6.230
https://doi.org/10.1093/bioinformatics/btq461
https://doi.org/10.1371/journal.pone.0019223
https://doi.org/10.1371/journal.pone.0020539
https://doi.org/10.1111/1758-2229.12455
https://doi.org/10.1111/1758-2229.12455
https://doi.org/10.5194/bg-2017-557
https://doi.org/10.5194/bg-2017-557
https://doi.org/10.1038/nature06592
https://doi.org/10.1038/ismej.2011.182
https://doi.org/10.3354/ame01494
https://doi.org/10.1016/j.dsr2.2013.07.011
https://doi.org/10.3354/ame046015
http://www.obs-vlfr.fr/proof/php/outpace/outpace.php
http://www.obs-vlfr.fr/proof/php/outpace/outpace.php
https://doi.org/10.1111/j.1574-6941.2012.01430.x
https://doi.org/10.1111/j.1574-6941.2012.01430.x
https://doi.org/10.1002/2016GB005586
https://doi.org/10.1002/rcm.2386
https://doi.org/10.1371/journal.pone.0128912
https://doi.org/10.1128/AEM.01720-07
https://doi.org/10.3354/ame015265
https://doi.org/10.1038/ismej.2014.71
https://doi.org/10.1093/nar/gkh293


M. Benavides et al.: Aphotic N2 fixation 3119

zotrophs in great barrier reef surface waters, Front. Microbiol.,
8, 1–16, https://doi.org/10.3389/fmicb.2017.00967, 2017.

Moisander, P. H., Beinart, R. A., Voss, M., and Zehr, J. P.: Di-
versity and abundance of diazotrophic microorganisms in the
South China Sea during intermonsoon, ISME J., 2, 954–967,
https://doi.org/10.1038/ismej.2008.51, 2008.

Moisander, P. H., Beinart, R. A., Hewson, I., White, A.
E., Johnson, K. S., Carlson, C. A., Montoya, J. P., and
Zehr, J. P.: Unicellular cyanobacterial distributions broaden
the oceanic N2 fixation domain, Science, 327, 1512–1514,
https://doi.org/10.1126/science.1185468, 2010.

Moisander, P. H., Serros, T., Paerl, R. W., Beinart, R. A., and Zehr, J.
P.: Gammaproteobacterial diazotrophs and nifH gene expression
in surface waters of the South Pacific Ocean, ISME J., 8, 1962–
1973, https://doi.org/10.1038/ismej.2014.49, 2014.

Moisander, P. H., Benavides, M., Bonnet, S., Berman-Frank, I.,
White, A. E., and Riemann, L.: Chasing after non-cyanobacterial
nitrogen fixation in marine pelagic environments, Front. Micro-
biol., 8, 1736, https://doi.org/10.3389/fmicb.2017.01736, 2017.

Montoya, J. P., Voss, M., Kahler, P. and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N2 Fixation,
Appl. Environ. Microb., 62, 986–993, 1996.

Moutin, T., Doglioli, A. M., de Verneil, A., and Bonnet, S.: Pref-
ace: The Oligotrophy to the UlTra-oligotrophy PACific Ex-
periment (OUTPACE cruise, 18 February to 3 April 2015),
Biogeosciences, 14, 3207–3220, https://doi.org/10.5194/bg-14-
3207-2017, 2017.

Oksanen, J., Blanchet, G., Klindt, R., Legendre, P., Minchin, P. R.,
O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H.,
and Wagner, H.: Vegan: Community ecology package, R package
version 2.3-4, available at: http://CRAN.R-project.org/package=
vegan (last access: 15 September 2017), 2015.

Pabortsava, K., Lampitt, R. S., Benson, J., Crowe, C., McLachlan,
R., Le Moigne, F. A. C., Mark Moore, C., Pebody, C., Provost,
P., Rees, A. P., Tilstone, G. H. and Woodward, E. M. S.: Carbon
sequestration in the deep Atlantic enhanced by Saharan dust, Nat.
Geosci., 10, 189–194, https://doi.org/10.1038/ngeo2899, 2017.

Rahav, E., Bar-Zeev, E., Ohayon, S., Elifantz, H., Belkin, N., Herut,
B., Mulholland, M. R., and Berman-Frank, I.: Dinitrogen fixation
in aphotic oxygenated marine environments, Front. Microbiol.,
4, 1–11, https://doi.org/10.3389/fmicb.2013.00227, 2013.

Raimbault, P. and Garcia, N.: Evidence for efficient regener-
ated production and dinitrogen fixation in nitrogen-deficient
waters of the South Pacific Ocean: impact on new and
export production estimates, Biogeosciences, 5, 323–338,
https://doi.org/10.5194/bg-5-323-2008, 2008.

Riemann, L., Farnelid, H., and Steward, G. F.: Nitrogenase genes
in non-cyanobacterial plankton: Prevalence, diversity and reg-
ulation in marine waters, Aquat. Microb. Ecol., 61, 235–247,
https://doi.org/10.3354/ame01431, 2010.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann,
M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D.
H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van
Horn, D. J. and Weber, C. F.: Introducing mothur: Open-source,
platform-independent, community-supported software for de-
scribing and comparing microbial communities, Appl. Environ.
Microb., 75, 7537–7541, https://doi.org/10.1128/AEM.01541-
09, 2009.

Seidel, M., Beck, M., Riedel, T., Waska, H., Suryaputra, I. G. N.
A., Schnetger, B., Niggemann, J., Simon, M., and Dittmar, T.:
Biogeochemistry of dissolved organic matter in an anoxic in-
tertidal creek bank, Geochim. Cosmochim. Ac., 140, 418–434,
https://doi.org/10.1016/j.gca.2014.05.038, 2014.

Severin, I., Bentzon-tilia, M., Moisander, P. H., and Riemann, L.:
Nitrogenase expression in estuarine bacterioplankton influenced
by organic carbon and availability of oxygen, FEMS Microbiol.
Lett., 362, 1–26, 2015.

Sohrin, R. and Sempéré, R.: Seasonal variation in total organic car-
bon in the northeast Atlantic in 2000–2001, J. Geophys. Res.,
110, C10S90, https://doi.org/10.1029/2004JC002731, 2005.

Stenegren, M., Caputo, A., Berg, C., Bonnet, S., and Foster, R.
A.: Distribution and drivers of symbiotic and free-living dia-
zotrophic cyanobacteria in the western tropical South Pacific,
Biogeosciences, 15, 1559–1578, https://doi.org/10.5194/bg-15-
1559-2018, 2018.

Steward, G. F., Jenkins, B. D., Ward, B. B., and Zehr, J. P.: Devel-
opment and testing of a DNA macroarray to assess nitrogenase
(nifH) gene diversity, Appl. Environ. Microb., 70, 1455–1465,
2004.

Turk, K. A., Rees, A. P., Zehr, J. P., Pereira, N., Swift, P., Shel-
ley, R., Lohan, M., Woodward, E. M. S., and Gilbert, J.: Ni-
trogen fixation and nitrogenase (nifH) expression in tropical
waters of the eastern North Atlantic, ISME J., 5, 1201–1212,
https://doi.org/10.1038/ismej.2010.205, 2011.

Zehr, J., Waterbury, J., and Turner, P.: Unicellular cyanobacteria fix
N2 in the subtropical North Pacific Ocean, Nature, 715, 25–28,
https://doi.org/10.1038/news010809-11, 2001.

Zehr, J. P.: Nitrogen fixation by marine cyanobacteria, Trends Mi-
crobiol., 19, 162–173, https://doi.org/10.1016/j.tim.2010.12.004,
2011.

www.biogeosciences.net/15/3107/2018/ Biogeosciences, 15, 3107–3119, 2018

https://doi.org/10.3389/fmicb.2017.00967
https://doi.org/10.1038/ismej.2008.51
https://doi.org/10.1126/science.1185468
https://doi.org/10.1038/ismej.2014.49
https://doi.org/10.3389/fmicb.2017.01736
https://doi.org/10.5194/bg-14-3207-2017
https://doi.org/10.5194/bg-14-3207-2017
http://CRAN.R-project.org/package=vegan
http://CRAN.R-project.org/package=vegan
https://doi.org/10.1038/ngeo2899
https://doi.org/10.3389/fmicb.2013.00227
https://doi.org/10.5194/bg-5-323-2008
https://doi.org/10.3354/ame01431
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1128/AEM.01541-09
https://doi.org/10.1016/j.gca.2014.05.038
https://doi.org/10.1029/2004JC002731
https://doi.org/10.5194/bg-15-1559-2018
https://doi.org/10.5194/bg-15-1559-2018
https://doi.org/10.1038/ismej.2010.205
https://doi.org/10.1038/news010809-11
https://doi.org/10.1016/j.tim.2010.12.004

	Abstract
	Introduction
	Materials and methods
	Hydrography, nutrients, chlorophyll a and dissolved organic carbon
	DOM analysis
	N2 fixation rates
	Flow cytometry
	DNA extraction, sequencing and sequence analysis

	Results
	Hydrography, nutrients, DOC and bacterial abundance
	High-resolution analysis of DOM (FTICRMS)
	Aphotic N2 fixation rates
	Diazotroph community composition
	N2 fixation and diazotrophs related to in situ environmental parameters

	Discussion
	Data availability
	Competing interests
	Special issue statement
	Acknowledgements
	References

