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ABSTRACT: Elucidating the structure of the interface between natural (reduced)
anatase TiO2 (101) and water is an essential step toward understanding the associated
photoassisted water splitting mechanism. Here we present surface X-ray diffraction
results for the room temperature interface with ultrathin and bulk water, which we
explain by reference to density functional theory calculations. We find that both
interfaces contain a 25:75 mixture of molecular H2O and terminal OH bound to
titanium atoms along with bridging OH species in the contact layer. This is in complete
contrast to the inert character of room temperature anatase TiO2 (101) in ultrahigh
vacuum. A key difference between the ultrathin and bulk water interfaces is that in the
latter water in the second layer is also ordered. These molecules are hydrogen bonded to the contact layer, modifying the bond
angles.

Ever since Honda and Fujishima1 demonstrated photo-
assisted water splitting on titanium dioxide (TiO2), it has

been widely investigated for hydrogen fuel production.2

Determining the interface structures of well-defined TiO2

surfaces and water is a crucial step toward understanding this
process on an atomic scale. Rutile TiO2 (110) (R110) and
anatase TiO2 (101) (A101) have been the focus of numerous
surface science studies. While the structure of the R110/H2O
interface has been studied in a number of environments,3,4

studies of A101 have so far been largely restricted to ultrahigh
vacuum (UHV).5−13 A surface science perspective of water on
brookite14 is limited to simulations.
The A101 surface consists of 5-fold (Ti5c) and 6-fold (Ti6c)

coordinated Ti atoms and 2-fold (O2c) and 3-fold (O3c)
coordinated O atoms in a sawtooth geometry (see Figure
1).15,16 Water does not adsorb on A101 in UHV conditions at
room temperature, although it adsorbs molecularly on Ti5c at
low temperature.5 Dissociative adsorption to form terminal OH
(OHt)

6,7 (i.e., OH adsorbed to Ti5c) and/or bridging OH
(OHbr)

12,13 has been reported following electron12,13 and

photon excitation9 as well as coadsorption with O2
6,7 at low

temperature. There is evidence from photoemission spectros-
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Figure 1. Ball and stick model of A101 (1 × 1). The numerical labeling
of the atoms serves as identification for the atomic displacements
shown in Table 1. The indicated azimuth defines the x, y, and z
directions along which the atomic coordinates are defined as positive.
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copy of mixed molecular-dissociative adsorption at room
temperature at a higher pressure of water (0.6−6.0 mbar).17

The reduced room temperature reactivity of A101 to water in
UHV compared with R110 is thought to be due to the lack of
surface oxygen vacancies.18 These vacancies, which promote
dissociation on R110,

19 are absent on A101 because they are more
stable in subsurface sites.18 However, the unreactive character
of reduced A101 in UHV is predicted to be modified when a
liquid interface is formed by trapping excess electrons at bound
hydroxyl complexes.10 Here we test this idea through a
quantitative structure determination of the A101 surface covered

by an ultrathin water film or bulk water, complemented with
density functional theory (DFT) calculations. We find that a
mixture of molecular and dissociated water is present in the
contact layer, pointing to a significantly enhanced reactivity of
the substrate compared with that observed in UHV.
The interface structures for A101 with an ultrathin film and

bulk water were obtained from surface X-ray diffraction
(SXRD) data in comparison with DFT calculations. SXRD
data recorded from the clean surface in UHV prior to the
interface measurements are essentially identical to those
published previously.16 Labeling of titanium and oxygen

Table 1. Experimental (SXRD) and Theoretical (DFT) Surface Atomic Displacements Away from the Bulk Terminated
Structure of A101

a

displacements (Å)

A101/UHV (as-prepared) A101/ultrathin water film A101/bulk water

atom
label

Δ [101̅]
[16SXRDb:SXRDc:DFT]

Δ [101]
[16SXRDb:SXRDc:DFT]

Δ [101 ̅]
[SXRD:DFT]

Δ [101]
[SXRD:DFT]

Δ [101̅]
[SXRD:DFT]

Δ [101]
[SXRD:DFT]

O-1 0.11:0.14:0.23 0.07:0.10:0.02 0.05:−0.01 −0.01:0.08 −0.03:−0.05 0.03:0.05
Ti-1 0.03:0.02:−0.01 0.01: −0.01:−0.12 0.02:0.00 0.07:0.15 −0.02:−0.06 0.11:0.13
O-2 0.11:0.13:0.14 0.15:0.14:0.25 −0.08:−0.02 0.12:0.16 −0.03:−0.04 0.09:0.17
O-3 0.18:0.16:0.11 0.08:0.05:0.06 −0.08:−0.04 0.10:0.00 −0.04:−0.09 0.04:0.01
Ti-2 0.12:0.11:0.12 0.15:0.16:0.21 0.08:−0.03 0.09:0.01 0.02:−0.07 0.06:0.03
O-4 −0.01:0.01:0.13 0.01:0.01:−0.02 0.15:−0.04 0.00:0.07 0.04:−0.05 0.01:0.08
O-5 −0.07:−0.04:0.05 0.06:0.06:0.06 −0.03:−0.03 −0.03:0.04 0.05:−0.04 0.04:0.04
Ti-3 0.01:−0.01:−0.05 0.04:0.03:−0.05 0.06:−0.02 0.06:0.07 0.05:−0.03 0.05:0.07
O-6 −0.06:−0.05:−0.01 0.05:0.07:0.02 −0.13:−0.03 0.07:0.06 −0.04:−0.03 0.05:0.07
O-7 0.13:0.14:0.01 0.08:0.05:0.04 0.01:−0.03 0.04:0.05 0.05:−0.04 0.02:0.05
Ti-4 0.06:0.08:0.01 0.08:0.09:0.10 0.07:−0.03 0.07:0.03 0.03:−0.04 0.03:0.04
O-8 −0.05:−0.04:−0.01 0.00:0.04:0.02 0.03:−0.03 0.00:0.04 0.01:−0.03 0.01:0.05

aPositive or negative displacements indicate those parallel or anti-parallel to the directions of the coordinate axis defined in Figure 1. Experimental
errors correspond to ±0.01 Å as obtained from the fitting procedure. bRepresents as-prepared surface before formation of the ultrathin water film
interface (10 ± 2 layers). cRepresents as-prepared surface before formation of the bulk water interface.

Figure 2. Comparison of experimental CTRs for as-prepared A101 in UHV16 (red), and for the A101 interface with an ultrathin water film (blue) and
bulk water (gray). CTRs are offset for clarity. A full set of CTRs and their respective best fit is given in the SI (see Figures S1 and S2). FExperiment:
experimental structure factor. FCalculated: calculated structure factor.
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atoms used here is identical to that used in our previous work16

(see Figure 1). The atomic displacements on the as-prepared
surface, given in Table 1, indicate a relaxation of atoms away
from the bulk, a phenomenon previously observed on R110 in
UHV.20 As discussed in our previous work,16 surface roughness
has been modeled with a “terraced roughness”21 approach,
which allows better simulation of the step-related surface
roughness. Modeling is performed with two surface domains
with identical terminations that differ in the relative height from
the bulk at which the termination occurs. Occupancy of the two
domains is in a 1:3 ratio as in our previous work.16

Three experimental crystal truncations rods (CTRs) and the
best fits for A101 covered with a 10 ± 2 monolayer water film
(see SI for details) and bulk water are shown in Figure 2, with
the complete data sets in Figures S1 and S2, respectively. The
A101 surface atomic displacements before and after formation of
the water interface are shown in Table 1. These optimized
atomic displacements indicate mixed associative and dissocia-
tive water adsorption with a normalized χ2 (χ2n) of 1.12 and
1.05 for the ultrathin water film and bulk water, respectively.
The nonuniform agreement between certain experimental and
DFT displacements is largely attributed to calculation
limitations. Displacements were determined by considering

the difference of the optimized atomic positions without
sampling different atomic configurations, as would be more
appropriate at finite temperature, especially at the aqueous
interface.
The best-fit SXRD model for the A101 interface with the

ultrathin water film suggests ordering in the contact layer only,
with a complete coverage of adsorbed H2O/OH species on Ti5c
(Ti-1). There are two distinct Ti5c−OH2/OH species with 25%
and 75% coverage and bond lengths of 2.21 ± 0.04 Å and 1.94
± 0.01 Å, respectively (see Figure 3 and see Figure S3a for a
graph of χ2n against a change in surface adsorbate coverage).
The best-fit SXRD model for the interface with bulk water has
an additional ordered layer above the contact layer. Similar to
the ultrathin case, the contact layer contains two distinct Ti5c−
OH2/OH species with 25% and 75% surface coverage and
bond lengths of 2.18 ± 0.03 Å and 1.95 ± 0.01 Å, respectively
(see Figure 3 and see Figure S3a for a graph of χ2n against a
change in surface adsorbate coverage). The second layer
appears to consist of H2O molecules that are hydrogen bonded
to molecules in the contact layer based on the bond distances
(see Figure 3). Interestingly, as is shown in Figure 3, the bond
angle of the H2O and OHt species on Ti5c (Ti-1) varies
depending on whether the surface is contacted with the

Figure 3. Ball and stick model of the proposed A101 interface with (a) an ultrathin water film and (b) bulk water. Experimental (SXRD) bond lengths
and angles are presented in black, with DFT calculations denoted in red. The black arrows represent the relative magnitude and direction of atom
displacements with respect to bulk lattice positions. Hydrogen atoms were not included in the experimental fitting procedure due to their small X-ray
scattering strength, and so are only displayed for illustrative purposes. A complete coverage of adsorbed H2O/OH on Ti5c is proposed. However, for
presentation purposes, this figure shows only one adsorbed H2O and OHt.
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ultrathin film or bulk water. This can be attributed to the
presence of the ordered second layer in the case of the bulk
water interface (see Figure S3b for a graph of χ2n against a
change in second monolayer coverage).
Previous DFT and molecular dynamics (MD) simula-

tions22−31 predict a Ti5c−OH2O bond length in the range
2.15−2.30 Å, while the Ti5c−OOH bond length is predicted to
be 1.80−1.90 Å. Our current DFT calculations predict the
Ti5c−OH2 bond length to be 2.27−2.28 Å and the Ti5c−OHt
bond length to be 1.85−1.89 Å (see Figure 3). Experimental
measurements of the R110/H2O(l) interface show a Ti5c−OHt
bond length at 1.95 ± 0.03 Å.4 On this basis, the Ti5c-O bond
lengths of 2.21 ± 0.05 Å (ultrathin film) and 2.18 ± 0.03 Å
(bulk water) can be attributed to associative H2O surface
adsorption on Ti5c, while the bond lengths of 1.94 ± 0.01 Å
(ultrathin film) and 1.95 ± 0.01 Å (bulk water) correspond to
dissociative adsorption to form Ti5c−OHt. A 25% occupation of
Ti5c sites by molecular water was also found in UHV scanning
tunneling microscopy (STM) images following exposure of
A101 to water vapor at 6 K.5 At low temperature this forms a
locally ordered 2 × 2 overlayer, which could in principle be
present at the ultrathin water film and bulk water interface. The
small domain size would prevent fractional order rods (FORs)
from being observed.
The surface atomic displacements after formation of the

aqueous interfaces are in general close to zero. In other words,
the expansion of the surface observed in UHV is reversed with
the formation of the interface. This behavior has been
previously observed at the R110/H2O interface4 and is well
reproduced by our DFT calculations. Interestingly, experiment
and theory suggest an expansion away from the bulk for the
Ti5c (Ti-1) atom. This movement is attributed to the formation
of Ti5c (Ti-1) bonds to OH2/OH in the contact layer. The
experimental bond angles associated with molecules in the
contact layer (see Figure 3) are reproduced reasonably well by
our theoretical calculations. Any discrepancies can be attributed
to limitations associated with the optb88-vdw DFT functional.
This functional has been shown to simulate the aqueous
environment better than the Perdew, Burke, and Ernzerhof
(PBE) functional32,33 and has been used to describe several
semiconductor/water interfaces accurately, although its suit-
ability to reproduce bond angles is as yet unclear.32−35

Previous calculations of the A101/water interface predict that
the formation of OHt species from water dissociation is coupled
with the formation of OHbr species that trap excess electrons
from the selvedge.10 In principle, this can be probed
experimentally by the position of the O2c to which a H atom
is bound to form OHbr.

27 Our SXRD results indicate that, after
H2O exposure, the Ti5c−O2c bond length increases from 1.90 ±
0.02 Å to 1.95 ± 0.01 Å and 1.88 ± 0.01 Å to 1.95 ± 0.01 Å,
respectively for the ultrathin water film and bulk water
interfaces. Earlier calculations27 predict that the Ti5c−O2c
bond length is 1.86 Å for the clean surface, which can increase
up to 1.88 Å in the presence of OHt and H2O species at the
Ti5c (Ti-1) site. However, in the presence of both OHbr and
OHt species, the Ti5c−O2c bond length can increase up to 2.01
Å. This is supported by our current DFT calculations, which
show that the presence of OHbr species can result in a Ti5c-O2c
bond length of ∼2 Å, whereas in the absence of OHbr and with
only H2O or OHt adsorption at the Ti5c site, the Ti5c-O2c bond
length is ∼1.85 Å. Given that our experimental findings indicate
an expansion of the Ti5c-O2c bond length after aqueous

interface formation, it can be inferred that the interface consists
of OHbr species formed via H2O dissociation to form OHt and
OHbr species.
The influence of the water layer thickness on the contact

layer structure has been discussed in the literature, although
there has been a lack of experimental evidence.36 In our work,
we observe that our ultrathin water film and bulk water on A101
induces a similar contact layer with differences arising from an
ordered second monolayer at the A101/bulk water interface.
This indicates that the ultrathin water film thickness of 10 ± 2
monolayers37 is below that required for it to behave as bulk
water. The activation of A101 to induce water dissociation at the
aqueous interface while being inert in UHV can be explained in
terms of the interplay between excess electrons and adsorbed
water. Although little electron trapping is observed at the
surface of as-prepared A101 in UHV, an excess electron at the
aqueous interface can trigger water dissociation to form surface
OH species.10 The catalytic activation of A101 under aqueous
conditions can be explained by the interaction of excess
electrons with multiple water layers and the subsequent
electron trapping at the resultant OH species.
In conclusion, this study has shown that room temperature

aqueous interfaces with reduced A101 have a mixture of
molecular H2O (25%) and OHt (75%) bound to Ti5c in the
contact layer. OHt formation from water dissociation is
accompanied by the formation of OHbr. On the basis of
previous calculations,10 the reduced state of the anatase will
play a crucial role in the formation of this contact layer since it
provides the excess electrons needed for dissociation. Upon
water exposure to the as-prepared surface, the surface atoms
contract toward the bulk and adopt a relatively more bulk-like
appearance when compared to the as-prepared surface. This
study highlights the importance of the substrate environment in
determining its reactivity. For A101, the aqueous interface is
reactive, whereas the UHV substrate is inert at room
temperature. Since the aqueous interface is relevant in
photocatalysis, it also highlights the importance of studies in
realistic environments. This behavior of A101 is likely to be
observed on other reducible metal oxides; however, this will
depend on its surface electronic structure. For instance, in
contrast to the (101) termination, the (001) termination of
anatase does not trap electrons.10
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