
HAL Id: hal-01820431
https://hal.sorbonne-universite.fr/hal-01820431v1

Submitted on 21 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting Human Performance in Vertical Menu
Selection Using Deep Learning

Yang Li, Samy Bengio, Gilles Bailly

To cite this version:
Yang Li, Samy Bengio, Gilles Bailly. Predicting Human Performance in Vertical Menu Selection Using
Deep Learning. 2018 CHI Conference on Human Factors in Computing Systems, Apr 2018, Montréal,
Canada. pp.29, �10.1145/3173574.3173603�. �hal-01820431�

https://hal.sorbonne-universite.fr/hal-01820431v1
https://hal.archives-ouvertes.fr

Predicting Human Performance in Vertical Menu Selection
Using Deep Learning

Yang Li1 Samy Bengio1,2 Gilles Bailly3
1 Google Research & Machine Intelligence, Mountain View, CA, USA

2 Google Brain, Mountain View, CA, USA
3 Sorbonne Universités, CNRS, ISIR, Paris, France

{liyang, bengio}@google.com yangli@acm.org gilles.bailly@upmc.fr

ABSTRACT
Predicting human performance in interaction tasks allows
designers or developers to understand the expected
performance of a target interface without actually testing it
with real users. In this work, we present a deep neural net to
model and predict human performance in performing a
sequence of UI tasks. In particular, we focus on a dominant
class of tasks, i.e., target selection from a vertical list or
menu. We experimented with our deep neural net using a
public dataset collected from a desktop laboratory
environment and a dataset collected from hundreds of
touchscreen smartphone users via crowdsourcing. Our
model significantly outperformed previous methods on
these datasets. Importantly, our method, as a deep model,
can easily incorporate additional UI attributes such as visual
appearance and content semantics without changing model
architectures. By understanding about how a deep learning
model learns from human behaviors, our approach can be
seen as a vehicle to discover new patterns about human
behaviors to advance analytical modeling.

Author Keywords
Performance modeling; deep learning; recurrent neural
networks; LSTM; touchscreen, lists, menus; TensorFlow.

ACM Classification Keywords
H.5. HCI; I.2. Artificial Intelligence.

INTRODUCTION
Seeking models for predicting human performance in
performing an interaction task has long been pursued in the
field of human computer interaction [2-8, 11, 16]. In
addition to the scientific value of understanding human
behaviors, creating these models has practical values in user
interface design and development. A predictive model
allows a developer or designer to understand the expected
performance of an interface without having to test it with
real users, which can be expensive and effort consuming.

Several predictive models of human performance have been
devised, including Fitts’ law [8] and Hick’s law [11], which

are rooted in information theory and experimental
psychology. However, these models capture a certain aspect
of human performance in isolation, e.g., motor control or
decision making. They are limited in modeling human
performance in realistic interaction tasks where multiple
factors interplay. Recent work (e.g., [2]) has attempted to
develop compound models that combine models such as
Fitts’ law. While these methods have made great progress
in predicting time performance in more realistic tasks, these
analytical models are not easily extensible to accommodate
new factors that might come into play.

In this work, we take a departure from existing analytical
approaches for performance modeling by using a data-
driven approach based on the recent advance in deep
learning [15]. Deep learning has proven successful in many
domains, such as computer vision [15] and natural language
processing [1]. It relieves the need of careful feature
engineering and of a great amount of domain knowledge in
creating a predictive model. It can also capture patterns that
only manifest in the data but are difficult to articulate in an
analytical form.

In particular, we devise a predictive model (see Figure 1)
for interaction performance based on a deep recurrent
neural net architecture using Long-Short Term Memory
(LSTM) [12]. The unique architecture of our LSTM-based
model allows us to naturally capture a variety of factors that
come into play in UI tasks, including not only what human
users are perceiving and performing at the moment but also
what they have learned from the past regarding an

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the Owner/Author.
CHI 2018, April 21–26, 2018, Montreal, QC, Canada
© 2018 Copyright is held by the owner/author(s).
ACM ISBN 978-1-4503-5620-6/18/04.
https://doi.org/10.1145/3173574.3173603

Figure 1. A high-level illustration of our approach for

predicting human time performance. The model, mimicking a
human user, not only sees the UI and task at the moment but
also remembers what it has experienced previously, through
its recurrent layer. The representation of the UI and task at

each step is achieved via another recurrent net.

interaction task. To scope our work, we focus on a common
task on desktop and smartphones, where users select a
target item from a vertical menu or list1, e.g., choosing a
song to play, a person to contact, selecting an application in
the start menu or simply activating a command in a drop-
down menu. Because users often need to perform these
selection tasks repeatedly over the time, we investigate our
approach in the context of a sequence of selection tasks.

We design a novel hierarchical deep architecture for menu
performance modeling. In our architecture, a recurrent
neural net is used to encode UI attributes and tasks at each
target item selection. This allows us to represent a menu
with a varied length and to easily incorporate any additional
UI attributes such as visual appearance and semantics. We
then use another recurrent net to capture learning effects, a
major component in human performance. The entire model
is learned end-to-end using stochastic gradient descent. The
model outperforms existing analytical methods in various
settings for predicting selection time. Importantly, it is
easily extensible for accommodating new UI features and
human factors involved in an interaction task.

As a machine learning model, especially a deep
architecture, the general challenge is that it is difficult to
gain insights into what the model actually learns. We
analyze how our model learns to mimic human behaviors.
We show that our model “remembers” and “forgets” like a
human—the model gains expertise on a visited item from
past trials and that expertise fades away over time if the
user does not access the item for a while. Prior work models
expertise as frequency counts [2, 7], which does not take
into account the “forgetting” effect in human behavior. We
also discuss how this “memory effect” is affected by
different menu organizations. We believe these analyses
improve our understanding about how a deep learning
model learns from human behaviors, which in turn can
inspire analytical modeling.

RELATED WORK
Extensive work has been conducted in modeling human
behaviors and predicting human performance for
performing interaction tasks. For example, Fitts’ Law [8]
predicts the time needed for an expert human to acquire a
visual target. Similarly, Hick’s Law [11] is also a well-
known model that describes the time required for an expert
human to make a decision of choosing among a given
number of options.

While each of these previous methods is amazingly robust
for modeling the specific aspect of human behaviors it
focuses on, they are limited in modeling realistic interaction
tasks. For example, Fitts’ Law was originally proposed for
a limited setting of one-dimensional target with no
distractors. Although prior work has extended Fitts’ Law in

1 In this paper, we use “list” and “menu” interchangeably to refer
to a list of items or options for the user to select.

several ways (e.g., [3, 16]), it is still constrained. Moreover,
target acquisition is only one aspect of an interaction task.
In a realistic task, there are many factors convoluted such as
visual search, motor control and learning effects on spatial
memory, as well as other factors that may or may not have
been discovered in the literature.

There has been a considerable amount of efforts in
combining these building block models such as Fitts’ Law
and Hick’s Law so that their combination can be more
applicable to modeling complex interaction tasks [2, 4, 6, 7,
10]. Particularly, GOMS/KLM [5] predicts the time taken
for an expert user to perform a routine task. ACT-R [4] or
EPIC [14] implement a set of production rules to decide, for
instance, visual search strategies in linear menus. Prior
work (e.g., [13, 21]) has also revealed the important role of
learning effect played in menu selection, such as the
forming of spatial memory reduces visual search.

More recently, Cockburn et al. [7] combined pointing time
(Fitts’ Law), decision time (Hick’s Law), visual search
time, and expertise in a single model. The model is compact
and robust in modeling a range of menu selection tasks. In
the same vein, Bailly et al. [2] proposed a more complex
model that is formulated based on gaze distribution for
menu selection tasks.

While previous methods, which are mostly empirically
tuned analytical models, have gained substantial progress in
modeling human behaviors, they are not easily extensible
for accommodating various aspects of user interfaces and
human factors. For example, the saliency of items [19] on
an interface can significantly affect the time needed for
visual search. Learning effect is a profound factor that
affects every aspect of human performance. In addition,
new generations of computing devices such as touchscreen
smartphones have introduced many factors that are not
covered by traditional models. While it is possible to further
expand existing models, there is a tremendous amount of
challenges and effort to do so—new factors are not always
obvious or easily analytically articulated.

In contrast to previous approaches, we propose a data-
driven approach based on the recent advance of deep
learning. Deep learning [15] employs multiple processing
layers to automatically learn representation of raw data,
which reduces the need of intensive feature engineering and
thus the need of domain expertise. In particular, we
designed our model based on Long-Short Term Memory
(LSTM) [12], a recurrent neural net, which has been
successfully applied in many sequential problems such as
natural language processing [1]. Our work is the first in
applying deep recurrent neural net for modeling human
performance in interaction tasks. While it is challenging to
analyze the behavior of a deep model in general, we offer
several insights into how such a model learns to mimic
human behaviors from data.

THE MODEL DESIGN & LEARNING
We present a model to predict human performance in
performing a sequence of UI tasks. It builds on two
important capabilities of recurrent neural net (RNN) [9].
First, it is capable of “reading” in a varied-length sequence
of information and encoding it as a fixed-length
representation. It is important as an interaction task often
involves varied-length information. For example, the
number of items in a menu can vary from one application to
another. Second, the model is capable of mimicking users’
behavior by learning to both acquire and “remember” new
experience, and discard (or “forget”) what it learns if the
experience is too dated. While learning effects are a major
component in human performance, prior works primarily
use a frequency count as the measure of the user’s
expertise. In contrast, our model relies on LSTM [12],
which offers a mechanism that is more natural in
mimicking human behaviors.

Encoding A Single-Step Selection Task
At each step, a user selects a target item in a vertical menu.
From previous work, there are multiple factors in the task
affecting human performance, including the number of
items in the menu, the location of the target item in the
menu, the visual salience of each item and whether there
are semantic cues in assisting visual search.

For each element in the UI—an item in the menu in our
context, we represent it as a concatenation of a list of
attributes (see Equation 1). We use 1 or 0 to represent
whether it is the target item for the current step. To capture
the visual salience of an item, we use the length of the item
name. An item that is especially short or long in
comparison to the rest items on the menu tends to be easier
to spot. To capture the semantics of an item, we represent
the meaning of the item name with a continuous vector that
was acquired from word2vec [20], which project a word
onto a continuous vector space where similar words are
close in this vector space. !"

denotes the vector
representation of the jth item in the menu at step $ in the
interaction sequence.

!"
= &'()*&, len(0'!*), word2vec(0'!*) (1)

To encode the selection task that involves a list of items in
the menu, we feed the vector representation of each item in
sequel to a recurrent neural net [9] (see Figure 2). *"

represents the hidden state of the recurrent net after reading

the jth item and seeing the previous items through *"
#9:. 0

denotes the number of items in the menu. This recurrent net
performs as a task encoder (thereafter referred as the
encoder net) and it does not have an output layer. The final
hidden state of the recurrent net, *";, a fixed-length vector,
represents the selection task at step $. We then concatenate
a one-hot vector to indicate whether the menu items are
semantically grouped, alphabetically sorted or unsorted,
resulting in *". The task encoder can accommodate a menu
with any length, n, and UI attributes.

Modeling A Sequence of Selection Tasks
With the interaction task at each step of a sequence
represented as *", we can now feed the sequence into
another recurrent neural net (see Figure 3), which we refer
to as the prediction net. Note that *" in Figure 3 represents
the encoder net, which is a recurrent neural net itself whose
outcome is fed to the prediction net. The task at each step
can vary simply because the user might need to select a
different target item. The UI at each step can also be
different, e.g., an adaptive interface might decide to change
the appearance of an item such as its size [7] to make it
easier to acquire.

The recurrent neural net predicts human performance time
at each step, &<. The predictions are based on not only the
task at the current step but also the hidden state of the
previous step that captures the human experience while
performing previous tasks. Previous work in deep learning
has shown that adding more layers in a deep net can
improve the capacity for modeling complex behaviors [15].
To give the model more capacity, we add a hidden layer,
with ReLU [18] as the activation function, after the
recurrent layer, denoted as nonlinear projection in Figure 3.
Finally, the time prediction &< is computed as a linear
combination of the outcome of the nonlinear transformation
layer.

Model Learning & Loss Function
It is straightforward to compute the time prediction with the
feedforward process of a neural net. The two recurrent
neural nets involved in our model are trained together, end
to end from the data by feeding in sequences of selection

Figure 2. We use a recurrent neural net to encode the

selection task at a step, s. !"
is the vector representation of

the jth item in the menu and *"
is the hidden state of the

net after reading in the jth item.

Figure 3. A recurrent neural net takes in the selection task
at each step, =, and the acquired expertise (represented as
the hidden state ℎ<), and predicts the time needed, &<, for

completing the selection task at this step.

tasks as input and observed performance times as the target
output (the ground truth), using stochastic gradient descent.

For time performance modeling, one common measure of
prediction quality in the literature has been ?@ (e.g., [2, 3,
7, 8]). It measures how well predicted times match
observed ones in capturing relative task difficulty or human
performance across task conditions and progression. For
general time series modeling regarding continuous values,
there are other metrics often used, such as Root Mean
Square Error (RMSE) or Mean Absolute Error (MAE).

Mathematically, ?@ is the correlation between the sequence
of observed times, A<, and the sequence of predicted times,
&<, (see Equation 2). B represents the length of the
sequence, and A is the mean of A<.

?@ = 1 −
EF9GF H

I
FJK

EF9E HI
FJK

 (2)

A< − A @L
<M: reflects the variance of the observations in

each sequence, which is independent of models. Thus, it is
a known constant for each sequence in the training dataset,
which we refer to as N". To maximize ?@, we want to
minimize the squared error term A< − &< @L

<M: , scaled by a
sequence-specific constant N", which defines the loss
function (see Equation 3). The scaling acts effectively as
adapting the learning rate based on the variance of each
sequence for training the deep neural net. Intuitively, for
each training sequence, the more variance the sequence has,
the smaller learning rate we should apply for updating the
model parameters, and vice versa.

OG =
EF9GF H

I
FJK

PQ
 (3)

With the loss function defined, our model can be trained
using Back Propagation Through Time (BPTT) [9], a
typical method for training recurrent neural nets (see more
details in the following sections).

EXPERIMENTS
We experimented with our model based on two datasets
from both a controlled and a crowd-sourced environment.
We first discuss these datasets, and the model and training
configuration. We then discuss the performance of our
model in comparison with a state of art analytical method
proposed previously [2].

Datasets
We experimented with the deep net on modeling menu
selection tasks with a public dataset [2] collected from a
desktop computer in a controlled laboratory environment,
and a dataset we collected from smartphone users using
crowdsourcing. For testing different task difficulties and
learning effects, these datasets involve menus with different
lengths and long sequences of trials.

Public Dataset from a Controlled Laboratory
Bailly et al. conducted a within-subjects study to collect
data from 21 participants [2]. The study involved three
menu organizations: Unordered, Alphabetical and
Semantic, and three menu lengths: 8, 12 or 16 items.
Participants were asked to complete 12 blocks of trials per
menu. For each menu, the order of items in the menu is
fixed so that participants can learn item positions over time.
Within a block, each target item is selected once and the
order of target items was randomized. The experiment was
conducted on a windows PC with a 20 LCD display and a
traditional optical mouse. In total, there are 189 sequences:
21 participants x 3 Menu configurations x 3 Menu Length.
The length of each sequence may vary depending on the
menu length: 12 blocks x (8-12-16 items) and there are
39,564 selections.
Touchscreen Smartphone Dataset from Crowdsourcing
To collect data of users interacting on a smartphone, we
implemented a data collection tool as a web application (see
Figure 4). We recruited smartphone users via Amazon
Mechanical Turk and these users are redirected to our web
application to complete a sequence of menu selection tasks.
Because the data collection takes place in the wild, we
intend to maximally assure the consistence of the setting by
controlling a few setups. To make sure a list to appear with
the same size on a phone, we decide to target on a few
specific smartphone models: Apple iPhone 6 and Android
Nexus 5. A user is also required to hold the phone in the
portrait mode while performing the task, and our web app
automatically prohibits the users to continue the task if it
detects the landscape mode. Once a user completed a
sequence of tasks, the data are automatically uploaded and
stored on the server.

Our data collection was designed in a similar way to
previous work. There are three menu lengths: 8, 12 and 16.
Each worker is randomly assigned to a menu length with
the item labels also randomly selected from a set of country
names. The order of items in each menu is randomly
determined for each worker and remains fixed throughout
the trials. The location of the target item in the menu is

Figure 4. The Data Collection web application on iPhone. For
each trial, with informed the target name, the worker taps on

the Start button to reveal the menu and then selects the target.

randomly assigned for each trial. The number of trials
completed by each worker ranged from 96 to 192
depending on menu lengths. In total, there were 863
sequences generated, each from a unique smartphone user
(804 iPhone and 59 Android users). There were 384 males
and 479 females. 50% users aged between 20-29 and 32%
users between 30-39. 10% of these users were left-handed.
The mean duration of a worker session spanned 7 minutes
(STD=2.6 minutes). There are in total 159,072 selections in
these sequences.

Model Configuration & Hyper Parameters
For the encoder net, the recurrent layer uses 16 LSTM cells
[12]. The text name of each menu item is represented as a
continuous embedding vector based on a 50-dimensional
vector representation learned from the Wikipedia corpus
[20]. Because the number of unique names in our datasets is
relatively small compared to the entire English vocabulary
on Wikipedia, we reduce the dimensionality of the name
embedding to 4 using PCA, to speed up learning. As a
result, each menu is represented as a continuous vector of
size 6: 1 slot for indicating if the item is the target, 1 slot for
the name length, and 4 slots for the name embedding. For
the prediction net, we used 32 LSTM cells for its recurrent
layer. The nonlinear transformation over the recurrent layer
has a size of 16 that are used for computing the time
prediction. We implemented our model in Python based on
TensorFlow, an open source deep learning library [17].

We trained the model by minimizing the loss in Equation 3
using Ada adaptive gradient descent, with a learning rate of
0.01, a norm of 1.0 for clipping the gradients, a batch size 1
and the number of unroll of 40 for truncated back-
propagation through time [9]. To regularize the model
learning, we found applying a dropout ratio of 10% to the
task encoding, *", can effectively avoid the model
overfitting the training data prematurely.

Performance Results
For each dataset, we randomly split the data on users with
half of the users for training and the other half of the users
for testing the model. For the experiments with the public
dataset, our model was trained for four million iterations.
Because there are significantly more data in the smartphone
crowd dataset, we trained our model for ten million
iterations.

 Previous modeling work often reports performance on how
well a model can fit the data. As a machine learning model
that uses a large number of parameters, it is meaningless to
report fitting performance. In this paper, we only report the
experiment results based on the test dataset for which the
model was not trained on, which truly shows how well the
learned model can predict on new data.

We report the accuracy of our model on both target-level
and menu-level ?@ that were used in previous work [2].
Both measure the correlation between predicted and
observed performance times. Target-level ?@ examines

performance at each target position in a menu with a
different amount of practice (blocks). Menu-level ?@
examines the average performance over all target positions
in a menu with a varying amount of practice.

For target-level ?@, our model achieved 0.75 on the public
dataset for the overall correlation across menu
organizations. In particular, ?@ for alphabetically ordered
(A), semantically grouped (S) and unsorted menus (U) are
0.78, 0.62 and 0.80 respectively. Note that we used a single
model to predict for all menu organizations. Previously,
Bailly et al. tuned and tested their model for each menu
organization separately. Their ?@ results were reported as
0.64 (A), 0.52 (S), 0.56 (U) [2]. For menu-level ?@, our
model achieved 0.87 for overall correlation: 0.85 (A), 0.88
(S) and 0.94 (U), which previous work reported as 0.91 (A),
0.86 (S) and 0.87 (U) [2]. Our model achieved a similar
performance for the smartphone dataset that involves only
unordered menus: target-level ?@ = 0.76 and menu-level
?@ = 0.95. It accurately predicts the time performance for
each menu length (see Figure 5).

ANALYZING MODEL BEHAVIORS
While it is generally challenging to analyze what a deep
model learns, we here offer several analyses of the model
behaviors and discuss how they match our intuition about
user behaviors. To understand the behavior of our deep net
model, we compute its Jacobian that is the partial
derivatives of the network output with respect to a specific
set of inputs (see Figure 6)—it indicates how sensitive the
time prediction is to the change in the input at each step. In
particular, we want to find out how users’ past experience
with selecting a target affects their performance for
selecting the target item again.

Figure 6 is generated by taking the Jacobian of the deep net
output, i.e., the time performance, with regards to the target
feature in Equation 1. We see that the more recent the
experience is with selecting a target item, the more
influence it has on the current trial for selecting the target

Figure 5. The model accuracy over blocks on the smartphone

dataset for menus with different lengths, with predicted
times in solid lines and observed times in dashed lines.

item again. Intuitively, it might be because the user
remembers where the item is on the list, as found in
previous work [2, 7]. However, such an effect eventually
wears off as the experience becomes dated, which is quite
consistent with how human memory works. Previous work
uses frequency count to represent the user expertise with an
item and is insufficient to capture the profound aspects of
human short-term memory such as the forgetting effect.

We also found the degree of how much the current
performance relies on the past experience differs for the
different menu organizations. As shown in Figure 6, such
sequence dependency has the largest effect on unordered
menus and less effect on semantically or alphabetically
organized menus. We speculate that this is because
semantic and alphabetic menus provide additional cues for
users to locate an item, which result in less dependency on
memory for completing the task.

DISCUSSION & FUTURE WORK
LSTM has been extensively used in domains such as
natural language processing (NLP). One major
commonality between interaction tasks and NLP is that they
both are concerned with sequential dependency, which is
manifested as learning effect in interaction tasks. But unlike
a standard NLP problem that deals with a sequence of
words (tokens), each step in our selection task involves
visual search and acquisition of the target in the percept of
the menu UI with various attributes, which cannot be
simply treated as a token. We designed the model
architecture based on LSTM to capture this unique aspect
of interaction tasks. The memory cells in LSTM is to
simulate human short-term memory that is updated when
the user performs each selection task. The execution of a
task trial is simulated by another LSTM where visual search
and motor control are captured. We found the memory
capability is important for modeling human performance
and our early exploration with a feedforward neural net did
not yield good performance.

There are several advantages for using a deep learning
approach for human performance modeling. Creating an
effective analytical model requires a lot of domain
expertise, including perception, motor control and decision
making. Manually combining different performance
components is hard to scale as more and more factors are
involved in a realistic interface. In contrast, a deep learning
approach is easily extensible for incorporating new factors
as long as they are manifested in the data. Our model,
which employs two hierarchically organized recurrent
neural nets, is highly extensible to incorporate additional UI
and task attributes.

That said, analytical models are easier to understand than a
deep learning model. In fact, it has been a general challenge
for the interpretability of deep learning models although
they offer superior accuracy performance. In this work, we
analyzed how human learning effects are captured and
mimicked by a deep model (see Figure 6), and how the

learning effect differs across different menu organizations.
The Jacobian responds differently for different menu
organizations, which reflects memory effect as manifested
from the data. These findings can advance our
understanding about how human behaves thus may inspire
others to design new analytical models to capture these
effects. Thus, rather than using deep models only for
predictions, the deep learning approach can be seen as a
vehicle to discover new patterns about human behaviors to
advance analytical research.

There are several directions for future work. It is worth
examining the analytical findings about the memory effects
on different menu organizations by conducting further user
experiments. In addition, there are opportunities to extend
our model for multilevel analysis of interaction by
considering finer-granularity behaviors such as the mouse
and gaze path of users in selection tasks. This has the
potential to provide new insights on visual search in menus
and the coordination between gaze and hand movements.

CONCLUSION
We presented a deep learning approach for modeling user
performance for menu selection, a dominant task in modern
interfaces. Our model is highly extensible. It can
accommodate various UI aspects without changing the
model architecture or using extensive domain knowledge. It
outperformed a previous method on predicting performance
time based on a public dataset and a large-scale smartphone
dataset. We discussed an analysis of the model behaviors,
which revealed new findings about how past experience of
the user has an influence on the user performance with
regard to different menu organizations. We contributed a
set of knowledge and technical details about how to design,
train and analyze a deep model for performance modeling.

Figure 6. The Jacobian of our deep net indicates how the

time performance for selecting a target item is affected by
the past experience for selecting the item, in response to

different menu organizations. The X axis is the trials in the
sequence and the Y axis shows the magnitude of the

derivative, i.e., the impact.

REFERENCES
1. Bahdanau, D., Cho, K., and Bengio, Y., Neural

Machine Translation by Jointly Learning to Align and
Translate. ICLR 15: International Conference on
Learning Representations, 2015.

2. Bailly, G., Oulasvirta, A., Brumby, D.P., and Howes,
A. Model of visual search and selection time in linear
menus. Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. 2014. 3865-
3874.

3. Bi, X., Li, Y., and Zhai, S. FFitts Law: Modeling
Finger Touch With Fitts’ Law. CHI 2013: ACM
Conference on Human Factors in Computing Systems.
2013.

4. Byrne, M.D., ACT-R/PM and menu selection:
Applying a cognitive architecture to HCI. International
Journal of Human-Computer Studies, 2001. 55(1): p.
41-84.

5. Card, S.K., Moran, T.P., and Newell, A., The
keystroke-level model for user performance time with
interactive systems. Communications of the ACM,
1980. 23(7): p. 396–410.

6. Chen, X., Bailly, G., Brumby, D.P., Oulasvirta, A., and
Howes, A. The Emergence of Interactive Behavior: A
Model of Rational Menu Search. CHI'15: ACM
Conference of Human Factors in Computing Systems.
2015. 4217-4226.

7. Cockburn, A., Gutwin, C., and Greenberg, S. A
predictive model of menu performance. Proceedings of
the SIGCHI Conference on Human Factors in
Computing Systems. 2007. 627-636

8. Fitts, P.M., The Information Capacity of the Human
Motor System in Controlling the Amplitude of
Movement. Journal of Experimental Psychology, 1954.
121(3): p. 381-391.

9. Graves, A., Supervised Sequence Labelling with
Recurrent Neural Networks. Studies in Computational
Intelligence. 2012: Springer.

10. Halverson, T. and Hornof, A.J., A Computational
Model of “Active Vision” for Visual Search in
Human–Computer Interaction. Human-Computer
Interaction, 2011. 26(4): p. 285-314.

11. Hick, W.E., On the rate of gain of information. Journal
of Experimental Psychology, 1952. 4(1): p. 11-26.

12. Hochreiter, S. and Schmidhuber, J.u., Long Short-Term
Memory. Neural Computation, 1997. 9(8): p. 1735-
1780.

13. Kaptelinin, V. Item recognition in menu selection: the
effect of practice. CHI '93 INTERACT '93 and CHI '93
Conference Companion on Human Factors in
Computing Systems. 1993. 183-184.

14. Kieras, D.E. and Meyer, D.E., An overview of the
EPIC architecture for cognition and performance with
application to human-computer interaction. Hum.-
Comput. Interact., 1997. 12(4): p. 391-438.

15. LeCun, Y., Bengio, Y., and Hinton, G., Deep learning.
Nature, 2015(521): p. 436–444.

16. MacKenzie, I.S. and Buxton, W. Extending Fitts' law
to two-dimensional tasks. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems.
1992. 219-226.

17. Martín Abadi, P.B., Jianmin Chen, Zhifeng Chen,
Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay
Ghemawat, Geoffrey Irving, Michael Isard, Manjunath
Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore,
Derek G. Murray, Benoit Steiner, Paul Tucker, Vijay
Vasudevan, Pete Warden, Martin Wicke, Yuan Yu,
Xiaoqiang Zheng. TensorFlow: A system for large-
scale machine learning. 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
16). 2016. 265-283.

18. Nair, V. and Hinton, G.E. Rectified Linear Units
Improve Restricted Boltzmann Machines. ICML:
Proceedings of the 27 th International Conference on
Machine Learning. 2010.

19. Näsänena, R., Ojanpääa, H., and Kojob, I., Effect of
stimulus contrast on performance and eye movements
in visual search. Vision Research, 2001. 41(14): p.
1817–1824.

20. Pennington, J., Socher, R., and Manning, C.D. GloVe:
Global Vectors for Word Representation. 2014.

21. Sears, A. and Shneiderman, B., Split menus:
effectively using selection frequency to organize
menus. ACM Trans. Comput.-Hum. Interact., 1994.
1(1): p. 27-51.

