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ABSTRACT
This paper presents a novel mathematical model for visual
search and selection time in linear menus. Assuming two
visual search strategies, serial and directed, and a pointing
sub-task, it captures the change of performance with five fac-
tors: 1) menu length, 2) menu organization, 3) target posi-
tion, 4) absence/presence of target, and 5) practice. The novel
aspect is that the model is expressed as probability density
distribution of gaze, which allows for deriving total selec-
tion time. We present novel data that replicates and extends
the Nielsen menu selection paradigm and uses eye-tracking
and mouse tracking to confirm model predictions. The same
parametrization yielded a high fit to both menu selection time
and gaze distributions. The model has the potential to im-
prove menu designs by helping designers identify more ef-
fective solutions without conducting empirical studies.

Author Keywords
Linear menus; User Performance; Mathematical predictive
models; Visual search; Eye-tracking.

ACM Classification Keywords
H.5.2. Information Interfaces and Presentation (e.g. HCI):
Miscellaneous

INTRODUCTION
Menus are used on numerous applications and systems for
presenting, organizing, and selecting commands. However,
designers reportedly struggle with menu design [5]. While
many research papers focus on novel interaction techniques
(e.g. [38]), and others on human factors (e.g. [6, 9, 32,
33, 36]), surprisingly few develop predictive models of users’
performance with menus [7, 8, 10, 12, 14, 16, 21, 28]. Pre-
dictive models are an efficient way of encapsulating scientific
knowledge. They synthesize phenomena that are typically
fragmented across several studies, and they capture subtle in-
teractions among multiple factors in an empirically verifiable
form. They can help designers to design more efficient menus
by informing choices without expensive empirical studies.
Once matured enough, models can be incorporated into in-
teractive design tools [5, 16, 25].
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Models of menu performance can be divided into two cate-
gories: cognitive simulations and mathematical models. Sim-
ulation models such as ACT-R models [3, 8] and EPIC mod-
els [19, 21, 27] explain the progression of search by reference
to underlying cognitive processes, such as perception, atten-
tion, and memory. Mathematical models such as the SDP
model [12, 14] are nonlinear regression equations that pre-
dict selection time as a function of external factors such as
menu length, target position and practice. These models ex-
pose fewer details about the process but may be less complex
and more straightforward to apply.

Our goal is to advance the scope and validity of mathematical
models of linear menus, a widely used menu type in desk-
top applications and consumer electronics. We assume that
tasks, including both searching and pointing, are performed
using one of a number of strategies. In practice, the strat-
egy space for perceptual/motor tasks, even very simple ones,
is known to be large [23, 39] but here we explore a few key
points in the space. We focus on two searching strategies: 1)
Directed search makes use of knowledge, including knowl-
edge of locations acquired through practice, alphabetic and
semantic knowledge, to programme saccadic eye movements
that jump to the vicinity of the target location or directly to its
location. 2) Serial search starts with the first menu item and
moves from one item to the next until the target is located
or the menu is exhausted. In practice a user would combine
elements of these strategies depending on the reliability of
available of knowledge. For example, directed search might
be combined with serial search in proportion to the reliabil-
ity of location memories and the available relevance scores.
In some situations location knowledge will be highly reliable
and in others it will be the relevance scores that are more re-
liable. Finally, 3) we also explore two pointing strategies:
Find-and-point and Track-and-point.

In our current model these strategies are expressed as prob-
ability distributions of gaze. A distinct advantage of this
model formulation is that it allows deriving both distributions
for gaze points on the menu as well as selection time from
the same parametrization. These predictions can be checked
against eye tracking data.

To parametrize and evaluate the model, we collected an ex-
tensive dataset. Although the constituent processes of menu
selection have been heavily studied in psychology, the menu
selection task has been hard to study for the purposes of
modeling. Multiple factors must be controlled, the apparatus
like eye-trackers are complex, and the studies must be long
enough to gauge practice effects. Our model is informed by



a study that replicates and extends the Nielsen [36] menu se-
lection task in order to cover more factors. The experimental
design controls 1) menu length, 2) menu organization, 3) tar-
get position, 4) absence/presence of target, and 5) practice.
These factors were chosen to extend the coverage of mod-
eling to a larger number of empirically reliable findings re-
ported in the literature. Particularly important is the effect of
menu organization, which we cover with three frequent lay-
outs: alphabetical, semantic, and unordered. Moreover, we
reveal a last item effect: items that are positioned toward the
end of the menu are faster to select. The data confirms some
existing findings and yields new observations of subtle inter-
actions among the factors that our model tries to capture.

GOALS AND RELATED WORK
In our view, an ideal predictive model covers phenomena
which are replicated, shown to bear large effect sizes, con-
cern features that designers can affect, and are widespread in
real designs. We visited empirical findings on linear menu
search and gathered a list of six phenomena which serves as
the goal for our modeling efforts. We review them and dis-
cuss what is left out of our model due to this scoping. We also
briefly review how existing models address these phenomena.

Menu Performance Phenomena
1. Menu length: Users are faster at searching menus with
fewer items [2, 9, 36]. More precisely, search time to the
same target position increases as the number of items in the
menu increase. This effect can be explained by the fact that,
on average, it will require more time to localize a random
target in a longer menu [1, 14, 21, 38].

2. Menu organization: The organization of items in the
menu affects selection time. In particular, semantic and al-
phabetic organizations of items are faster than unordered lay-
outs [10, 18, 32, 33]. This is explained by learning in visual
search: experienced users learn to skip items in the menu.
The relationship between alphabetic and semantic organi-
zation is more nuanced. For targets with unknown labels,
semantic organization is faster than alphabetic organization
[32]. However, for target with known labels the evidence is
mixed: One study found no difference [32], but two others
suggest that alphabetic is faster [10, 33].

3. Target position: Users are faster at selecting targets that
are closer to the top of the menu [9, 14]. This effect is large
and only partially explained by pointing time. Visual search
strategies can explain the effect [37]: Users can follow a se-
rial search strategy, reading items one by one from the top
of the list until reaching the target [9, 21, 29]. Users can use
a mix of serial and random search (with or without replace-
ment) [20, 21]. In both cases, search time is a linear function
of target position. Moreover, the second item can sometimes
be faster to select [8, 9]. Finally, we will reveal below that
items that are positioned toward the end of the menu are faster
to select (Fig. 2). We call this phenomenon last item effect).

4. Absent target: Scanning a menu that does not contain
the target takes longer than scanning one with it. This can be
explained by exhaustive visual search: Novice users have to
scan all items to ensure the target is absent.

5. Practice: Performance improves with more experience
with the same menu [14, 26, 40]. One explanation is that
when the layout is stable, users remember the location of
items and can directly glance at them [40]. Moreover, three
studies [10, 32, 33] show that the effect of organization dis-
appears with practice [8].

6. Mouse control: Users mainly exhibit two strategies to co-
ordinate its movement with the eyes: 1) a single move once
the target item has been located by visual search and 2) the
tracking strategy where the cursor trails the eye gaze [9]. The
latter one decreases time and the contribution of pointing, be-
cause the cursor is already closer to the target. The mouse
cursor can also be used to tag an item while the eyes are free
to move elsewhere and access additional knowledge [15].

Our decision to focus on these effects leaves out some other
phenomena for future work. One such effect is naming:
Item labels that are clearly associated with the target goal
are quicker to localize [6, 33]. Another one is distractors:
Searching for a number among letter distractors is faster than
searching for a letter [2]. The density of items impacts also
visual search [17, 35]. Related to this is the saliency effect:
Items that are salient in terms of color or size can be easier
to localize. We believe that our scope is justified on the basis
that all six effects have been replicated and bear large effects.

Overview of Previous Models
The main difference between mathematical and simulation
models is that the latter have a richer description of visual
search strategies and assume it to dominate total selection
time. Our goal is to incorporate their findings to a mathe-
matical model.

Mathematical models: The models pre-dating the SDP
model assume a linear relationship between item position and
search time [28]. The SDP model (Search-Decision-Pointing)
[12, 14] is a regression model using four variables and seven
parameters to predict total selection time. Contrary to the
simulation models, it has only a random model of search and
it places more emphasis on decision and pointing time. The
four predictors are: Number of items, item frequency, spatial
consistency and item position.

SDP covers some of the phenomena mentioned above: 1)
the Search component predicts that the time to localize an
item increases linearly with the number of items in the menu.
However, the position effect is only explained by pointing
time, not by localization time. 2) The Decision component
predicts that the time to decide among items depends on the
“entropy” of their relative frequencies in previous selections.
It is given by the Hick-Hyman law. 3) The Pointing com-
ponent is based on Fitts’ law [30] and predicts that items
closer to the top are faster to select. Furthermore, mouse
movement starts after search. 4) Finally, an expertise scalar
modulates the components by the number of repetitions with
an item. With practice, performance shifts from being dom-
inated by search (linear) to decision (logarithmic). 6) The
model includes a scalar “predictability” variable (1: unchang-
ing, 0: constantly changing order) that predicts a detrimen-
tal effect of spatial consistency. With these assumptions, the



SDP model has been extended to scrolling lists and hierar-
chies [12], square and circular layouts [1] and interaction with
constrained devices [13].

Simulation models mainly refer to visual search as the ex-
planatory factor for the above effects. EPIC (Executive Pro-
cess Interactive Control) [27] consists of a production-rule
cognitive processor and perceptual motor peripherals. Their
execution is limited by temporal and capacity limitations
posed by the cognitive infrastructure [19, 21, 22]. Four strate-
gies are distinguished for menus [21]: serial search (one
menu item processed at a time), parallel search (many items
processed at the same time), random search, and systematic
search. The last two are combination of the others. Data sug-
gested that parallel search with both random and systematic
search matched well observed data.

ACT-R/PM [8] extends ACT-R [3], which is also a produc-
tion rule architecture. It differs from EPIC in the details of
the visual search process [35]. ACT-R/PM posits a system-
atic, top-to-bottom search with eye fixations on menu items
that share features with the target item [3]. In constrast, EPIC
posits a 50/50 blend of random and systematic search with
eye fixations determined by the number of menu items vis-
ible in the fovea. However, a study found that neither EPIC
nor ACT-R is a good characterization users’ behavior [9]. The
assumptions concerning mouse movements also differ. EPIC
predicts, similar to SDP, that there is a single aimed mouse
movement from the initial position to the target item once the
target has been located. Timing of this movement should be
governed by Fitts’ law [30]. ACT-R, on the other hand, pre-
dicts that the mouse should “trail” the eyes such that once the
target is located, there is an approximately constant and short
distance to the target. This predicts multiple mouse move-
ments that are correlated with the number of eye movements.

MODEL OVERVIEW
The model has four input variables: target position (1-16),
menu length (8-16), menu organization (unordered, alphabet-
ical, semantic), and number of previous encounters with the
item (1-12). The model is in a mathematical form that allows
deriving both total menu selection time and gaze distribution.
The assumption is that the total time to select an item con-
sists of time spent in two consecutive subtasks–search and
pointing–and both are affected by learning (Figure 1):

• Search uses the recruitment of eye gaze and memory recall
to identify the position of the target in the menu by scan-
ning it. We follow previous simulation models [20, 21] and
assume two search strategies:

– Serial search consists of top-to-bottom reading of
items that, with practice, allows more skipping. This
is modeled as a uniform distribution from the begin-
ning of the menu to the target.

– Directed search consists of a direct attempt at moving
the eyes on top of the target. At first such attempts are
random, as the user tries to guess the location, but with
more exposure they become more accurate. We model
directed search as a normalized Gaussian distribution
centered on the target.

Figure 1. We predict total selection time as a gaze distribution that is the
sum of three components: Serial search, Directed search and Pointing.

• Pointing: After localizing the target, the target is selected
by pointing. Pointing time is modeled with Fitts’ law, like
in previous models. However, like [8], we assume two
starting locations of the cursor: 1) the first at the top of the
menu, 2) the other from a constant distance in the vicinity
of the target (trailing).

• Learning: Our learning model is a power law of practice
model [34] which is parametrized for each search compo-
nent. The negative exponential form of the law implies
that largest gains are achieved in the first repetitions, and
the gains diminish rapidly after that.

Total Selection Time
Total selection time T is the sum of time spent in serial search
Ts, directed search Td, and pointing Tp:

T (✓) = Ts(✓) + Td(✓) + Tp(✓) (1)

where ✓ = (l, t, P ) is a vector containing the four input vari-
ables: length of the menu l, position of the target t, and a vec-
tor giving the number of previous encounters with the items
in the menu P (practice).

An original aspect is to explain where (e.g., on which item)
the eyes spend time. The total time for selecting target t is
the sum of the gaze time required for each item i of the menu.
The relationship between total time and the gaze distribution
for each component is:

T (✓) =
1

R

i=lX

i=0

Gs(i, ✓) +Gd(i, ✓) +Gp(i, ✓) (2)

where Gs, Gd, Gp estimate the numbers of gaze points (se-
rial, directed, and pointing) captured using an eye-tracker
with a sampling rate of R. In our studies, R = 50Hz.

Serial search
Serial search refers to the top-to-bottom inspection of items.
Items after the target are not visited. With practice, users not
only skip more items but also spend less time on each visited
item. For this reason, the number of gaze points on each item
in a menu is not constant but decreases as a function of rep-
etitions. The number of gaze points for i when looking for
target t is:

Gs(i, ✓) =

⇢
as ⇥ exp(�bs ⇥ pi) + cs if i  t

0 otherwise
(3)



where as, bs, cs are the parameters of the learning model,
while pi is the number of previous encounters with item i.

Directed search
In directed search the user tries to glance directly at the target.
Attempts are initially more random, but the spread of gaze
distribution decreases with more repetitions. As experienced
users have memory about the general location of the target,
they can glance at the neighborhood of the target and, even-
tually, directly move the eyes to it [11]. As in serial search,
we assume that experienced users also skip more items and
spend less time reading them than novices.

We thus model this distribution of gaze with a normal distri-
bution centered on the target item t. Probability for item i in
the menu is given by its probability density function  t,�2

d
(i)

modulated by the power law of learning:

Gd(i, ✓) =  t,�2
d
(i)⇥ (ad ⇥ exp(�bd ⇥ pi) + cd) (4)

where �d is the standard deviation reflecting the spread of the
search area. ad, bd and bd are the empirical parameters of the
learning model. Note that the sum in Eq. 2 ranges from the
first item to the end of the menu (i 2 [1, l]), but not longer,
because we assume that users only search inside the menu.

The spread �d reflects the accuracy of memory-directed
search and depends on the number of previous encounters pt
with the target. The amplitude of the distribution reflects the
amount of time spent in the search area and is affected by
the power law of practice. We assume that the spread �d is
also affected by menu length: Longer menus have more un-
certainty and users are more likely to visit more items:

�d(i) = l ⇥ a� exp(�b� ⇥ pi) + c� (5)

where a� , b� and c� are the parameters of the learning model.
Note that two learning components affect the gaze distribu-
tion: The first affects the tendency to engage in directed
search (amplitude), the second the accuracy of perceptual
memory (spread).

Pointing
Pointing is the time the eyes spend on the target to make the
selection after it has been localized. The pointing time is pre-
dicted by Fitts’ law [30]:

Tp = a+ b⇥ log2(1 + ID) with ID =

D

W
(6)

where ID is the index of difficulty. In our model, Dt is the
distance from the cursor position to the target position when
starting the pointing task. Evidence [9] suggests that the cur-
sor sometimes trails the eye gaze and can be in the vicinity of
the target when this one is localized. However, the distribu-
tion of these two strategies (starting from the top vs. starting
in the vicinity) is not known. The average distance Dt is thus
defined with a weighing parameter ↵:

Dt = ↵⇥ dt + (1� ↵)⇥ d0 (7)

where ↵ reflects the relative usage of the two strategies; dt =
t ⇤ W is the distance from the top of the menu to the target

and d0 the distance from the cursor to the gaze when using
the trail strategy. We assume that d0 = 0.

Tp = a+ b⇥ log2(1 + ↵⇥ t) (8)

We can thus estimate Gp. However, to account for the fact
that users can see 2-5 items in the neighborhood of the gaze
point, we revisit the equation 8. We add a normal distribution
 t,1.1(i) that covers the dispersion of gaze in the items around
the target:

Gp(i, ✓) = ap + bp ⇥ log(1 + ↵⇥ t)⇥  t,1.1(i) (9)

where  t,1.1 is a normal distribution centered around the tar-
get t with a standard deviation equal to 1.1. This reflects that
95% of the gazes are in the users’ (extended) fovea.

Absent items
We also provide a simple model for deciding that an item is
not in the menu. We assume that search time here only de-
pends on menu length. If users do not know the menu content
(p = 0), they inspect all items. They then become quicker at
detecting missing items. The model is:

Ta(✓) = aa ⇥ exp(�ba ⇥ Pa) + cm (10)

where aa, ba, ca are three components of the learning model.
We expect here having a large ba reflects that users quickly
acquire knowledge about absent targets.

DATA COLLECTION
The experimental design is based on and extends Nielsen
[36]. In the experiment, a label is shown and the participant
must click the corresponding item as quickly as possible. Dis-
tinctive properties of the method include:

• eye fixation and mouse movement data are collected to un-
derstand visual search and pointing behavior (cf. [9])

• item selections are repeated multiple times to understand
practice effects

• three different organizations of the items are included (un-
ordered, alphabetical, semantic).

Participants, Apparatus and Setup
Twenty one participants (13 females), ages 18 to 26 years
(mean=21.1, �=3.54), were recruited by email list advertise-
ments, and paid 45 euros for participation. All participants
had normal or corrected-to-normal vision, were familiar with
WIMP interfaces, and used menus regularly.

The experiment was conducted on a windows PC and a 20
LCD display at 1280x960 resolution. A traditional optical
mouse was used. All Participants used the same sensitivity
and acceleration of the mouse.

We used an 1750 Tobii eye-tracker. The sampling data rate
is 50Hz (raw eye movement data points every 20 ms); the
latency was 20ms and the spatial resolution is 0.25 degrees
(0.19cm on the screen) while the height of an item is 0.75 cm.
The distance of the users’ eyes from the screen was 65cm. It
means that participants can simultaneously focus on 3 items
if we consider a fovea of 2 degrees.



Experimental Design
The experiment used within-subjects design with four inde-
pendent variables: Menu length, Menu organization, Prac-
tice, and Target location as the main factors. Menus contain
8, 12 or 16 items that are common menu lengths in current
applications [31]. We tested three menu organizations: Un-
ordered, Alphabetical and Semantic organization. In the se-
mantic organization, logical groups contained 4 items for all
menu lengths. 4 items were chosen because it is the average
number of items per logical groups according to [4]. Log-
ical groups were separated by an horizontal line (separator)
like traditional linear menus. To investigate the impact of
practice, participants carried out 12 blocks per menu. Each
item is selected the same number of times. Additionally, we
added a missing item in each block. The order of menu length
as well as menu organization was counter-balanced between
participants. Participants searched one menu organization per
session. Menu length was counter-balanced between menu
organization. For each layout, participants performed at least
4 blocks. Finally, the order of items was randomized within
block. In summary, we have: 22 participants x 3 Menu con-
figurations x 3 Menu Length x 12 blocks (depending on menu
length) x (8-12-16 items) = 39,564 selections.

Task and materials
The task consists of selecting the target as fast as possible.
Each trial starts with a single button on the screen. As soon
as the cursor enters in the button, the stimulus (label of the
target item) appears just above the button (to avoid possible
occlusion). The selection task started as soon as participants
pressed the button. The label then disappears and the menu
appears. The task finishes when participants activate the cor-
rect target and then the menu disappears. In the case of miss-
ing items, it finishes when participants press the space bar.

We identified several kinds of stimuli in the literature on
menus: the explicit target name, a synonym, the definition
of the target or an icon [6, 33]. In this experiment, we used
the explicit target name to avoid confound effect.

The same set of items was used for each menu organization.
The set of items was changed for each menu length. The set
of words that we used is a subset of the list that can be found
in [18] with minor modifications: no items in the menu have
more than 3 letters length difference. This modification was
used to reduce potential saliency effects.

To assess the validity of semantic groupings, seven partici-
pants were asked to rate the semantic relatedness (0 to 100)
of 120 pairs. Item-pair order was scrambled and the respon-
dents did not know if they originated from a semantic menu
or not. We found that items that are in the same semantic
group had average relatedness of 44.4 (� = 26.0) whereas
other items had 16.0 (�=10.0). A two-sample unequal vari-
ance t-test found this difference to be statistically significant,
t(47) = �6.828, p < 0.0001.

Procedure
After introduction to the task, the eye tracker was calibrated.
During the experiment, participants took a break every 50 se-
lections. We forced the minimum duration of the break to

1 minute to avoid fatigue. Breaks between conditions were
used to re-calibrate the eye-tracker. The experiment was split
into 3 sessions of 90 minutes each. The time between two
sessions was from 0 to 7 days depending of the schedule of
the participants. Participants were instructed to select items
as fast as possible. They were not instructed about the layout
and the length of the menu they will use. Finally, before the
experiment, participants performed a calibration task consist-
ing of selecting a target in a menu with a single item.

RESULTS
To preprocess the data, we removed trials in which selection
times were greater than 3 SDs from the mean and trials in
which the participant did not correctly select the target on
the first attempt. Using these criteria, 3.83% (1,515 out of
39,564) of trials were excluded. In all subsequent analysis,
one block has 3 repetitions.

Inferential statistics
To gain an overview of the data we carried out a series inde-
pendent Organization ⇥ Practice ⇥ Target position ANOVAs
on the selection time data. Table 1 provides a summary of the
results of this analysis. To simplify our discussion, we focus
on the effects that the experiment was designed to replicate
and extend: (1) practice effect, (2) target position effect, (3)
absent target effect, (4) menu length effect, and (5) menu or-
ganization effect. These effects are shown in Figure 2.

Practice effect. Table 1 shows that there was a consistent ef-
fect of Block, reflecting that users became faster at locating
the target with repeated practice at searching the same menu.
Table 1 also shows that there were significant interactions be-
tween Block and the other factors.

Target position effect. There was a robust effect of Target po-
sition on search time (see Table 1). To understand this effect,
Figure 2 plots selection time as a function of target position
for different menu lengths for the first (2-a) and last block
(2-b) of trials. It can be seen that during the first block, se-
lection time tends to increase with target position. By the last
block of trials, this target position effect has decreased (i.e.,
the curve has flattened).

Absent target effect. Recall that on some trials the menu did
not contain the target (an absent target trial). On these trials
the participant had to press the space bar to indicate that it
was absent. Response times are shown in the Figure 2a -b (at
0 on the x-axis). It can be seen that participants were initially
very slow at making these absent target decisions during the
first block of trials (particularly for 12- and 16-item menus).
By the last block of trials, participants were very quick at
indicating when there was an absent target.

Length Organization
(O)

Practice
(P)

Target
(T) OxP OxT PxT OxPxT

8 ** *** *** n.s. *** * **
12 *** *** *** *** *** *** n.s.
16 *** *** *** *** *** *** *

Table 1. Summary of main effects and interactions for search time data.
Note: * p < .05, ** p < .01, *** p < .001
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Figure 2. The effects of target position (left panels) and organization, and practice interaction (right panels) on selection time.

Menu length effect. The data replicate Nilsen’s menu length
effect: selection times were longer for targets in a given posi-
tion when the menu contained more items. To test this effect,
we performed a Length ⇥ Organization ⇥ Practice ⇥ Target-
position ANOVA on a subset of the data: trials in which the
target was in position 1 to 8. As expected, there was a signif-
icant main effect of menu length, F2,40 = 70.44, p < .001.
However, there was also a significant Length ⇥ Block inter-
action, F6,120 = 8.84, p < .001. With practice, the effect
decreases from the first to the last block (Figure 2a b).

Menu organization effect. Figure 2c d shows the menu or-
ganization effect. Participants were faster at selecting targets
when the menu had either an alphabetic or semantic organiza-
tion compared to when it had an unordered organization. Re-
flecting this observation, statistical analysis shows that there
was a consistent main effect of menu organization across (see
Table 1). There was also significant organization ⇥ block in-
teractions for the longer 12-item and 16-item menus. As can
be seen in Figure 2, these interactions reflect that with prac-
tice the menu organization effect diminished.

In contrast with the Nilsen experiment, we observed a last
item effect: Items that are positioned toward the end of the
menu are faster to select. It is the opposite of what would be
expected by the Fitts’ law. We return to this effect later in the
paper and show that our model explains this effect as well as
the previous effects and their interaction with practice.

Observations of Pointing Strategies
We here report observations for pointing. We return to gaze
distributions in the Modeling section.

The model of pointing in Eq. 9 assumes that there are two
strategies of mouse control and the proportion of these is reg-
ulated by the parameter ↵. Figure 3 shows two examples of
cursor controls for the same target position: on the left trail-
ing behavior, on the right the single move behavior. To better
understand cursor control and to derive ↵, we looked at the
position of the cursor upon localizing the target. To identify
this moment, we used a simple heuristic: we assumed local-
ization to take place at the beginning of the last fixation to
the target item (Figure 3). This estimate is conservative, be-
cause it does not take into account the time needed to identify
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Visual Search Pointing

Figure 3. Two cursor control strategies for selecting the target 13 (dark
grey). Left: The cursor (solid) trails the eyes gaze (dash). Right: A single
mouse move when the target has been localized.
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Figure 4. Proportion of three cursor movement strategies: trailing (on
the target +/- 0.5 items), single move (top of the menu; +/- 0.5 items), and
intermediate (between).

the target. Figure 4 shows the relative proportion of mouse
strategy according to the target position. Data confirm our as-
sumption that pointing and search are not always sequential.

MODELING
In this section, we estimate parameters and report model fit.
Unlike previous models of menu selection, our approach al-
lows assessment at three levels of granularity: Selection time
for menu, Selection time for targets, and Gaze distribution.
We used trials containing no missing gaze data (85% of the
trials). This is important because we derive selection time
from the gaze distribution (integration). Two participants
were removed due to incompatibility with the eyes tracker
(less than 65% of valid trials). It results in 19690 trials aggre-
gated between participants.



Parameter Estimation
The model consists of 4 independent variables. For each
menu organization, we have 12 parameters, 5 of which are
shared by all menu organizations. Five parameters were esti-
mated by analysis of user performance in selected conditions.
The rest were solved using ordinary least squares (OLS), but
insisting on theoretically sound value ranges. Note that we
assume that both visual search strategies depend on menu or-
ganization: Unordered (U), Alphabetic (A), Semantic (S) [10,
18, 32, 33]. The parameters of Eq. 3, 4, 5 are thus fitted sep-
arately for each menu type.

Serial seach: Parameters as and bs were obtained by OLS.
For the three menu types, this yielded as =[U: 2.04; A: 1.48;
S: 1.05] and bs =[U: 0.15; A: 0.07; S: 0.09]. Second, we
assume cs is the same for every menu. This reflects the ob-
servation that an expert user can directly glance at the target
regardless of the menu organization. We estimated cs based
on our Fitts’ law calibration task to be cs = 0.2. Notice that
all parameters (as, bs, cs) are positive, describing that users
abandon serial search with practice. We also note that they
spend more time in serial search with the unordered menu
(a = 2.1) that with the two other organizations [1.48, 1.05].

Directed search: The two parameters ad =[U: 4.83; A: 4.28;
S: 4.36], bd =[U: 0.03; A: 0.03; S: 0.03] of the power law of
practice, as well as the three describing the spread of directed
search, �a =[U: 0.14; A: 0.14; S: 0.27], �b =[U: 4e-9; A: 1e-
9; S: 5e-9] and �c =[U: 1.2; A: 1.5; S: 1.24], were obtained
using OLS. That all parameters are positive reflects that not
only users spend less time on each item but they also reduce
the search area. Additionally, bd, �b and �b are very similar
whatever the menu organization indicating that the organiza-
tion only impacts the initial amplitude and the initial size of
search area. Finally, cd = cs = 0.2.

Pointing: We used data from the Fitts’ law calibration task to
estimate the parameters of Eq. 9 as ap = 10.3 and bp = 4.8.
We consulted Figure 4 to set ↵ = 0.4. These parameters are
organization-independent.

Absent target: We used OLS on the data of absent items
and set the parameters to: am = 3.75, bm = 1.14, and cm =

23.8. We assume these parameters to be independent of menu
organization, because every item is read.

Pre-search gaze
Figure 5 shows deployment of gaze on the stimulus before
searching the menu. This occurs because users in the study
processed the stimulus even a couple of milliseconds after
having opened the menu. To cover this in the model, we
added a component Pre-search: a normal distribution cen-
tered around the stimulus location (above the menu). It re-
flects the dispersion of gaze around the stimulus. We assume
this component to be constant:

Gpre(i) = apre ⇥  S,�pre(i) (11)

where apre = 6, �pre = 1.0 were defined using OLS. The
two parameters are, respectively, the amplitude of the normal
distribution and the standard deviation (spread). S = �0.5 is
the position of the stimulus.
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Figure 5. Gaze distribution for the target 3 and 11 aggregated across
users. The plot shows that gaze occurs also in the vicinity of the stimulus
(above the menu).

Model Fit
We report fit for three levels of analysis: Selection time for
Menu, Selection time for Target and Gaze Distribution. The
parameter values reported above were utilized for all three
levels. Models fit are based on the whole data set. We also
report at the end of this section a 2-fold cross-validation to
avoid possible overfitting. All predictions for the whole de-
sign of the experiment are given in Supplementary Materials.

Selection time averaged for menu: Empirical data matched
the predictions well for organization, length, and practice,
as shown in Figure 6. Model fit was R2

= 0.95 (pred =

0.93⇥emp�0.01) for Unordered, R2
= 0.89 for Alphabetic

(pred = 1.09 ⇥ emp � 0.09) and R2
= 0.78 for Semantic

(pred = 1.84⇥ emp� 0.74).

Selection time per target: Model fit was R2
= 0.76 for Al-

phabetic (pred = 0.76 ⇥ emp + 0.24), 0.71 for Unordered
(pred = 0.87 ⇥ emp + 0.25) and R2

= 0.61 for Semantic
(pred = 0.43⇥ emp+ 0.54). While the absolute value is in-
ferior to the menu-level prediction, many more observations
must be predicted 1. Figure 7 shows a sample of observed vs.
predicted values for the different conditions. The model pre-
dicts the known effects of target position, menu length, and
practice. It also predicts that selection time does not linearly
increase with target position. More surprisingly, it predicts
the decrease in selection time for the last item (last item ef-
fect). These two last effects can be explained by the Eq. 4,
which models gaze distribution by a normal distribution cen-
tered around the target. When the target is the last in the
menu, the predicted gaze distribution is effectively “cut” for
items after the menu, lowering the total amount of gaze for
that target item. This reflects the observation that users hardly
look at the area below the menu. We also observe a limitation
of our model for the semantic organization. Selection time
increases quickly as a function of target position, especially
for the first block. This can be explained by the serial search
1We reanalyzed Cockburn et al.’s data [14] for selection time per tar-
get. Their fit is at R2 = 0.42 for this task. The analysis was based on
data available at www.cosc.canterbury.ac.nz/

˜

andy/publs/

chi07/.



component. We assumed that users inspect all items from the
top of the menu to the target. We hypothesis that users can
skip more items with the semantic menus by using logical
groups and separators.

Gaze Distribution. This prediction task has 13,800 points
to predict (gaze for each item according to target, length,
organization and practice). However, empirical data match
the model surprisingly well, yielding a fit of R2

= 0.90 for
both Unordered (pred = 0.90⇥ emp+0.05) and Alphabetic
(pred = 0.85 ⇥ emp + 0.40) and R2

= 0.76 for Semantic
(pred = 0.81⇥ emp+0.92). One sample is shown Figure 8.
We provide more examples in Supplementary Materials.

Alphabetic (R2=0.89) Semantic (R2=0.78) Unordered (R2=0.95)

Figure 6. Observed vs. predicted menu selection times by menu organi-
zation, menu length an practice.
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Figure 7. Observed (solid) vs. predicted (dash) menu selection time per
target, organization length for the first and last block
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Figure 8. Actual (solid) and predicted (dash) gaze distribution aggre-
gated accross all participants for the unordered organization at the block
1 (black) and block 4 (grey).

Cross-validation
We performed a 2-fold cross-validation analysis to test the
generalizability of our model. We calibrated the model pa-
rameters on half of the participants and tested it on the others.
The R-squared is still high at the menu level (A: 0.91; S: 0.86;
U: 0.87), target level (A: 0.64; S: 0.52; U: 0.56) and item level
(A:0.85; S: 0.81; U:79).

DISCUSSION
The present paper advances the understanding of menu per-
formance by providing a mathematical model that better ac-
counts for pointing behavior and visual search. It achieves
this by combining assumptions about search and pointing
strategies that have been identified by previous literature but
never modeled in a single model.

We proposed a novel formalization to capture these behav-
iors. Instead of modeling sequences of elementary opera-
tions, like in cognitive simulations, or a linear sum of time
spent in sub-tasks, we model the distribution of gaze. The
benefit is that the area under the curve is an estimate of the
total selection time. Thus, the same model can be used for
predicting both dependent variables. The data support the as-
sertion that modeling visual search distributions is a promis-
ing approach to mathematical modeling of linear menu per-
formance. The predicted distributions not only yield a good
fit but they provide insight into the process of search.

We conclude with a critical appraisal of the model in the
light of six criteria for predictive models by Jacobs and
Grainger [24]:

1. Plausibility: Are the assumptions of the model psycholog-
ically plausible?

2. Explanation: Is the theoretical explanation reasonable and
consistent with what is known?

3. Interpretability: Do the model and its parameters make
sense?

4. Descriptive adequacy: Does the model provide a good
description of the observed data?

5. Complexity: Does the model capture the phenomenon in
the simplest manner?

6. Generalizability: Does the model predict the characteris-
tics of data that will be observed in the future?

Plausibility. We modeled pointing time with Fitts’ law as pre-
viously, but with the additional assumption that the distance
to target depends on the selected pointing strategy. One strat-
egy starts from the top, the other trails the eyes. The two
strategies were included in previous work but never in a sin-
gle model [9]. Visual search was also modeled by assuming
two strategies: serial and directeded search. The direct search
component makes the assumption that search is random in the
beginning of experience, but becomes gradually more accu-
rate. It thus subsumes a model of random search assumed in
previous works (e.g [14]). Unlike the SDP model [14], our
model does not assume a separate component for decision.
More work is needed to understand the role of decision pro-
cesses in menu selection.



Explanation. The model increases our ability to cover impor-
tant design factors by a single model. The model covers the
effects of menu organization, absent item, and target position,
as well as the previously modeled factors of menu length and
experience. The model also describes the“last item effect”
that was not reported in the literature and is counter-intuitive.

Interpretability. Our modeling assumptions come from previ-
ous work. Moreover, the model increases the interpretability
of mathematical models in this area by linking selection time
to gaze. The model makes predictions of gaze distribution
that are verifiable with eye-tracking data.

Descriptive adequacy. The model not only provides a high fit
at the menu level but also at the target and gaze level. This
multi-level approach decreases the risk of over-fitting and bet-
ter describes the collected data. It is the main difference with
previous models.

Complexity. Our model is more complex if measured by
the number of free parameters, but the ratio of parameters
against explained observation points favors our model. A sin-
gle parametrization was used to describe 13800 gaze points,
432 target-level selections, and 36 menu-level selections.

Generalizability. To test the generalizability of our model, we
provided a cross-validation result that were mostly favorable
to our model. However, novel experiments should be carried
out to test generalizability to completely different contexts,
for example including other menu organizations, layouts, etc.

We see two opportunities to develop the model further. First,
more work is needed to cover other common features of linear
menu designs (e.g., icons) as well as more complex menu sys-
tems that include hotkeys, toolbars, and hierarchical menus.
This means that semantic relatedness among items must be
modeled to predict their effect on navigation and exploration
behavior [16]. Second, although we are now better able to
model search strategies, our model only predicts averaged be-
havior. This unfortunately can make the approach “fragile”
to the sample of users. Were the distribution of strategies to
change in the sample, the averaged prediction may not hold.

Future work also needs to consider a more thorough explo-
ration of the strategy space implied by the statistical distri-
bution of menu relevance and the cognitive constraints. For
example, Smith et al. [39] reported a multi-dimensional anal-
ysis of the space of possible typing strategies and showed that
the assumption that people adopt rational strategies can be
used to predict performance. We are currently building a sim-
ilar analysis of menu search that is aimed at revealing the de-
tails of how directed and serial search strategies are combined
depending on (1) the availability and precision of relevance
and location knowledge and (2) the ecological distribution of
relevance and organizational factors in real-world menus.
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