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Agent-based models tend to integrate more and more data that can deeply
impact their outcomes. Among these data, the ones that deal with agent at-
tributes and localization are particularly important, but are very difficult to
collect. In order to tackle this issue, we propose a complete generic toolkit called
Gen* dedicated to generating spatially explicit synthetic populations from
global (census and GIS) data. This article focuses on the localization methods
provided by Gen* that are based on regression, geometrical constraints and
spatial distributions. The toolkit is applied for a case-study concerning the
generation of the population of Rouen (France) and shows the capabilities of
Gen* regarding population spatialization.
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1. Introduction

Agent-based simulations are now widely used by researchers in the social sciences to
study complex systems. Whereas early models tended to be very simple and abstract –
the KISS (Keep It Simple, Stupid) approach (Axelrod 1997) – the current trend is now
towards the development of richer data driven models – the KIDS (Keep It Descriptive,
Stupid) approach (Edmonds and Moss 2005). The motivation behind this is principally
the use of such models as predictive tools in a decision-support context.

In such models, behaviors of social agents (e.g., individuals, households or institu-
tions) are strongly determined by their attributes, well as by their location in the artifi-
cial worlds they populate. In this context, generating synthetic populations of spatially
localized agents that conform to the data available on real populations has become a
necessity and a concern for most social modelers.

Some recent studies have already proposed methods to generate these types of popu-
lations (Harland et al. 2012, Cornelis et al. 2013, Swarup and Marathe 2016). However,
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these methods remain underused because of the difficulty to use them with data that is
not well-formatted: for example, the simSALUD (Kosar and Tomintz 2015) web-based
generator requires input data to fit a template with fixed position columns that describe
attribute IDs, weights, etc. Along the same lines, the SPEW (Gallagher et al. 2017)
R-based generator requires input data to be in form of IPUMS formatted data tables.
Therefore, most attempts to generate localized synthetic populations are limited to em-
pirical cases (Arentze et al. 2008, Barthelemy and Toint 2012) and propose methods with
stringent requirements as to the type, availability and format of the data. Furthermore,
the classical approach considers spatialization of the population in the same way as the
other agent attributes: being a woman or a man is the same as living there or in the
next county. Indeed, the spatial information usually comes from the same source of data:
either censuses or surveys. Yet, this spatial information is generally not precise enough
for many simulation cases. For instance, many residential mobility models work at the
building scale (Antoni et al. 2016), and therefore require a specific building to be assigned
to each household and not just a city or a district. It is thus often necessary to specify
or extrapolate a localization from spatial data. In this case, the problem is not simply to
infer an inner distribution of demographic attributes but to estimate what actually drives
the spatial localization of people. As pointed out by Anderson et al. (2014), obtaining a
reliable population estimation at a given resolution is a significant challenge.

To our knowledge, there has been only one recent attempt to use generic input data
for population generation and localization: the SPEW open source R library (Gallagher
et al. 2017). However, even with this library, a data sample of a portion of the population
from IPUMS is needed in order to generate a reliable synthetic population. Concerning
the localization of the population, SPEW proposes some simple methods to uniformly
locate entities across a region or along roads, but does not allow to take benefits of
multiple layers of information.

To deal with this lack of flexibility, we propose a complete toolkit known as Gen*, which
allows modelers to generate a realistic synthetic population even with not-classically
formatted data and to localize it at the required scale from one or several layers of
geographical data. This toolkit is developed as an open-source Java library. An extension
of the GAMA platform (Grignard et al. 2013) and a Kepler workflow package that make
it possible for non computer scientist to generate a spatially explicit population with
Gen* through user friendly interfaces are available as well. In what follows, we focus on
the the localization features of Gen*.

The article is structured as follows: Section 2 presents the related studies concerning
the spatialization of synthetic populations. Section 3 is dedicated to the presentation of
our toolkit. More precisely, we give an overview of the global architecture of the toolkit,
and we present the spatialization methods. A case-study of the city of Rouen (France) is
described in Section 4. Finally, Section 5 proposes a conclusion and perspectives for this
work.

2. Context

In many agent-based social simulations the geographical environment has to be taken into
account with a granularity that depends on the objectives of the model and the geograph-
ical data available. Simple models can rely on conceptual environments, i.e. continuous or
discrete space. However, applied and descriptive models tend more and more to rely on
GIS data, possibly combining geometrical (shapes and set-relationships among shapes)



and continuous information (location of objects and agents in the underlying continuous
space).

When dealing with GIS data, several methods are classically used in order to integrate
census data that describe the population, but they usually do not generate populations
of agents. Among the approaches available in this case, the census centroid data (Bracken
and Martin 1989) is the most widely used. Dasymetric modeling is also a well-recognized
approach for the spatial decomposition of census data in order to increase the spatial
resolution of the population distribution (Bhaduri et al. 2007). A combination of the
methods described above is often used in an ad hoc manner. This is, for example, the
case in the SVERIGE project (Holm 2002) that aims at modeling the demographic
evolution of Sweden by explicitly modeling (including the localization) each inhabitant
of the country.

Two main steps can be used to address the localization problem: the first one referred
to as Areal interpolation, consists in translating data from aggregated areas to more
precise ones. The second step referred to as Explicit localization, consists in providing
individuals with a precise location, that could be a coordinate (x,y) or a geographical
object (e.g. a building). In the next sub-sections, we review the available methods that
can be used to perform these two steps, and we briefly outline the typical data that are
used by modelers to carry out the localization process.

2.0.1. Areal Interpolation Methods (AIM) and the dasymetric method

Areal Interpolation Methods aim at transferring spatial data from one set of spatial
units to another (Eicher and Brewer 2001). Redistribution of population data from an
administrative unit to a smaller unit (usually a pixel of a grid matching a remote sensing
image) is a particular type of areal interpolation known as ”dasymetric mapping”. This
type of method uses ancillary data to refine the population data originally given at a
coarser level (Li and Weng 2010). Not only can these methods provide users with a
solution to produce more precise population data, but they also make it possible to
reduce the errors resulting from the modifiable areal unit problem (MAUP) (Su et al.
2010).

The redistribution of populations from census units to a finer scale using dasymetric
mapping is a two-steps process. The first step involves the fitting of a statistical model
like a linear regression model (Li and Weng 2005, Reibel and Agrawal 2007) or a random
forest model (Stevens et al. 2015). The second step of the dasymetric process consists
in applying the statistical relationships resulting from the model fitting at the finer
scale. This final step involves some extra normalization processes because of the possible
floating point or negative results from the statistical model.

The use of dasymetric mapping methods requires at least two spatial datasets: one
containing the aggregated population data and one (or more) containing ancillary data
used by the algorithm to disaggregate population data. Original coarse-level population
data are usually vector-based census data representing a set of administrative units (Yang
et al. 2013, Briggs et al. 2007). Ancillary data are usually raster-based datasets resulting
from the pre-processing of remote sensing images Wu et al. (2005). Most studies use
pre-classified land cover data (Reibel and Agrawal 2007, Su et al. 2010). Various kinds
of data can be used, including unprocessed spectral bands (Li and Weng 2005), land
surface temperature data (Li and Weng 2010), elevation data (Su et al. 2010), night light
emission images (Yang et al. 2013), vegetation indexes (Li and Weng 2005), etc. Some
studies have used additional vector data as ancillary data such as road networks (Su
et al. 2010).



2.0.2. Explicit localization methods (ELM)

AIM can help to go deeper into population spatial allocation but is not in any way
a method to provide a location for individuals. It targets the population as a whole or
identifiable subgroups, whereas agent-based simulation requires each individual agent to
be localized. To go even further, ELM propose to localize entities across space, based on
the most precise population density data which can be built from the AIM process or
derived from raw observation data. If no information at all is available, the challenge is
to locate agents in the world by following some specific rules defined by the modelers.

There is no methodology to explicitly determine the localization of agents in a synthetic
population: one must rely on rule of thumb algorithms. In some cases, the localization of
agents is just randomly chosen (Wheaton et al. 2009). In other cases, roads (Gallagher
et al. 2017) or buildings (Zhu and Ferreira 2014, Fosset et al. 2016) could be used with
different spatial allocation techniques.

If most of existing works rely on a ad hoc approach to carry out this localization
process, some of them propose a generic process that can be adapted to different case
studies and data. Amongst them, SPEW proposes three different localization methods
based on the same general approach: use a given probability distribution over a set of
geographical objects (regions, roads...) to sample agents according to this distribution.
The difference between these three methods comes from the used probability distribution
and the type of geographical objects:

• uniformly across a polygon (region)

• uniformly along a polyline (road)

• according to a given spatial distribution of agent locations (weighted polygons or lines).

In addition, as it is sometimes necessary to link agents with spatial objects with which
the agents may interact (schools, workplaces...), SPEW proposes a simple method based
on a gravity model to assign agents to geographical objects.

The methods proposed by SPEW are adapted when few data are available (just a
shapefile of regions or roads), but cannot take benefit of many possible sources of data
that can improve the localization process such as density map, expert knowledge or satel-
lite imagery. In the next section we present our generic proposal to localize a synthetic
population using the Gen* toolkit.

3. The Gen* toolkit

3.1. General architecture

The Gen* library consists of four modules, each one responsible for a portion of the popu-
lation synthesis: gospl is responsible for the population generation, spll make it possible
to localize the synthetic entities of the generated population and, finally, spin allows us
to connect entities to setup a population network. While modules are independent, they
all rely on the core module which defines the higher-order abstraction for populations,
entities, their attributes and associated values. Hence, a synthetic population is a col-
lection of entities made up of identical attributes but each entity has its own vector of
values. Thanks to a common reference to this higher order population definition, the API
architecture provides a way to localize or connect, in any order, entities of any synthetic
population that comply with the interfaces define in core. In the next subsection, we
detail the content of the module that is responsible for population localization.



3.2. Spll: Synthetic population localization library

3.2.1. General scope

Spll make it possible to spatialize a synthetic population defined by Gospl (generated
with the algorithms provided by Gospl or directly loaded from a csv/xlsx file). The
configuration of the population localization is defined through a configuration file that
harmonizes the input data. These data should at least contain a geographic file that
specifies the spatial objects on which Spll will locate individuals. It can also contain
other data such as matching data to provide a link between individuals of the population
and geographic objects, for example the number of people per administrative area. The
user can provide other data that can help the localization process, like land use raster
or road vector file. In addition to the localization of individual, Spll make it possible to
link each agent to a set of geographical objects (workplace, schools...).

Figure 1.: The Spll process to localize a synthetic population. It starts at the right
with one input data (GIS observation) or optional estimated data (AIM) file to feed the
main step: the nesting process. It grants individual entities a unique location based on a
spatial distribution function and spatial constraints encapsulated in a dedicated Linker.
An unlimited number of Linkers can be setup to optionally bound synthetic individual
with spatial objects (dashed arrow)

Figure 1 describes the conceptual process underlying Spll. As illustrated in the dia-
gram, localized populations is achieved through the nesting procedure (center left). This
consists of linking each individual with a nest, i.e. a spatial object in which the individual
will be located, and by defining a location in this nest. We chose to locate individuals in
parameterized spatial objects in order for each user to define the most suitable location
according to the model needs: the nests could be buildings, cells of a raster file or even
just x and y coordinates. In order to help the nesting process, Spll can optionally gen-
erate a contingency map or a density map from different sources of data, either through
raw input data – referred to here as GIS observation at the bottom right – or AIM based
generated data at the center right – using for example linear regression. The main nesting
phase is take in charge by a linker which encapsulate a spatial distribution and spatial
constraints. Those last are constraints based on GIS data: for example, a maximum dis-
tance from which to localize individual along roads or within a given distance from a
point of interest (POI). Spatial distribution is a function that assigns weights to each
nest candidates, and can be setup with GIS data (GIS based observation) and rules to
compute weights, e.g. uniformly or based on the area of spatial object. The linkers can



also be used to bind individual with spatial objects, for example chose a workplace or a
school for an individual agent. Finally, Spll can export the spatialized population in a
GIS file.

3.2.2. Spatializing a synthetic population with Spll

The general localization approach is designed in order to be as adaptable as possible to
all case-studies. Thus, the only mandatory step is the specification of a geographical data
file (vector or raster) to locate the agent inside – i.e. GIS observation. Each individual of
the population will be located in a spatial object defined by this input file. For example,
individuals can be assigned to buildings taken from a building shapefile. If no spatial
object are defined, hence individual will be assigned to the world itself and will have a
precise x and y location in it. Spll provides two ways to improve this input observation
data: individuals matched with areal spaces and estimated disaggregated spatial distri-
bution. In the next two sections, we show how to build those refined observation. Then,
we illustrate how the nesting process works by introducing the spatial distribution func-
tion and spatial constraints. Finally, we describe the ability of spll to link individual
with any spatial object using linkers.

3.2.2.1. Matching population and space. This optional step can help to distribute
each individuals into custom spatial areas. It has two implications: to have a file that
describes some spatial areas as input as well as a means to connect individuals with
these areas. This allocation should yield a population count per spatial object or a key
ID code for the spatial objects to match with individuals. Most of the time, this space
will be administrative areas with either a density or an ID. However, it is not limited to
this case, and can be a raster density file or any other GIS format file with a population
count or pairwise ID. In this latter case, Spll is able to automatically match individuals
and space given that both ID key attributes have been bound in the configuration file.
As an advantage, this procedure allocates actual synthetic individuals, whereas density
allocation only provides a population count. They both end up defining a number of
people per spatial object of a space file and this record can then help for the nesting
phase or for the interpolation process.

3.2.2.2. Areal interpolation. Based on raw observations provided by the previous
matching step, Spll make it possible to further specify areal scale density or count using
any interpolation technique such as regression. Like in the previous matching phase this
interpolation step is optional. The core idea of areal interpolation is to estimate a more
precise spatial distribution using two inputs: first, an observation to be explained, which
will be the densities or the contingencies per area, and second, a set of explanatory data,
which will be spatial objects of finer granularity linked to a numerical or categorical
feature. Therefore, Spll provides several estimation techniques to explain observations
based on provided spatial variables: the result of the algorithm takes the form of a
formula and can then be applied to compute disaggregated areal population density. The
current version of Gen* uses linear regression which is a standard estimation technique
in dasymetric mapping (see section 2.0.1). It does well when coupled with pretreated
land cover or land use data (Li and Weng 2010). On the contrary, when used together
with raw satellite imagery, it performs poorly because numerical band values usually do
not interact linearly with the population allocation (Stevens et al. 2015). To overcome
this problem, we plan to implement other techniques such as the generalized non-linear



regression and other AI-based estimation technique (see section 5).
A major drawback is that the output of areal interpolation techniques is usually in the

form of a floating and possibly negative number. The estimated value should therefore be
normalized to fit the population count, i.e. a positive or null integer. Some computation
procedures have been proposed in the literature to overcome these two issues (Yuan
et al. 1997). First, we chose to upscale values to a given threshold, with a default value
of 0 for the population. We then uniformly reduced other values to return to the original
overall sum as a compensation process. Second, we used a heuristic algorithm to round off
floating values in order to obtain a positive integer. The process iterates over all spatial
objects reducing (truncating) or increasing (rounding off) associated floating values, while
maintaining the absolute difference between the overall sum and the expected overall
population count as close to zero as possible.

At the end, the areal interpolation gives an estimated areal count or density for each
explanatory spatial object. Depending on observation provided by the matching step,
each cell can refer to any individual or a specific set of individual bound to a more
aggregated spatial area. In both cases, the resulting dasymetric map will be used as a
spatial constraint in the linker used by the nesting process.

3.2.2.3. Nesting process. Spll provides a set of algorithms – i.e. nesting process
– to bind spatial objects – i.e. nests – and individuals of the population. The process
is driven by a linker that encapsulate optional constraints and a distribution function.
It also must be initialize using any input data file that describes the nests. When an
individual has been placed into his/her nest, a “location” inside the assigned spatial
object is then computed. In the following paragraphs we detail how Spll link individuals
to spatial objects and provides individuals with a particular location in this nest.

As a minimal requirement, the nesting process needs an input file that describes the
spatial object in which to locate an individual. If this file is the only constraint given to
the algorithm, then each individual of the population will randomly choose a nest among
all the possible ones according to the distribution function. In order to obtain a more
realistic spatialization of the individuals, the user can define spatial constraints to filter
the possible nests. Spll integrates three basic types of spatial constraints: geometric,
contingency and density constraints. The first one is used to bind the spatial objects –
the geometries associated with these objects – and the individuals; while the two others
rely on matching a predefined number or density of entity per nest. If the constraints
do not make it possible to find an appropriate nest, they can be relaxed. More precisely,
for each constraint, a relaxation process can be defined as well as a maximal relaxation
function that defines whether the constraint can be relaxed yet or not.

Geometric constraint specifies that individuals have to choose a nest inside a given
geometry. Typically, this constraint make it possible to link geographic data with
one of the individual’s attributes which is similar to the previous optional match
and binding step. For instance, if we have information about the district where each
individual is living (through a district attribute defined by Gospl for example), this
constraint can be used to restrict the list of possible nests to those located inside
the given district. If there are none inside the reference geometry, the relaxation
will allows the constraint to also include the nests that are close to the reference
geometry. The notion of closeness depends on a distance variable that will increase as
the constraint is more and more relaxed until reaching a given user defined threshold.
A geometric constraint could also be used if we want to specify that an individuals



location should be close to a roads or near a POI like in the SPEW toolkit (Gallagher
et al. 2017).

Contingency constraint specifies the maximum number of individuals for one or more
geometries. Typically, this constraint comes as a demographic count per geographic
area. For instance, we can compute a contingency grid from diverse spatial layers that
will specify the expected number of individuals per cell. This constraint will filter the
possible nests to only keep the ones for which the max contingency constraint is not
yet reached. If all nests are full, the relaxation will increase the capacity of the nest
whereas the maximal increase is given by a user defined threshold.

Density constraint specifies the maximum density of individuals inside one or more
geometries. This constraint works like the contingency one but with density rather
than contingency. The relaxation process relies on identical mechanisms and with the
same relaxation threshold variable.

Depending on the application, it can be more interesting to first try to relax the geometry
constraint before the contingency one and vice-versa. To specify this notion of priority
of relaxation, the user can define a priority for each constraint. An ordering process is
also performed when searching for a proper nest in which to locate individual, for which
each constraint will successively filter the list of possible spatial nests. When several
nests satisfy all the constraint, Gen* uses a distribution function to draw one to bind
individual with. We provide user with several predefined distribution functions:

Uniform distribution (default distribution function) specifies that all the nests has
the same probability to be chosen. (Gallagher et al. 2017).

Area distribution specifies that the probability of a nest to be chosen is a linear
function of its area.

Capacity distribution specifies that the probability of a nest to be chosen is a linear
function of its capacity. The capacity of the nest is updated each time it has been
drawn to be bound with an individual.

Note that if the list of predefined constraints or distribution functions does not cover
the user needs, he/she can define its own new types of constraint by implementing a
Java interface, and distribution function by overloading a Java method. For instance, if
the user wants to locate the agents in buildings according to the income of the agents
and the standard of buildings, he/she will just have to implement a new distribution
function that defines the probability for an individual to chose a building according to
its standard and the individual’s income.

When each agent has been associated with a spatial object, the next procedure is to
assign a precise x/y coordinate location inside it. Spll proposes two basic algorithms
to do so: centroid and random. First, the centroid mechanism retrieves the centroid
of the object. For polygons, it is computed as the weighted sum of the centroids of a
decomposition of the area into triangles. For lines, the centroid computes the average of
the midpoints of all line segments weighted by the segment length. Finally, for points, the
centroid is the average coordinate for all points. Second, the random mechanism retrieves
a random point in the object. For a polygon, the algorithms consists in selecting random
points in the object envelope until one of the point overlaps the object. For a line, a



random value is retrieved between 0 and the perimeter of the line. The point corresponds
to the one at this length from the first point following the line. Finally, in the case of
points, one of them is chosen at random. At the end of the localization process, each
individual from the synthetic population should have a nest – i.e. a spatial object – and
a precise x/y coordinates inside it. They can be accessed using attribute accessors in the
spatialized population model or exported as a GIS formated file.

3.2.2.4. Geographical object linking. Similarly to SPEW, Gen* makes it possible
to link a set of geographical objects to each individual. This linking process is very close
to the localization process (in fact, the nesting step is a spatial case of linking): the
principle is to choose for each linking function (e.g. workplace, school), a geographical
object among a set of possible ones to link individual with. To do that, Spll uses a
linker : that is a combination of spatial constraints and a spatial distribution function.
However, as it is often necessary to link individuals to close geographical objects, Spll
offers the possibility to define a distribution according to the distance between the agent
location and the geographical objects. The toolbox provide several predefined distribution
function to be readily used:

Distance-based distribution specifies that the probability of a geographical object
to be chosen by an individual is a negative linear function of the distance between them.

Gravity model specifies that the probability of a geographical object to be chosen by
an individual depends on the mass of the geographical object divided by the distance
between them. By default, the distance corresponds to the euclidean distance between
the individual and the geographical distance. Two basic functions are proposed for the
mass: the sum of distances between the geographical object and all individuals, and
the number of individuals within a given buffer around the geographical object. This
second function with a buffer of 0.0 corresponds to the one used by SPEW.

All previously detailed spatial distribution functions and constraints can be re-used to
drive the linking process. For example, the user can link individual to places based on
spatial object area or capacity, while defining a limited geographical zone as a constraints
to filter possible spatial objects to bind individual with.

3.2.2.5. Discussion. Spll proposes a flexible tool to localize a population based on
the definition of spatial constraints and distribution functions. To compare with SPEW,
Spll can do everything SPEW does, but allows to go further. Indeed, the possibility to
define spatial constraints allows to integrate new knowledge in the spatialization pro-
cess. In addition, Spll allows to use Areal interpolation techniques to use information
coming from different sources to improve the spatialization. At last, the genericity of
the proposed spatialization approach (independent of the type of geographical object
concerned) allows to easily extend it through the definition of new spatial constraints
and distribution functions. It makes it possible to adapt the process to available input
data – the only mandatory piece of data is the space itself – and to adjust the output to
specific needs of modelers – spatial precision as well as custom distribution function and
spatial constraints.



4. Case study: the city of Rouen, France

The Gen* library comes with documented examples, that are all freely available on the
Web (see closure section that provides useful links). In this section we present one of this
example in detail: the population localization of the city of Rouen in France.

4.1. Context of the work

Rouen, which is the capital of the Normandy region in France, is a city of 110,755
inhabitants built on both sides of the Seine River. Many chemical industries are located
near its city center which makes a potential accident particularly problematic. In order
to be able to evaluate the impact of an accident and the possible evacuation scenario
that could be implemented, a model was produced (Czura et al. 2015). In this model,
the properties and the localization of the inhabitants are particularly important. In the
following sections, we will review several options that have been proposed for the model
developed in (Czura et al. 2015).

4.2. Population spatialization

In this example, we consider that we have generated a population with Gen* from the
data available from the French National Institute of Statistics (INSEE) that cover a wide
number of demographic and social characteristics. The location is given as an aggregated
count of people per IRIS code, the main and most precise statistical areal unit in France.
We consider three scenarios corresponding to different types of data available:

• localization inside the IRIS geometries (polygons)

• localization along the roads (polylines)

• localization inside buildings, with information about the IRIS geometries, satellite
image and spatial constraints.

4.3. Scenario 1: localization inside the IRIS geometries

As a preliminary step, we defined a configuration file that specifies how to spatialize the
population. In particular, we specify the geographical data that will be used: the vector
files for IRIS geometries. The localization process started using the most precise spatial
demographic data: the population of each IRIS in the city, depicted in Figure 2.
Based on this information we can extrapolate a precise location for people inside these
areas. To do so, Gen* matches people and IRIS. The matching process is based on the key
attribute of home location which is part of the generation process: each individual has an
IRIS ID that allows him/her to be located in the city. Once this match is made, we know
the list of generated entities living inside each IRIS area. Once the list is defined, we let
Gen* give a precise location to each individual of the population inside the corresponding
IRIS geometry. In this simple example, we use the random location assignment algorithm
to do so. Figure 3 shows an example of result obtained.
The overall localization process took less than 3 sec. to be accomplished. This include
matching, assigning and finding a location within IRIS for each of the 110 688 individuals
of the city, which is totally acceptable.



Figure 2.: Geometries of IRIS in the city of Rouen

Figure 3.: Scenario 1: precise x and y coordinate population location for the city of Rouen

4.4. Scenario 2: localization along the roads

Like for the previous scenario, as a preliminary step, we defined a configuration file
that specifies that we want to use a road shapefile for the spatialization. However, as in
this scenario individuals have to be located along the roads and not directly on them,
we use as a first step a built-in function of Gen* that defines proxy spatial object to
locate individual in: it allows to compute for each geographical object of a shapefile a
new geometry that corresponds to the area that is between a minimal and a maximal
distance to the objects. For this example, the individuals are located at distance between
2.0 and 10.0 meters of the roads. Once this geometry have been defined for all the roads,
we just applied the normal localization process of Gen* with the spatial distribution



function based on area. This allow us to favor the selection of long roads rather than
short one for the nest selection.

Figure 4.: Scenario 2: precise x and y coordinate population location for a small part of
the city of Rouen

Figure 4 shows a snapshot of the result we obtain using road based nesting for the
city of Rouen. The overall computation time was 99 sec., with 87 sec. dedicated to the
computation of the area around the 4700 roads.

4.5. Scenario 3: localization inside buildings with spatial
interpolation

In this last scenario, we specified in the configuration file that three sources of geograph-
ical data will be used: land use pre-processed satellite imagery, vector files for IRIS and
building geometries. The first one was performed using raw satellite imagery from Land-
sat 8, with a raster cell of 30m2. We used a well known clustering algorithm known as
“isodata” (Memarsadeghi et al. 2007) to compute height different categories of land use:
very high, high and low density buildings, high and low green space, water, road and
bare land space.

As for the first scenario, the localization process started using the IRIS shapefile to
determine the list of generated entities living inside each IRIS area. Then, this spatial
distribution is used as the objective of an interpolation process and the land use cat-
egory of the raster file described above as explanatory variables. Spatial interpolation
terminates with a function that allows Gen* to determine a desegregated population
distribution within each IRIS. More precisely, the algorithm results in a number of peo-
ple for each 30m2 raster cell used as an explanatory variable. While aggregated, these
computed contingencies fit the known population count at the IRIS level. Map 5 gives
an overview of the resulting contingencies for the valid cells (excluding no-data and null
values for water), with lighter cells standing for contingency equal to 1 individual (low



Figure 5.: Resulting densities of the spatial interpolation process

density) and dark red cells for contingency equals to 13 individuals (high density). The
entities are randomly assigned to cells within IRIS with computed density constraint.

Figure 6.: Scenario 3: precise x and y coordinate population location for a small part of
the city of Rouen

The next step consists into giving a precise location to each individual of the popula-
tion: this is done using information on buildings. As we can see in Figure 6, thanks to



the input data about buildings, no individual has been placed into water, on bridges or
on roads. The density constraint in 30m2 cells is released when no building is present
within the defined spatial entity. In this case, the closest building is chosen to locate
the individual. The location process also takes a limited number of people within the
buildings: one cell can receive more than it is supposed to hold and, on the same level,
one building can exceed the number of individuals expected to be within it if needed.
These two constraints are released one after the other, to allow the location algorithm
to always find a solution with alternate concessions on density requirements. To sum up,
the localization process is composed of three steps: the matching between entities and
IRIS, the spatial interpolation to compute density within raster cells and, finally, the
localization of each entity within the buildings. The entire process takes less than 25 sec.
to be accomplished.

4.6. Geographical object linking

As introduced in the previous step, Gen* allows to link geographical objects to individu-
als. The nesting process is in itself an example of linking, with a specific status assigned
to the selected spatial object. The use of linkers make it possible to bind any individual of
the synthetic population with an unlimited number of spatial object. As a major differ-
ence with the nesting process, the created link between individual and spatial object will
not determine the individual location. However, it can drive dynamic localization process
during simulation, like to move to linked school or workplace from current location. For
this example, we assign a school to each children of the population (here, individuals
with an age lower than 15). We used the gravity model for the linking process. Mass of
spatial object candidates (i.e. the schools) is defined as the sum of distances between the
geographical object and all individuals.

Figure 7.: Linking between children and schools (similar color): the circle represents the
children and the buildings with red border the schools

Figure 7 shows the results obtained: we clearly see in this map the impact of the



distance for the school assignment. The linking process favors to link children with closest
schools while also taking into account the number of children within the school. The
linking process took less than 0.6 sec. for the 10 501 children.

5. Conclusion

This article presents the localization component of the Gen* toolkit. It allows to localize
a population, i.e. gives to each entity of the population a spatial nest and a location,
through the definition of spatial constraints and a distribution function. In addition,
Gen* provides tools to increase spatial resolution of the population distribution through
estimation technique, as well as methods to link geographical several spatial objects to
individuals of the synthetic population. As shown by the case-study, Gen* make it possi-
ble to build a credible spatialized population with many options and within a respectable
computation time.

In order to validate the genericity of Gen* and its adaptability to all contexts, we plan
to carry out other case-studies in the near future: the generation of the population of
Bangkok, of Marrakesh and of several cities in France and Vietnam. These case-studies
will allow us to evaluate the capacity of Gen* to deal with different population scales
(from hundreds of thousands to several millions) and different data sources (both for
census data and GIS data).

In terms of development, we plan to add many new features to Gen* and in particular
to Spll. A first one concerns the addition of new regression techniques like random forest,
which seems very promising for complex localization problem and with raw input satellite
imagery (Stevens et al. 2015). We plan as well to add new types of spatial constraints and
distribution functions to improve the flexibility of Spll. In addition, we want to improve
the performance of Gen* in terms of computation time by allowing to take benefit of
parallel computation. Finally, we plan to continue to work on facilitating the use of Gen*
by non-computer scientists by improving the GAMA plugin and the Kepler version of
Gen*.

To conclude, Gen* is still an active project. Its goal is not only to develop a library to
be used by modelers, but to create a community concerned with the synthetic population
generation as well.
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The Gen* library suite (API, templates and GAMA plugin) could be find on Github 1

while the GAMA platform has its own website.2

1https://github.com/ANRGenstar
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