N
N

N

HAL

open science

Towards a MAS Product Line Engineering Approach

Dounia Boufedji, Zahia Guessoum, Anarosa Brandao, Tewfik Ziadi, Aicha
Mokhtari

» To cite this version:

Dounia Boufedji, Zahia Guessoum, Anarosa Brandao, Tewfik Ziadi, Aicha Mokhtari. Towards a MAS
Product Line Engineering Approach. International Workshop on Engineering Multi-Agent Systems
(EMAS), May 2017, Sao Paulo, Brazil. pp.161-179, 10.1007/978-3-319-91899-0_10 . hal-01822132

HAL Id: hal-01822132
https://hal.sorbonne-universite.fr /hal-01822132

Submitted on 23 Jun 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.sorbonne-universite.fr/hal-01822132
https://hal.archives-ouvertes.fr

Towards a MAS Product Line Engineering
Approach

Dounia Boufedji'?, Zahia Guessoum'2?, Anarosa Brandao®*, Tewfik Ziadi', and
Aicha Mokhtari3

! LIP6, UPMC Paris 06 University, France
2 CReSTIC, Reims Champagne Ardenne University, France
3 RIIMA, USTHB Sciences and Technology University, Algeria
4 Computing Engineering&Digital Systems Department, Sdo Paulo University, Brazil

Abstract. It is our claim that the adoption of software engineering reuse
techniques can leverage MAS development, mostly when we consider
similar applications belonging to the same domain. MAS-Product Line
(MAS-PL) raises as an interesting approach that uses Software Product
Line Engineering (SPLE) techniques and AOSE to manage the common-
alities (similarities) and variabilities (differences) of such MAS applica-
tions. Although MAS present specific characteristics that could be con-
sidered when describing the system variability, existing work on MAS-PL
is devoted to deal with MAS variability considering only domain-specific
issues. Moreover, the adoption of variability models such as feature mod-
els should be considered for describing both Generic and Specific MAS
variability. We propose a MAS-PL approach to address the aforemen-
tioned issues by representing Generic MAS variability according to MAS
concepts such as agents, environment, interaction and organization, and
Specific MAS variability according to a specific application domain.

We evaluate the approach by deriving a family of agents that perform
jobs in the Multi-Agent Contest environment.

Keywords: Software Product Line Engineering, Software Engineering
Reuse, Feature Model, Variability.

1 Introduction

Multi-Agent Systems (MAS) provide an interesting approach for developing soft-
ware systems in several domains such as resource and information management,
process control and simulation of complex systems. Nevertheless, since engineer-
ing MAS is a complex task that is not entirely controlled by a process which is
accepted by the software industry, MAS are still not part of the mainstream of
enterprise application development [17]. In this paper, we propose to introduce
a new MAS-PL approach to improve the reuse during MAS development.
AOSE provides several templates and reuse patterns to facilitate MAS devel-
opment [10,18] and speed up the MAS adoption in software industry. However,

2 D. Boufedji et al.

most existing AOSE approaches are not suited to the development of similar ap-
plications (a.k.a MAS families). These kinds of applications present similarities
(i.e. commonalities) and differences (i.e. variabilities).

Indeed, managing such applications remains a difficult task because even if
the core architecture is reusable, the variability management is mainly achieved
by making code changes.

As the facts mentioned above lead to a considerable waste of time, cost and
effort, and make the MAS implementation a difficult task, it is important to
provide a solution based on the idea of capitalizing the MAS implementation
expertise. Thus, managing MAS variability in MAS families is a key solution
to such a capitalization, and has become one of the main challenges in AOSE.
SPLE comes out as an interesting solution to manage MAS variability at different
levels such as in design models, implementation of agents and so on. It provides a
solution to speed up industrial adoption of MAS, and leverages such an adoption
[23].

Several MAS-PL approaches have been proposed [3,11,21,22] to apply SPL
concepts to MAS development. Those MAS-PL approaches introduce the notion
of variability for a reuse issue within a MAS family. They are often built as
an extension of existing methods, what make them easily adopted. However,
most existing approaches introduce different notations and stereotypes to specify
variability, what concerns only specific domains.

It is our claim that a MAS-PL approach should address both the variabil-
ity concerning a specific application domain, and the variability referring to
the MAS domain, which concerns MAS concepts that emerge from MAS meta-
models and tools.

In addition, we believe that specifying variability by using only variability
models (e.g. feature model) is more interesting than using a variety of models
(e.g. roles’ variation model) or introducing new notations (e.g. extensions of
MAS design models) for the same purpose. Example of that is proposed by Pena
et al. [24], where three kinds of models are used to specify variability: feature
model, roles variation model, and plans variation model. In our view, roles and
plans variation could be specified using a single variability model, such as a
feature model.

We propose a new MAS-PL approach that follows the general SPLE Frame-
work [1]. This approach relies on two types of features (resp. two types of reusable
artifacts): the Generic MAS features (resp. artifacts) and the Specific MAS fea-
tures (resp. artifacts). This will concretely serve to promote different types of
reuse in MAS.

Those features result from a refinement process that is based on a variability
analysis of distinct domains. Generic MAS variability analysis scopes the domain
of existing MAS methods, meta-models, architectures and tools, while Specific
MAS variability analysis scopes a specific application domain.

This paper is organized as follows: Section 2 presents a background, dealing
with MAS-PL related work and motivations. Section 3 gives an overview of our
MAS-PL approach; while Section 4 and Section 5 give more details about the

Towards a MAS-PL Engineering Approach 3

approach and illustrate it with simple examples of the multi-agent contest case
study. Section 6 describes and discusses some results about the evaluation of
our approach through the multi-agent contest product line. Finally, Section 7
summarizes the contributions and proposes some perspectives for future work.

2 Background and Related Work

2.1 Software Product Line Engineering framework

SPLE represents one of the most interesting paradigms in software reuse and de-
velopment. It reconciles both production and standardization with customization
in software engineering, and it considerably reduces development cost, time and
effort. The general SPLE framework proposed by Apel et al. [1] is represented in
Fig. 1 with its two levels: Domain and Application Engineering. The framework
includes four activities: domain analysis, domain implementation, requirement
analysis, and product derivation.

w o Problem Space : Solution Space
omain
£ = islEd Mapping | - 5
E g nowledge [pomain Analysis PPPINE | Domain Implementation
c
Do E’ : f:ommon)
= Features | Implementation. . .1\
_____.__.‘.__---———--————-»-—_-; ——————————— components
g ‘“:9 ¥ Configuratign .
-ﬁ E 5::2’"‘?” Requirement (feature selection) Product Product variant|
- = i .
é 2 > Analysis | Derivation 2
g !
=
< w]

Fig.1. SPLE Framework and its main activities. [1]

Domain Analysis allows to scope the domain (which products should be
covered by the product line), and to specify the relevant features that should
be implemented as reusable artifacts. The results of domain analysis are usually
documented in a Feature Model (FM) [1]. The FM describes features and their
relationships (parent-child) in a hierarchical tree. Features express the common-
ality and variability among the products within a product line (see examples in
Fig. 3).

Domain Implementation allows to develop reusable artifacts that corre-
spond to identified features. There are many kinds of relevant artifacts in SPLE
(including implementation, test, and documentation artifacts) [1].

Requirement Analysis considers a user’s requirements to produce a cus-
tomized configuration, by selecting the desired features.

Product Derivation aims at deriving the product according to the config-
uration provided by the requirement analysis.

4 D. Boufedji et al.

2.2 Related Work

MAS-PL approaches emerged from the idea of applying SPLE approaches into
AOSE ones. The first efforts on MAS-PL arose on the mid of the 2000’s first
decade. Pena et al. [23] argue that both AOSE and SPLE approaches are based
on similar concepts in the first activities of domain engineering. For instance,
both of them use models in the domain analysis activity: SPLE uses feature
models and AOSE uses MAS meta-models. Unlike AOSE, SPLE covers com-
mon and variable features analysis of the software family. Most existing AOSE
approaches do not consider implementation activity, while SPLE also relies on
implementing reusable assets.

MAS-PL approaches differ according to the SPLE phases they cover: Do-
main and Application Engineering. Most approaches propose to extend AOSE
methods by integrating SPLE concepts and techniques.

In this context, Dehlinger et al. [11] propose Gaia-PL to extend GAIA. They
provide requirement specification pattern to capture changing design configura-
tion (variation points) in agents and potential reuse of requirement specification;
with no detail about the domain implementation activity.

Nunes et al. [21,22] propose to extend PASSI [9], to cover the whole devel-
opment process from requirements to code. They endow PASSI’s UML models
with stereotypes to model and document agent variability, and they propose
implementation guidelines to help MAS developers. Moreover, they propose the
modularization of the fine-grained variability (agent architecture) allowing a bet-
ter specificity of the features [20]. For instance, they introduce decomposition of
the goals that gives more specific plans. Although the decomposition of goals en-
sures alternative or optional features, reuse is only possible for a specific domain
application.

Pena et al. [24] propose to enrich MaCMAS (Methodology for analyzing
Complex Multi-Agent Systems) with software product lines to model and evolve
MAS. They use UML to model a MAS-PL and focus on building the core archi-
tecture (common features). MaCMAS captures views of the system at different
abstraction levels. The core architecture of the system is represented by a trace-
ability model, and a set of role models. The model is evolved with variations and
constraints. They specify the commonality and variability in a feature model.

MAS-PL approaches that cover the Application Engineering phase propose
mainly MAS derivation approaches that extend derivation tools like in [8] where
they propose to use multi-level models to support the configuration knowledge
specification and automatic product derivation of MAS-PL.

Among MAS-PL approaches that cover both SPLE phases, SelfStarMAS
proposes a process for the development of self-adaptive agents in Internet of
Things (IoT), and extends it by a Dynamic SPL based approach, that presents
the advantage of behaviour agent adaptation at runtime [3]. The approach is
interesting, but remains specific to IoT domain.

Even though many approaches have been proposed, some limitations can be
clearly identified:

Towards a MAS-PL Engineering Approach 5

— The use of multiple notations and stereotypes in UML diagrams to model
variability is more difficult to adopt than using feature modeling notations
only, what is more recommended by the SPLE [1];

— Using colors while introducing crosscutting features and spreading variability
specification along different kinds of models may prevent their adoption,
since any change on features must be propagated to all models;

— Some approaches focus on building the core architecture of MAS families
and neglect variabilities. Some others focus on the domain analysis activity
and do not give details on the domain implementation;

— Reusing feature models and artifacts, when developing a new family of ap-
plications, is unfeasible since the specified variability is domain-specific in
all approaches.

As a solution to those limitations, we propose a new MAS-PL approach with
one category of variability models: feature model; and two kinds of features:
generic MAS features and application specific features. In the next section, we
introduce our MAS-PL approach.

3 Overview of our MAS-PL approach

Our approach proposes to develop MAS families by following the general SPLE
framework [1] and reusing MAS concepts (see Fig. 2).

Our approach splits the Domain Analysis (resp. Domain Implementation)
activity of the domain engineering phase into two activities: 1) Generic MAS do-
main analysis (resp. Generic MAS domain implementation) and 2) Specific MAS
domain analysis (resp. Specific MAS domain implementation). This distinction
between Generic MAS domain and Specific MAS domain aims at capitalizing
the expertise of using MAS methods, models and implementations, by reusing
both Generic MAS features and Domain specific ones.

First, during the Generic MAS domain analysis activity, we analyze the
MAS knowledge in terms of generic MAS concepts which are involved in MAS
approaches like GAIA (7], and PASSI [9]. Then, we represent Generic MAS
concepts in terms of commonalities (similarities) and variabilities (differences)
among MAS approaches, organized so that they refer to Agent, Environment,
Interaction and Organization features. Our approach relies on AOSE methods,
to enable reusing most common concepts and assets, and to provide flexibility
to MAS designers and developers by using the features they need. For instance,
the Role concept that is provided by GAIA [7], PASSI [9] and AGR [14] can be
placed as a child-feature component of the Organization feature. To illustrate
the activity, we analyze the belief-desire-intention (BDI) model [16], some orga-
nizational models like Moise+ [19], and so on. This activity produces a Generic
MAS FM.

Second, Specific MAS domain analysis activity documents similarities and
variabilities among the members of a specific MAS family. We illustrate this
activity with the multi-agent contest example . This activity produces a Specific

! https://multiagentcontest.org/

6 D. Boufedji et al.

Domain Analysis : Domain Implementation
] .
\ T Generic MAS FM MAS_Product_Line 1
I = ¥ Generic MAS
E) — o —o —o g 1 reusable artifacts
60 E £s Agent Environment Inter Organizatior g |
s g) L ~ P - o
.E g ~ Physical_Envi Deploymenl’ i Direct || Indirect | Structure | Norm <—:t
k] - §
Q X Deliberative Reactive I
(= 1
) L fi ™M 1 Reusing artifacts
|.|=.| Specific MAS FM MAS_Product_Line |
— = — I .
.E S -— o —~ wo | Specific N!AS
- Agent Environment Interaction Organization c reusable artifacts
@ weD = = b= = =1 bl fi
T2 0 [L Pa N 0. o
E S % i Physical_Envi Deployment ¢ Drect | | Indivoct | Sncars | Nowm] | !
Q ¢238 — - - s !
L - £
=3 S I
a gL 1
A 1 MAS components
— CityMap 1
_______________________________________ e
%n [mAS_Product_Line !
-— |
o [utis
E Features Agent 1
o v o [l Agen .
< [o [Action Configuration .
) . Perception | .
I.ICJ v P Architecture ' MAS VL‘"‘IGI:I’
. Deliberat
c Requirements A\ [Deerative !
o N A\ [] Reactive 1
=) o [Basic 1
8 . Environment I
%- o [interaction 1
o o [l Organization :
< Requirements Analysis 1 Product Derivation

Fig. 2. Overview of our MAS-PL approach

MAS FM. Unlike existing MAS-PL approaches that build MAS specific FM from
scratch, our approach proposes to build it by reusing the Generic MAS FM.

Third, Generic MAS implementation activity involves implementing Generic
reusable MAS artifacts, that do not rely on any specific MAS family. They
implement Generic MAS features and are composed of Agent, Environment,
Interaction and Organization artifacts. Those artifacts often come from existing
tools and frameworks.

Finally, Specific MAS implementation activity produces Specific MAS reusable
artifacts. Specific MAS implementation relies on Generic MAS implementation.
Artifacts are adapted to the specific MAS family.

Application engineering activities concern both MAS requirement analysis
and derivation. According to the MAS requirements, MAS variants are speci-
fied by selecting a valid configuration from the Specific MAS FM. The specified
product that represents the MAS application variant is then derived. As we
are interested in Composition-Based implementation approaches [1] instead of
Annotation-Based ones, we need a Composer to derive the product. This deriva-
tion activity is done by FeatureHouse composer [2] that generates MAS variants
automatically by composing reusable artifacts. We illustrate our approach by
Contest Agent Variants based on configurations produced during the Applica-
tion Engineering phase.

Towards a MAS-PL Engineering Approach 7
4 MAS Domain Engineering

This section describes the proposed domain engineering phase based on activities
and their outputs.

4.1 Generic MAS domain analysis

In this first activity, we analyze MAS models’ commonalities and variabilities to
build the Generic MAS FM which is a compact representation of MAS concepts.
We therefore define the features that are often shared by MAS applications.

Our idea is to produce a common FM (see Fig.3) based on that generic
representation and to use the Vowels paradigm [12] to organize these features.
The Vowels paradigm considers that MAS are composed of (1) Agents (Vowel A),
which refers to the description of internal architectures of the system processing
entities; (2) Environment (Vowel E), which refers to domain-dependent elements
for structuring external interaction among the system entities; (3) Interaction
(Vowel I), which refers to elements for structuring internal interaction among
the system entities; and (4) Organization (Vowel O), which refers to elements
for structuring entities within the MAS. We do not include the User (Vowel
U) dimension that is considered in the Vowels extension to explicitly take into
account the user.

5 Legend:
MAS_Product _Line
e & Mandatory
B . ' Optional
P — A o
it Environment —@ o
Agfn —~ Interaction Organization A\ Altemative
.) Abstract
b e ° T O . S % = > et Concrete
Perception Architecture | | Action || Physical Er Deployment_§ it | | Direct || Indirect | | Norm | | Structure
: % s e o > & *
Active || Passive Dehbffalwe eactive Interaction_protocol Workflow SocialContract Role Group Topology
— - S HolonicGroup
Knowledge_representation | | Reasoning_component | | Barganing | | CNP Auction = RoleConstraint .
T == R <T~—_ / Centralised | Decentralised
Ontology | | Belief | | Goal Plan || Utiity | lterated_Contract_ Net || Contract_Net | English_auction | Dutch_auction | /| RoleObligation | | \

— L s o e : = Non_Hierarchical
i Hol Role Hi hical Hol lon_Hierarchical
Mono_Goal | Multi_Goal || Mono_Plan | Multi_Plan Contract_Strategy Contract SLERED [ErETes] lon

Fig. 3. Generic MAS Feature Model

Agent features: Agent architectures provide solutions to structure agents
and define their functionalities in order to enable them to act and to interact
in a dynamic environment. Most existing architectures follow the perception-
action loop. We thus propose three categories of features: Perception, Architec-
ture (Internal Architecture) and Action. For the Internal Architecture, we con-
sider both categories: Reactive and Deliberative [13]. While deliberative agents
follow Perception-Deliberation-Action cycle, reactive agents follow Perception-
Stimulus-"Re” action one. Hybrid architectures can also be defined by combining
the previous ones (selecting both Deliberative and Reactive features).

8 D. Boufedji et al.

Deliberative agents need a knowledge model to provide them a representation
about their environment, and their own knowledge. The Knowledge_representation
feature represents knowledge representation such as Belief and Ontology.

The BDI model [16] includes three mental attitudes: Beliefs, Desires and
Intentions. Whenever the agent has a BDI architecture, all of Belief, Goal, and
Plan features are mandatory.

The Utility feature of our Generic MAS FM represents an option used to
endow Goal Based agents with an utility measure for evaluating the level of
success when reaching the goal, to obtain Utility_Based agents.

Environment features: Agents are situated in an environment that used
to be domain dependent and generally spatial. That environment represents
many aspects that conceptually do not belong to agents themselves such as in a
software infrastructure on which the MAS is deployed, or in a representation of
physical environment. City maps used for situated agents can be mentioned as an
example. We represent the agent Environment product line by two environment
features: the Deployment_Environment which is mandatory and the optional
Physical_Environment since the physical world is not always represented in MAS.

Interaction features: Interaction provides a way to ensure coordination of
agents’ activities. Agents’ interaction can be Direct or Indirect. In direct inter-
action, agents exchange messages to coordinate their behaviour and achieve the
global goal. In indirect interaction, agents use the environment to share infor-
mation and coordinate their actions. For example, ants use the pheromone to
coordinate. In this paper, we focus only on direct interaction that is regulated by
interaction protocols. The Interaction_protocol feature is therefore mandatory.
Interaction protocols were introduced into MAS to facilitate the specification
and the implementation of interaction between agents. According to FIPA 2
definition, an interaction protocol is a common pattern of communication (a
predefined sequence of messages). Thus the specification and the implementa-
tion of the Protocol could be independent of the scope and of the agent internal
architecture. Several interaction protocols have been proposed: request proto-
col, bargaining, auction and Contract Net Protocol (CNP), among others. Our
Generic MAS FM includes some of them with a possible feature selection.

Organization features: In MOISE+ model [19], the organization is seen
under three points of view: Structural, Functional, and Normative. We propose
to model the MAS Organization product line by the root Organization feature
that includes two-child features: the norm optional feature; and the mandatory
structure feature to represent all possible organization structures.

Ferber et al. proposed the first organizational model Agent-Group-Role (AGR)
[14], to highlight the importance of organizational concepts like ’groups’. The
Role concept is used in most existing MAS organizational meta-models while
the Group concept is used only in some of them such as AGR and AGRE [15].
So, the Group feature is optional while the Role feature is mandatory.

2 http://fipa.org/

Towards a MAS-PL Engineering Approach 9

The last mandatory feature that concerns the structure is the Topology, that
has two alternative child features: Centralized and Decentralized organizations
described with other child features.

4.2 Specific MAS domain analysis

During this activity, we analyze MAS commonalities and variabilities of a specific
MAS family (e.g. Multi-Agent Contest) to produce a Specific MAS FM to refine
the Generic MAS FM. The refinement process is achieved by adding Specific
features to solve the problem. These specific features are placed hierarchically
under the generic features they are specializing.

We propose as an example, the Multi-agent Contest specific domain in order
to illustrate the rest of the activities of our approach. We will refer to Specific
MAS features as Contest MAS features. Contest agents’ teams move around
the streets of a realistic city, having the goal of earning money by completing
jobs. Teams should then decide how to navigate on the city map, and where
to get the resources to assembly, buy and deliver items considering targets like
shops, warehouses, charging stations, and storage facilities. Tournament points
are distributed according to the amount of the money a team owns at the end
of the simulation.

Fig.4 depicts three examples of possible Contest MAS FM. The two categories
of features are separated by a red line. The examples show what MAS product
line designers should do to refine the Generic MAS FM. However, before doing
it, Contest MAS features should be detected by the domain variability analysis.

For instance, since the provided Contest environment is mandatory, the Con-
test mandatory feature cityMap should be added to Contest features. After, the
corresponding Generic MAS feature is refined. The result is presented in Fig.
4 on (c) where cityMap refines the Physical_Environment feature. Another ex-
ample represented on (a) concerns Agent variability. The specific Buyltem_Goal
feature refines the Mono_Goal for specific items acquisition goal. This first ver-
sion of the Specific MAS FM represents the simplest one, and considers only
agents that achieve one goal. But, as our approach is incremental, this simplest
version of the Specific MAS FM can be also refined in turn. The left side of Fig.
5 depicts another version of the Specific MAS FM which refines the simplest
one. This refinement allows to support other versions of agents. For example,
both of Deliverltem_Goal and Charging-Goal Contest specific optional Features
refine the generic Multi_Goal feature by specifying agents that have to achieve
items delivering and charging goals. When considering other generic variabilities
such as Organization ones, the process remains the same. The last example (see
Fig.4 on (b)) proposes possible roles of the organization of a team in Contest.
This aspect considers the structural point of view of the organization, and is rel-
ative to the Structure feature. Thus, the Role generic MAS feature is refined by
Contest specific roles such as Buyer and Carrier that will take part in all Con-
test Team Variants. While TruckGroup feature is an option to consider groups’
organization.

10 D. Boufedji et al.

Generic MAS Features bl
Agent
&
Architecture

Deliberative Reactive

L 3
Stucture Generic MAS Features

: 2
SodialContract Topology

o .
Role Group
» | 4 . :
HolonicRole | | | HolonicGroup || Centialised | | Decenualised

Hierarchical Holon Non_Hierarchical

@ ®
knowledge_representation Reasoning_component
® Contest MAS Features
G. Plan {
oal Utility & T Crop
Mono_Goal MdLGoal Mona_Plan Mult_Plan {b} Contest Orga"iz‘?ﬂe! refmement
! Emﬂrc:\menl Generic MAS Features
| Contest MAS Features =
'] ® @ o
Buyltem_Goal Buyltem_Plan Deployment_Environment Physical_Environment

({a) Contest Agent refinement

Contest MAS Features |

®
CityMap

{c) Contest Environment refinement

Fig. 4. Examples of the Contest Specific MAS FM that refines the Generic MAS FM:
(a) Contest Agent refinement, (b) Contest Organization refinement and (¢) Contest
Environment refinement

4.3 Generic MAS Implementation

The following activity concerns the Generic MAS reusable artifacts implementa-
tion. The MAS implementation is often based on existing frameworks. Artifacts
correspond to components provided by those frameworks. In this paper, we con-
sider APLTK (A Toolkit for Agent-Oriented Programming) [4] to illustrate the
feasibility of the approach in the implementation side. The set of reusable arti-
facts can be then enriched by considering other frameworks such as JaCaMo [6].

Agent artifacts: Agent reusable artifacts implement Agent features. Al-
though we could not raise variability concerns related to Belief, both Goal and
Plan can present variability depending on the choosing BDI algorithms.

The three algorithms we use to illustrate our approach are those proposed by
Wooldridge [16]. The variability among these algorithms lies on the cardinality
of the sets of B, D and I. The first algorithm represents the simplest version. It
corresponds to mono-Goal agents. While the second algorithm concerns agents
that have to achieve multiple goals. The last algorithm proposes to enrich the
library of plans during the execution.

Goal and Plan variabilities can then be expressed by the following features:
Mono_Goal, Multi_Goal, Mono_Plan and Multi_Plan.

Most BDI model implementations use brf (belief revision function), ogf (op-
tion generation function), filter and asf (action selection function). However,
the algorithm variability has an impact on these functions. For instance, if we

Towards a MAS-PL Engineering Approach 11

consider BDI Mono_Goal implementation, agents use neither the ogf function
nor the filter one. Mono_Plan agents do not need a function to select a plan.

We implement the Mono_Goal feature with reusable artifacts, composed of
the functions proposed in the simplest algorithm of Wooldridge [16] : (i) getting-
Percepts(): to execute the get-next percept, (ii)createBeliefsFromPercept(): to
create and update the agent beliefs, it represents the brf() function; (iii) checkAll-
BeliefsForInsertGoal(): for the agent deliberation to correspond to the deliber-
ate() function, and (iv)performActionGoal(): to select a plan and execute it.

Environment artifacts: The general view of the environment considers
that agents are part of the environment, which can provide for example means
or resources for agent communication. However, environment standardization
should be done by separating both concepts. Behrens et al. [5] proposed a generic
approach for connecting agents to environment, and considered reusable environ-
ment artifacts that are as much independent of a specific environment structure
as possible. For example, we reuse EIS (Environment Interface Standard) API [5],
that represents possible reusable environment artifacts, which are mapped to the
Physical_Environment feature. EIS reduces the implementation effort for con-
necting to the environments (e.g. Unreal Tournament UT3 and UT2004 gaming
environments, and the Multi-Agent Contest).

Interaction artifacts: The reusable Interaction artifacts concern mainly
the Interaction protocols. FIPA standard Interaction artifacts are available to
the programmer through abstractions to develop FIPA-compliant MAS. Some
reusable FIPA implementations are provided by MAS frameworks such as the
CNP implementation in JADE. Thus, we reuse JADE API 3 that includes role
behaviors for FIPA standard protocols. For example, the CNP-Initiator imple-
ments the initiator role in a FIPA-Contract-Net or Iterated-FIPA-Contract-Net,
while the CNP-Participant corresponds to the responder role. These two imple-
mentations are mapped to the CNP feature.

Organization artifacts: Some concepts of the Generic MAS FM which
are linked to the organization such as Roles may be implemented by reusable
artifacts at the implementation level. For instance, in JADE API, the classes
implementing the behaviours can represent roles that are reusable.

4.4 Specific MAS Implementation

During the last activity of Domain Engineering, Specific MAS reusable artifacts
implement Specific MAS features by reusing Generic MAS artifacts.

Fig. 5 summarizes the four activities of the Domain Engineering. It illustrates
a Contest MAS reusable artifact which is at the right side bottom of the figure.
This Contest artifact implements the Buyltem_Goal Contest feature, by reusing
the PerformActionGoal() function that is mapped to the Mono_Goal feature.

3 http://jade.tilab.com/doc/api/

http://jade.tilab.com/doc/api/

12 D. Boufedji et al.

“ i i

E Goal } l()ubl ie void GettingPercepts()

H i @
ﬁ) _. _ i public void cresteBeliefsFrcmPercept () ‘ 9 ‘E'

-
'Y . r -
Mono_Goal Multi_Goal] public void CheckAllBeliefsForInsertGoals() -2
2] s Reusing v ®
s] lpublic Action PerformActionGoal() code | G =
2 [ey | 58
@ e e A ' 9 >
5 : g
] ! 3 i
L | e I & oo ot S hd
[\ 1 < Action PerformActionGoal ()
i / \ 1(Vector<string> paramGeal = new Vector<sString>():

§ Refining | / \ | if (ImyGoals.isEmpty())

5 |feature | o) | i {String pred=myGoals.peek().getPredicate();

2 \] switch (pred) {

3 Charging_Goal | i 2.,
o v 1 " :paramGoal=myGoals.peek () .getParameters () ; 2%
2 | = i myCurrentPlan=CreateBuyItemPlan() : o8
s Buyltem_Goal Deliveritem_Goal | ReplaceGoalByActionPlan (myGoals.peek (), myCurrentPlan):| % €
g L il.action(" ") : @ :
2 + =l . ge
F i £ t s]
& f return PerformActionAccordingChargeUtility();: g3
- H y ion =]
17 2 . g
H] i e LogicGoal buyltem=myGoals.peek(): o

£ . Mapping T b

o ! return CityUtil.action("buy","iten="+buyItem.

u I EEE———————— getParameters () .get (0) .toString()

+ '+ String.valueOf (new_amount)) ;}}
return CityUtil.action(” "))

Fig.5. An example of a Contest MAS reusable artifact obtained through the four
Domain Engineering activities

5 MAS Application Engineering

This section will present application engineering activities, and illustrate them
with Contest Agent configuration and derivation.

5.1 Requirement Analysis

During this activity, to obtain customized MAS, each requirement is analyzed
to detect which features have to be selected from the Specific MAS FM, to fill
that requirement and constitute a configuration.

Table 1 gives some examples of Contest requirements. The first requirement
that corresponds to the Contest Agent Variant CAV1, is fulfilled by the given
configuration presented on (a) in Fig. 6. All selected features are represented
on (b) through a set of literals. Consequently, the non selected features are
excluded from the configuration. The other requirements correspond to Contest
Team Variants that consider some organizational aspects. For instance, unlike
CTV3, to fill the requirements of CTV1, we must include features such as the
Non_Hierarchical feature, and exclude others such as the Hierarchical one.

5.2 Product Derivation

For a valid configuration, the MAS variant derivation activity is automatically
achieved by a composer, such as FeatureHouse.

Fig. 6 gives on (c) the derived code relative to the configuration on (a).

For more details, interested readers can access our link .

4 http://www-desir.1ip6.fr/~boufedji/emas17.html

http://www-desir.lip6.fr/~boufedji/emas17.html

Towards a MAS-PL Engineering Approach

valid, more than 5348 possible configurations
MAS_Product Line Buy

* QOrganization

GoT -
iy (b) Set of literals|
{a) Configuration | Sheps_Pezcept (propositional
BricedJob_Percept expre;sfon)
Hono_Goal
BuyItem Goal
Mono_Flan
Buyltem Plan
v A [peiberative Utilivy

v Reasoning_component Friced_Job

2. =] G-I Composed_Jdob

Y o I oo No_Charge_Utility

W A E Wono_Goal knowledge representation
» E Buyltem_Goal Shups_ﬂel;af
A [[] mun_coal Job_Belief
v * Plan Car
v Mono_Pian hasic
Aﬁ o [} Buyltem_Plan Cj‘ty—Hap
A D Jul_Plan f;‘} MAS_Product_Line (c) Agent
v o Utiity =i JRE System Library Contest
Bl Looking_for_Job_utiity » =4 Referenced Librarie Variant
i Charge_utiity v 3 srcfconfl
. knowledge_representation > §# massim javaagents
A [] Reactive v [massim javaagents.agents
o [Basic » 1] AgentMinimaliste java
Environment fB massim javaagents.agents.util.map|
interaction > 3 myenv.Environment.Vehicle

13

Fig. 6. An example of (a) a Contest Agent Configuration (b) its propositional expres-
sion and (c) the derived Contest Agent Variant

Contest
Variants

CAV1

Requirements

A Car Contest Agent Variant that has to achieve one goal, by executing an acqui-
sition job (buying items in a shop). The agent has no charge utility concerning its
battery, and has to execute one Plan (find a shop, move to it, and buy the items)

CTV1

A Contest Team Variant (CTV) that looks only for priced jobs. The team is orga-
nized according to a non hierarchical topology without including groups structures.

CTV2

A Contest Team Variant that looks only for priced jobs. The team is organized
according to a non hierarchical topology, with the possibility of structuring into
groups of cars and trucks. The groups are supervised by group supervisors.

CTV3

A Contest Team Variant that looks for both priced and auctioned jobs, and that is
organized according to hierarchical topology without including groups structures.

CTV4

A Contest Team Variant that looks for both priced and auctioned jobs, and that
is organized according to hierarchical topology, with the possibility of structuring
into groups of cars and trucks. The groups are supervised by group supervisors.

Table 1. Examples of multi-agent Contest requirements

6 Evaluation

Evaluation objectives: The main objectives of our evaluation are to show the
feasibility of our approach to derive MAS variants and to deduct the rate of
reuse improvement our approach brings.

In order to evaluate our approach, we first derived several Contest Agent
Variants and deployed them in the MAS Contest environment. Second, we in-
volved groups of students to derive Contest Agent Variants by following the
SPLE framework without relying on the generic MAS features and artifacts

14 D. Boufedji et al.

that we proposed. After, we compared students’ Contest feature models and
implementations with ours.

Contest Agent Variants derivation:The implementation of our approach adopted
the Feature IDE tool® to specify the feature models, and to create agent config-
urations. FeatureHouse composer was used to derive Contest Agent Variants.

The first version of the product line involves neither interaction nor orga-
nization aspects of the team, and considers only agents that have to complete
their priced jobs. More details are available on the Contest website under the
Contest 2016 example 6.

The case study offers more than 5948 possible configurations, as shown on
the upper left side in Fig.6. We present among them ten (10) of the derived
and simulated Contest Agent Variants. The variants are labeled from CAV1
(Contest Agent Variant) to CAV10. Table 2 represents the relative configurations
of each variant that includes both Generic and Contest MAS features labeled
respectively GMF and CMF.

CAV1 and CAV2 have the minimal feature configurations that involve a total
of six mandatory features. CAV1 corresponds to the simplest agent (see Fig.6).
CAV3 to CAV10 represent variants with a maximum number of eight possible
selected features. These variants follow the second BDI algorithm [16]; and differ
on their charging utilities. According to those variabilities, more or less methods
and lines of code are derived. We calculate them by using eclipse Metrics”.

The percentage of reused features and methods show the two main advantages
of our approach. Indeed, the originality of our approach is the possibility to reuse
Generic MAS features and artifacts. The percentage of reused features ranges
from 25% to 33 %, while the percentage of reused implemented methods ranges
from 7% to 10.18 %.

The above results correspond to the rate of reuse improvement our approach
offers. The results show also the advantage of using software product lines in our
approach. There is a development time saving of about 354 lines of code, and
25 methods from CAV1 to CAV10. We can also compare variants according to
their strategies using utilities. Indeed, when using our approach, we can compare
Contest agents performances easily since the agents are derived automatically
and can be deployed faster. For example, through simulations, we could distin-
guish between the best and the worst charging utilities. We could also make the
agents variants play together.

The second version of the product line involves some interaction and or-
ganization aspects of the team. Due to space restrictions we did not include
the table. The product line includes four variants labeled from CTV1 (Contest
Team Variant) to CTV4. Their configurations correspond to the requirements
presented in Table 1. The results show a feature reusing rate that ranges from
27.27 % to 30.76%. These variants which consider organization and interaction

® https://marketplace.eclipse.org/content /featureide
5 http://multiagentcontest.org
" http://eclipse-metrics.sourceforge.net

Towards a MAS-PL Engineering Approach 15

MAS-PL Features
Metrics

F10
=
2
=
g B | &
- 2l a | &
& g Bl @ g
® o < & =
= 9 o 2| |8
< J 0 |l = | @ 7
ot (5} Q va Q
o i i @ |2 = w| 2| &
o Z £ | E| E| ¢ 2 S| ®| B
> 3 AEEIEEREE 3| |8|E| 2
2 A RAEEEEEE A 1515 8
- +
g 8%% S|8|5R|8|8|8 Ble|E|S| F
— 3 I EEI =R 2 o | °
< EEEHHMERMEIEIREEE 5853 3
v RORRCH NN N = IR I = S I g el B2 e o5 | 8|8l B
@ (8 O L O = I < (P I I = | ®w | @ * = | =
0 o R e e A e A z|l2l2|32 VI i) I
2 ﬁﬁﬁﬁ%§~ag—oﬂmmm Cldl 0| E| %R | =
22 SE 2SR 8|l<|Rg|E|22|2|B|EBE|2] o 2
== (22 P 0(0|5|0|0|z|m|[0|0 |0 |0|&|8 O]z | %] X
CAV1 | x X X X x x
CAV2 | x X X X X x
CAV3 X X | x X | x X x x
CAV4 X X | x X | x X x x
CAV5 X x [x|x x [x x x
CAV6 X X[x| x x [x x x
CAV7 X X[x| x X [x X X
CAVS8 X X[x| x X [x X X
CAV9 X X | x|x X | X x | x
CAV1(X X | x|x X | X x x

Table 2. Some metrics for ten derived Contest Agents Variants

features presents a higher rate of reused features compared to the agent variants
presented above.

Involving students: Groups of students were involved in this activity. None of
the groups was familiar with SPL concepts. The students were asked to model,
implement and derive Contest multi-agent variants by following the SPLE frame-
work that we use in our approach. However, we did not provide them the starting
points proposed by our approach, to compare their results with the ones we ob-
tained by relying on both generic MAS FM and artifacts. As a result, we could
distinct three categories of groups: CAT1, CAT2 and CAT3.

CAT1 represents groups that failed on detecting domain-independent vari-
ability. The category presents the worst results regarding Contest Agent Vari-
ants. Indeed, 44.44 % of the students belong to this category.

The students focused only on domain specific variability, what let them build
only domain specific features and artifacts.

CAT?2 includes groups that detected domain-independent variability, but did
not include it in the feature model. It presents a rate of about 33.33 %. This
intermediate category succeeded in detecting reusable generic MAS features, but
did not exploit them in the feature model. For example, they thought about MAS
organizational variabilities such as centralized or decentralized organizations; but
did not consider these aspects in possible configurations.

16 D. Boufedji et al.

CAT3 concerns groups that detected domain independent variability and
introduced it in the feature model. It was the most successful category, but it
represents the lowest rate of 22.22 % of the students.

However, the total number of reusable features does not exceed eight, and
include Interaction and Organization features.

The results brings out the advantages of our approach. It can provides CAT1
a starting point to support domain-independent variability. Moreover, it allows
CAT?2 to exploit the detected features to derive more multi-agent variants. In
addition, it provides CAT3 more reusable features and artifacts than those de-
tected. Our approach provides to all categories more possible configurations,
which implies more variants.

All these facts lead to increase the number of Contest Agent Variants, save
time and effort to the whole categories through the whole process.

Our MAS-PL approach uses of known notations covering both design and
implementation aspects, what would facilitate its use and its adoption by MAS
developers. Moreover, since it provides a generic MAS FM, MAS designers and
developers will not build feature models nor develop the source code from scratch.

However, our approach has some limits. Indeed, it does not consider all orga-
nizational artifacts, most variability is specific to contest and the total number
of reusable artifacts which should be increased.

But, we prospect to enrich our work with a more refined MAS variability.
Currently, we are studying self-organizational aspects of the system. We also
prospect to evaluate our approach through other specific domains. We project
to evaluate it by students as well.

7 Conclusion

In this paper, we proposed a first version of a new MAS-PL approach for the auto-
matic derivation of MAS variants according to MAS requirements. Our MAS-PL
approach follows the SPLE framework in both domain and application engineer-
ing phases. It relies on two types of features (resp. two types of reusable artifacts):
the Generic MAS features (resp. artifacts) and the Specific MAS features (resp.
artifacts). The features of the Generic MAS feature model and those of Specific
MAS feature model are organized according to the Vowels paradigm.

Our MAS-PL approach deals with known notations and covers both the
design and implementation aspects. So, it is easy to use by MAS developers.
Moreover, it is incremental, the Specific MAS FM can be refined as many times
as needed to deal with more specific MAS variability.

We illustrated the different activities of our MAS-PL approach by simple ex-
amples issued from the Multi-Agent Contest 2016. We derived a Contest product
line of agents that includes variants that have been simulated in the Multi-Agent
Contest environment. We compared those variants according to some metrics.
The result shows that our approach is promising. We also compared these results
to those obtained by students without using the Generic MAS features and arti-

Towards a MAS-PL Engineering Approach 17

facts we proposed. This comparison brought out the value of our Generic MAS
features and artifacts in practice.

As for further on-going research work, we are concentrating on an interest-
ing perspective which would allow us to obtain more variability to enrich both
Generic MAS FM and artifacts. We intend, for instance, to introduce interac-
tion mechanisms such as ant-based algorithms. We also prospect to evaluate our
approach by groups of students to compare their results to those presented in
this paper. Another perspective is to suggest to researchers and MAS developers
to use our approach when implementing Multi-Agent System Product Lines in
different domains. The feedback would help us improve our work to serve the
technological development and advances.

References

1. Apel, S., Batory, D., Kastner, C., Saake, G.: Feature-Oriented Software Product
Lines. Springer (2013)

2. Apel, S., Kastner, C., Lengauer, C.: Language-independent and automated soft-
ware composition: The FeatureHouse experience. Software Engineering, IEEE
Transactions on 39(1), 63-79 (2013)

3. Ayala, 1., Horcas, J.M., Amor, M., Fuentes, L.: Using models at runtime to adapt
self-managed agents for the iot. In: German Conference on Multiagent System
Technologies. pp. 155-173. Springer (2016)

4. Behrens, T.: Towards Building Blocks for Agent-Oriented Programming. Ph.D.
thesis, Clausthal University of Technology (2012)

5. Behrens, T.M., Hindriks, K.V., Dix, J.: Towards an environment interface standard
for agent platforms. Annals of Mathematics and Artificial Intelligence 61(4), 261—
295 (2011)

6. Boissier, O., Bordini, R.H., Hiibner, J.F., Ricci, A., Santi, A.: Multi-agent ori-
ented programming with jacamo. Science of Computer Programming 78(6), 747—
761 (2013)

7. Cernuzzi, L., Juan, T., Sterling, L., Zambonelli, F.: The gaia methodology. In:
Methodologies and Software Engineering for Agent Systems, pp. 69-88. Springer
(2004)

8. Cirilo, E., Nunes, I., Kulesza, U., Lucena, C.: Automating the product derivation
process of multi-agent systems product lines. Journal of Systems and Software
85(2), 258-276 (2012)

9. Cossentino, M.: From requirements to code with the passi methodology. Agent-
oriented methodologies 3690, 79-106 (2005)

10. Cossentino, M., Burrafato, P., Lombardo, S., Sabatucci, L.: Introducing pattern
reuse in the design of multi-agent systems. In: Net. ObjectDays: International
Conference on Object-Oriented and Internet-Based Technologies, Concepts, and
Applications for a Networked World. pp. 107-120. Springer (2002)

11. Dehlinger, J., Lutz, R.R.: Gaia-PL: A product line engineering approach for effi-
ciently designing multiagent systems. ACM Transactions on Software Engineering
and Methodology (TOSEM) 20(4), 17 (2011)

12. Demazeau, Y.: From interactions to collective behaviour in agent-based systems.
In: In: Proceedings of the 1st. European Conference on Cognitive Science. Saint-
Malo. Citeseer (1995)

18

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

D. Boufedji et al.

Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelli-
gence, vol. 1. Addison-Wesley Reading (1999)

Ferber, J., Gutknecht, O., Michel, F.: From agents to organizations: an organiza-
tional view of multi-agent systems. In: Agent-Oriented Software Engineering IV,
pp. 214-230. Springer (2004)

Ferber, J., Michel, F., Béez, J.: AGRE: Integrating environments with organiza-
tions. In: Environments for multi-agent systems, pp. 48-56. Springer (2005)
Georgeff, M., Pell, B., Pollack, M., Tambe, M., Wooldridge, M.: The belief-desire-
intention model of agency. In: International Workshop on Agent Theories, Archi-
tectures, and Languages. pp. 1-10. Springer (1998)

Guessoum, Z., Cossentino, M., Pavén, J.: Roadmap of agent-oriented software
engineering. In: Methodologies and software engineering for agent systems, pp.
431-450. Springer (2004)

Hara, H., Fujita, S., Sugawara, K.: Reusable software components based on an
agent model. In: Parallel and Distributed Systems: Workshops, Seventh Interna-
tional Conference on, 2000. pp. 447-452. IEEE (2000)

Hiibner, J.F.,; Sichman, J.S., Boissier, O.: Moise+: towards a structural, functional,
and deontic model for mas organization. In: Proceedings of the first international
joint conference on Autonomous agents and multiagent systems: part 1. pp. 501—
502. ACM (2002)

Nunes, 1., Cowan, D., Cirilo, E., De Lucena, C.J.: A case for new directions in
agent-oriented software engineering. In: International Workshop on Agent-Oriented
Software Engineering. pp. 37-61. Springer (2010)

Nunes, I., De Lucena, C.J., Cowan, D., Kulesza, U., Alencar, P., Nunes, C.: Devel-
oping multi-agent system product lines: from requirements to code. International
Journal of Agent-Oriented Software Engineering 4(4), 353-389 (2011)

Nunes, I., Kulesza, U., Nunes, C., Cirilo, E., Lucena, C.: Extending PASSI to model
multi-agent systems product lines. In: Proceedings of the 2009 ACM symposium
on Applied Computing. pp. 729-730. ACM (2009)

Peiia, J., Hinchey, M.G., Ruiz-Cortés, A.: Multi-agent system product lines: chal-
lenges and benefits. Communications of the ACM 49(12), 82-84 (2006)

Pena, J., Hinchey, M.G., Ruiz-Cortés, A., Trinidad, P.: Building the core archi-
tecture of a nasa multiagent system product line. In: Agent-Oriented Software
Engineering VII, pp. 208-224. Springer (2007)

	Towards a MAS Product Line Engineering Approach
	Introduction
	Background and Related Work
	Software Product Line Engineering framework
	Related Work

	Overview of our MAS-PL approach
	MAS Domain Engineering
	Generic MAS domain analysis
	Specific MAS domain analysis
	Generic MAS Implementation
	Specific MAS Implementation

	MAS Application Engineering
	Requirement Analysis
	Product Derivation

	Evaluation
	Conclusion

