
HAL Id: hal-01822134
https://hal.sorbonne-universite.fr/hal-01822134v1

Submitted on 8 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Automated Approach to Manage MAS-Product Line
Methods

Sara Casare, Tewfik Ziadi, Anarosa a F Brandão, Zahia Guessoum

To cite this version:
Sara Casare, Tewfik Ziadi, Anarosa a F Brandão, Zahia Guessoum. An Automated Approach to
Manage MAS-Product Line Methods. 5th International Workshop on Engineering Multi-Agent Sys-
tems (EMAS 2017), May 2017, Sao Paulo, Brazil. pp.180-197, �10.1007/978-3-319-91899-0_11�. �hal-
01822134�

https://hal.sorbonne-universite.fr/hal-01822134v1
https://hal.archives-ouvertes.fr

An Automated Approach to Manage
MAS-Product Line Methods

Sara Casare1, Tewfik Ziadi2
1 LTI, University of São Paulo, Brazil

2 LIP6, University Paris-Sorbonne, France
sjcasare@uol.com.br, tewfik.ziadi@lip6.fr

Anarosa A. F. Brandão2,3, Zahia Guessoum2,4
3 Computing Engineering and Digital Systems Department

University of São Paulo, Brazil
4 CReSTIC, University Reims, France

anarosa.brandao@poli.usp.br, zahia.guessoun@lip6.fr

Abstract. Multiagent systems (MAS) can vary in several ways: by involving
different agents, distinct interaction patterns, various forms of agent organiza-
tions and environments. One promising approach to consider this variability in
MAS is the use of the concept of Multiagent System-Product Line (MAS-PL).
The idea is to implement a family of MAS that belong to the same domain, in-
stead of a single MAS. However, there is still a lack of methodological support
to develop MAS-PL. This paper tackles this problem with a rigorous respect of
software product line principals. We propose an automated approach, the Me-
duse for MAS-PL, to generate families of MAS-PL methods that offer software
product line best practices integrated with existing MAS development ap-
proaches to support MAS-PL development. To illustrate, we present a case
study involving a family of MAS-PL methods that extends Gaia and Tropos.

Keywords: multiagent systems, software product line, variability, method

1 Introduction

Managing variability in Multiagent systems (MAS) has been identified during the last
years as one of the main issues within Agent-Oriented Software Engineering (AOSE)
[2][10][18][19]. Indeed, the intrinsic properties of MAS, such as modularity, make
them variability-rich systems. The notion of software variability is defined as the
ability of a software system to be changed, customized or configured for use in a par-

ticular context [25]. Therefore, AOSE approaches should consider this variability to
design and develop not only a single MAS, but families of systems at the same time.

More than twenty AOSE methods have been proposed by the MAS community to
support MAS development [6]. Each of them proposes a set of development activities
for analyzing, designing, and implementing the typical MAS components: agents,
environment, interaction, and organization [12]. Gaia [26] and Tropos [3] are among
the most popular AOSE methods. However, they only proposed to design and develop
a single MAS variant at time. Especially, they do not propose in their initial definition
any explicit activity to manage variability and develop families of systems rather than
a single system. One promising approach for tackling this limitation has been already
identified by the MAS community since the early 2000’s through the concept of Mul-
tiagent System-Product Line (MAS-PL) [10]. Instead of considering a single MAS,
MAS-PL aims to organize a family of multiagent systems according to their similari-
ties (i.e., commonalities) and differences (i.e., variabilities) in order to build MAS
customized according to specific needs. MAS-PL reuses concepts proposed by Soft-
ware Product Line Engineering (SPLE), which is a systematic approach for variability
management proposed by the Software Engineering community [1] [8].

 Although already introduced into the AOSE community, there is still a lack of
methodological support to implement MAS-PL. As we will see in Section 2, among
the more than twenty AOSE methods, only few of them support the specificities of
MAS-PL, e.g. Gaia-PL[11], Peña et al [19], and Nunes et al.[18]. Nevertheless, in
these methods the proposed extensions are very light and do not cover all Software
Product Line activities. Moreover, they are tailored to develop MAS families in spe-
cific domains and may not be suited for MAS families in diverse domains.

This paper tackles the mentioned issues by proposing Meduse for MAS-PL, an
automated approach that provides steady methodological support for MAS-PL devel-
opment by integrating SPLE best practices with several existing AOSE methods.
Indeed, this approach results from cooperation between AOSE and SPLE research
teams: we capitalize all knowledge on SPLE activities in a way that such activities
can be automatically incorporated into AOSE existing methods as a set of SPLE best
practices in order to develop MAS families in diverse domains. The proposed ap-
proach follows Method Engineering techniques [4][14] and is built upon the Meduse
framework [7]. To illustrate our approach we present a case study that shows how we
can provide MAS-PL methods that take into account SPLE best practices to extend
two popular AOSE methods, Gaia and Tropos.

The paper is organized as follows: Section 2 presents background and motivations.
Section 3 presents our approach for dealing with method extensions to develop MAS-
PL. Section 4 illustrates such an approach using a case study. Finally, Section 5 con-
cludes this work and discusses future work.

2 Background and Motivations

In this section we present some basic notions related to SPLE and MAS-PL meth-
ods that are essential for understanding the main aspects of our approach, as well as a
motivating example based on Tropos.

2.1 Multiagent System Product Line Methods

MAS-PL methods reuse concepts of SPLE for MAS families’ development. Before
discussing existing MAS-PL methods, we will briefly introduce the general SPLE
framework. Fig. 1 shows its four main activities - domain analysis, domain implemen-
tation, requirement analysis, and product derivation - organized in the Domain and
Application Engineering levels, as well as in the Problem and Solution spaces [1].

Fig. 1. Software Product Line Engineering general framework [1]

Domain analysis: This activity aims to define the scope of the problem to be tack-
led and explicitly specify commonality and variability between products that are
included in the product line. The results of domain analysis are usually documented
in a variability model. Several formalisms have been proposed to specify such a vari-
ability model. Among them, we distinguish Feature Model [16] and Decision Model
[23]. The former derives from the work on Feature Oriented Domain Analysis
(FODA) [16], while the latter has its roots on the Synthesis method [5] [23].

A feature consists of a distinctive user-visible characteristic of a software product
line, used to represent identifiable functional abstractions that shall be present in the
final product [16]. It usually encompasses commonalities and variabilities. A feature
model describes relationships between features, and formally specifies which feature
selections are valid. This is made by hierarchically organizing features in a tree,
where edges are used to represent parent-child relationships (see next section, Fig. 3).
These parent-child relationships could be of the following types: mandatory (the child
feature must be present in a product whenever its parent appears); optional (the child
feature may be present when its parent appears); alternative (exactly one child feature
must be present when the parent feature appears); or (at least one child feature must
be present whenever the parent feature appears). Moreover, a set of cross-branch con-
straints is used to indicate dependencies between features pertaining to different tree
branches. Finally, in order to establish their consistency feature models can be de-
scribed through a set of propositional formulas. Thus, a Satisfiability (SAT) solver
tool can be used to determine the feature model consistency, i.e. if it will generate at
least one valid product, or whether a given product is valid.

 Decision Model is another way of modelling variabilities. In this kind of models,
decisions describe the variabilities available in a product line, and specify the set of
choices during product derivation. Therefore, taking a decision involves analyzing
multiple options and then selecting those that better reflect the customers´ needs.

Domain Implementation: In this activity the commonalities and variabilities pre-
viously specified are developed as a set of reusable artifacts (also called assets) and
organized according to the specified variability model.

Among the domain implementation approaches we can cite Delta-oriented Pro-
gramming [20][21], a compositional and modular approach to manage variability
based on modifications applied to a core product, which is transformed into another
variant of the product line by incrementally applying a set of delta modules that pro-
pose additions, removals, or alterations of elements. A condition is a propositional
constraint attached to every delta module through a when clause and it determines for
which features the specified modifications are to be carried out. Therefore, conditions
create the connection between the modifications prescribed in delta modules and the
features. A list of delta modules and attached conditions determines the modifications
required to implement different products of the product line, as well as the order in
which such modifications shall be applied. Indeed, such a list groups delta modules in
ordered partitions and partitions can be partially ordered, i.e., while the order of parti-
tions is fixed, deltas in the same partition can be applied in any order. Finally, the core
product can be an empty product.

Requirement Analysis: During this activity needs of a specific customer are con-
sidered in order to select the required variabilities (e.g. feature selection), also called a
configuration [1]. Therefore, the variability model is instantiated according to the
customer requirements.

Product Derivation: Once we have a selection of the required variabilities repre-
senting customer needs, the product derivation activity aims to generate (or derive)
the product itself. As underlined by Apel et al. [1], depending on the implementation
approach this activity can be automated. For compositional approaches as Delta-
oriented Programming, the idea is to use what is referred as composer to derive prod-
uct variants.

Extending AOSE methods to support MAS-PL should consider the integration of
the different SPLE activities discussed above. As mentioned early, there are just a few
MAS-PL methods. Each of them extends particular AOSE method(s) to integrate
SPLE activities. However, this integration is often partial and it only concerns some
of the SPLE activities previously presented. For instance, Nunes et al. propose a Do-
main Engineering method to develop MAS-PL that uses PLUS [13] as the SPLE ap-
proach, and PASSI [9] combined with MAS-ML [22] as AOSE method.

Peña et. al. propose the use of MaCMAS [19] and UML to define the core archi-
tecture of a MAS-PL. Their method only considers the Domain Engineering level and
it adopts MaCMAS models in several levels of abstraction to guide the building of the
MAS-PL variability model. In the same way as Nunes and colleagues, Pena and col-
leagues' approach results into a single MAS-PL, instead of a family one. Dehlinger
and Lutz [10] [11] propose an approach that combines SPLE techniques and Gaia.
The method is called Gaia-PL and it is devoted to the Domain Engineering level of a

software product line. Their goal was reusing requirements specifications and a heu-
ristic is provided to guide the building of the feature model. Nevertheless, the pro-
posed MAS-PL approaches may not support different application domains than the
ones presented as running example.

2.2 Motivating Example

We consider the Tropos method as a running example to discuss the current methodo-
logical limitations in the MAS-PL development: MAS-PL methods propose a partial
integration of SPLE activities with particular AOSE methods.

Tropos offers a set of development phases to deal with requirements gathering as
well as to analyze, design, and code two MAS components: agents and interaction.
Fig. 2 depicts the five subsequent phases of Tropos, from requirement to implementa-
tion phases. We follow the standard notations of the Software and System Process
Engineering Meta-model (SPEM) [17], which is the de facto standard for representing
development methods [15].

Fig. 2. The Tropos phases using the SPEM notations.

As initially proposed, Tropos only considers the phases that are related to the de-
velopment of a single MAS without any methodological support for MAS-PL devel-
opment. To be suitable for MAS-PL development, the original phases of Tropos (see
Fig. 2) should be extended by integrating the SPLE activities. For instance, we need
to add the domain analysis phase to specify variability. In addition, we also need to
include activities that are related to domain implementation and product derivation.
Many interesting issues can be considered in this context:

• How can we integrate the different SPLE activities with the Tropos meth-
od of Fig. 2, concerning both MAS-PL domain and application engineer-
ing levels?

• How can we provide MAS-PL methods based on Tropos for developing
MAS families in diverse domains?

• As early discussed in Section 2.1, there are two kinds of formalisms to
specify the variability model during SPLE domain analysis: Feature Mod-

el and Decision Model. Then, how can we manage these different integra-
tion possibilities into Tropos?

• How can we automatically generate a new MAS-PL method based on
Tropos and SPLE best practices according to project needs?

The next section presents how our approach deals with these issues. As we will
show, Meduse for MAS-PL can automatically generate variants of MAS-PL method
based on Tropos, as well as based on other AOSE methods like Gaia or PASSI.
Moreover, it offers a set of activities based on SPLE best practices that are ready to be
fully integrated with these AOSE methods. Finally, our approach provides MAS-PL
methods for developing MAS families in diverse domains.

3 From MAS Methods to MAS-PL Methods with Meduse

In this section we present the Meduse for MAS-PL approach. In few words, it is an
automated approach to generate methods for developing MAS-Product Lines that
provides a steady methodological support following SPLE best practices. Besides, it
promotes the reuse of existing AOSE methods, by extending them to explicitly sup-
port MAS-PL development according to project needs. Finally, to speed up this ex-
tension Meduse for MAS-PL capitalizes all knowledge on SPLE activities proposed
in [1], providing SPLE best practices ready to be used for MAS development.

To achieve such a goal our approach takes advantage of Method Engineering tech-
niques. Moreover, it is based on the Meduse framework, which itself adopts SPLE
techniques. Therefore, Meduse for MAS-PL uses SPLE principles in two levels. First,
SPLE techniques are used in a meta-level fashion to generate method variants to de-
velop MAS-PL. Second, these method variants are used to develop MAS product
lines and then to generate MAS applications, i.e. product variants. Since our approach
is based on the Meduse framework, we start presenting it.

3.1 Meduse in a nutshell

Meduse Framework is a general approach to generate software development methods.
Meduse adopts SPLE techniques to manage method variability, as well as to automat-
ically derive method variants. Moreover, it adopts Method Engineering principles to
manage reusable method artifacts, so-called method fragments, which consist of
standardized building blocks based on a coherent part of method [14]. Method vari-
ants are built upon these fragments.

Fig. 3 presents the big picture of the Meduse framework, showing from the method
domain analysis to the final method variant, which is automatically generated accord-
ing to project needs. First, Meduse proposes to represent method domain knowledge
in terms of similarities and differences among variants of a same method family by
means of a feature model.

Second, during method domain implementation these method´s commonalities and
variabilities are developed as a set of method fragments, and organized according to
the feature model. In order to do that Meduse proposes reusable method fragments

together with a compositional approach based on Delta-oriented programming (see
Section 2). Thus, method derivation relies on the application of delta modules over an
empty method: the modification proposed by a delta module consists of the additions
and/or removals of reusable method fragments from the method variant. Therefore,
one can define the partially-ordered sequence in which method fragments will appear
in the method variant, since delta modules are grouped in fixed-ordered partitions,
and modules in the same partition can be applied in any order.

Third, method variants are specified through a method configuration, which con-
sists of a set of features selected according to project needs. Finally, Meduse proposes
a tool – the Meduse Composer - that automatically derives the specified method vari-
ant: it takes the empty method as starting point of the work breakdown structure and
incrementally adds or removes method fragments according to the modifications
specified in the delta modules connected with the selected features through attached
conditions. Fig. 3 depicts the final method variant automatically generated by the
Method Variant Derivation activity.

Fig. 3. A big picture of Meduse framework

3.2 Managing MAS-PL Method Family with Meduse

After introducing the Meduse framework we present the Meduse for MAS-PL ap-
proach in details.

Fig. 4 illustrates how we can implement a family of MAS-PL methods and auto-
matically generate method variants. As previously mentioned, our approach applies
SPLE principles in two levels: to develop a family of MAS-PL methods and then to
develop MAS product lines themselves. First, a method family for MAS-PL is speci-
fied in terms of commonalities and variabilities among methods. Second, method
family implementation is speeded up with a set of reusable method fragments offered
by the Meduse for MAS-PL approach. Such fragments concern SPLE best practices
and are ready to be integrated to AOSE methods. Third, a particular method for de-
veloping MAS product lines is configured over the method´s commonalities and vari-

abilities available in the method family, and then this final method is automatically
generated and used to support the development of MAS product lines.

Fig. 4. Generating method variants for developing MAS product lines

Specifying commonalities and variabilities for a family of MAS-PL Methods
MAS-PL method variants are generated through method families where the MAS-

PL methodological knowledge is represented as method commonalities and variabili-
ties by means of a feature model. Thus, on one hand features represent the various
AOSE methods that may be extended, like Tropos, Gaia, or PASSI. On the other
hand, features represent a large set of SPLE activities and related techniques that may
be chosen as best practices to develop MAS-PL. Examples of such activities are those
described by the general SPLE framework proposed in [1] (see Section 2). One of the
main advantages of using feature models to specify a MAS-PL method family is that
we can use SAT solver tools to determine whether such a feature model is consistent,
i.e. if at least one valid method configuration exists, and whether or not a given con-
figuration is valid. Therefore, a valid MAS-PL method variant is guaranteed.

Reusing/Building & Organizing Method Fragments for MAS-PL method family
The first step of the MAS-PL Domain Implementation consists of reusing and/or

building a set of method fragments that implements the commonalities and variabili-
ties encompassed by a family of MAS-PL methods. In order to speed up this imple-
mentation, we have capitalized all knowledge on SPLE activities proposed in [1] as a
set of reusable method fragments. Therefore, Meduse for MAS-PL offers several
reusable fragments that provide detailed guidance to develop MAS-PL based on

SPLE best practices. These fragments were sourced from FODA, Synthesis, and the
Apel et al. approach, and are ready to be integrated to existing AOSE methods. For
instance, some of these reusable fragments deal with feature and decision models,
while others deal with the analysis of a particular MAS application over a MAS prod-
uct line, and the generation of the final code of this MAS application. All of these
method fragments encompass fine-grained elements, like tasks, work products, and
roles. Fig. 5 illustrates four of them: Define MAS-PL Decision Model, Define MAS-
PL Feature Model, Perform MAS Application Requirement Analysis, and Generate
MAS Product Code. For instance, the first is sourced from Synthesis and encom-
passes two tasks: Define Domain Scope and Define Decision Model. Such tasks are
performed by the System Analyst role and produce Domain Definition and Decision
Model as work products, respectively.

Fig. 5. Example of four method fragments provided by Meduse for MAS-PL

On the other hand, fragments related to AOSE may be provided by existing method
fragment´s libraries, like the Medee framework [6] that offers more than a hundred
fragments sourced from popular AOSE methods. Moreover, method fragments may
be also built from scratch whenever the method domain analysis identifies a new fea-
ture not yet implemented as reusable asset, related both to AOSE or SPLE.

The second step of the MAS-PL Domain Implementation consists of specifying
delta modules that describe the modification to be applied to a method variant by
incrementally adding or removing method fragments. These delta modules are then
associated with the conditions in which they should be applied. As explained in Sec-
tion 2, these conditions create the connection between the modifications prescribed in
delta modules and the feature model. Finally, delta modules are put together in an
ordered list and then are ready to be applied during the generation of a particular

MAS-PL method variant. Nevertheless, before such a generation we have to configure
this method.

Configuring a Particular MAS-PL Method
To configure a particular MAS-PL method we should analyze the the project at

hand needs and express them through a selection of the AOSE and SPLE develop-
ment activities among those provided by the MAS-PL method family. In order to
result in a valid method configuration such a selection must take into account the
relationships specified in the feature model. As previously explained, Meduse for
MAS-PL proposes the use of SAT solver tools to determine whether a given configu-
ration is valid.

 For instance, we may select Tropos as the AOSE method to be extended by inte-
grating SPLE activities to guide the analysis, design, and implementation of a MAS
product line concerning the development of several agents, their roles and interac-
tions. Moreover, these SPLE activities may also guide the requirement analysis and
derivation of the final MAS application.

Generating a MAS-PL Method Variant
Finally, the final MAS-PL method is automatically generated by the Meduse Com-
poser and can be used to support the development of MAS product lines.

The following steps are performed by the Meduse Composer tool. First, it finds all
delta modules that shall be applied to the MAS-PL method variant, i.e., those delta
modules attached to a condition evaluated to true for the configuration. For instance, a
condition defined as the propositional formula Tropos and Decision Model is evaluat-
ed to true whenever a method configuration includes these two features, and therefore
all delta modules attached to this condition are taken into account during method der-
ivation. Second, that tool generates an empty MAS-PL method variant and then adds
and/or removes reusable method fragments from that variant according to the modifi-
cation proposed by the selected delta modules, always respecting the order defined by
the list of modules.

We have developed a prototype implementation of Meduse for MAS-PL, in which
we adopted FeatureIDE [24] as tool to specify the feature model and to create method
configurations, as well as SPEM and Eclipse Process Framework (EPF)1 to manage
method fragments, delta modules, and the derived method variants. Interested readers
may access the Meduse for MAS-PL website2 to see available reusable method frag-
ments sourced from several SPLE approaches, and method variants for MAS-PL de-
velopment automatically derived during the case study presented in the next section.

1 https://eclipse.org/epf/
2 https://pages.lip6.fr/Tewfik.Ziadi/EMAS17/

4 Creating MAS-PL Method Family: a Case Study

In this section we present a case study that shows how we can use our approach to
extend two AOSE methods - Gaia and Tropos - to support MAS-PL development
following SPLE best practices. It consists of creating a MAS-PL method family and
then deriving several method variants.

The scope of this method family is defined as follows. It aims at providing meth-
ods to develop MAS product lines based on Gaia or Tropos. Moreover, such method
family would offer two techniques for modeling MAS variabilities - feature model
and decision model - as well as it would deal with the development of four MAS
components: Agent, Environment, Interaction, and Organization. Finally, this method
family would involve both Domain and Application Engineering levels to provide a
full SPLE development cycle: from MAS-PL Domain Analysis to the MAS-PL Prod-
uct Derivation. It should be noted that another scope definition, for instance involving
different MAS components or other AOSE methods, like PASSI, is also possible and
would give rise to a different MAS-PL method family.

The resulting feature model contains eighteen features, where eleven of them rep-
resent the similarities among the method variants pertaining to such a family, while
the remainder seven features represent how such method variants may vary. To im-
plement the method family we reused a set of method fragments sourced from Gaia
and Tropos, as well as those provided by the Meduse for MAS-PL approach concern-
ing FODA, Synthesis, and Apel et al. Finally, the Meduse Composer was used to
derive the twenty possible variants. The remainder of this section describes this case
study in detail.

4.1 Feature Model for a MAS-PL Method Family

As aforementioned, similarities and differences among the method variants of our
MAS-PL method family were specified through the feature model presented in Fig. 6.
This feature model is composed of eighteen features and one constraint (environment v
organization => Gaia). The root of that diagram is labelled with MAS_PL_Method to repre-
sent a MAS-PL development method. It has three mandatory child features: MAS-
Component, MASMethod, and SPLEngineering.

Fig. 6. A feature model diagram for a MAS-PL method family

MASComponent has two mandatory and two optional child features – Agent and
Interaction, Environment and Organization - respectively, because in this case study
we consider that a MAS-PL method must cover at least the development of agents
and their interaction, and may cover also environment and organization development.
Thanks to the unique constraint defined in this model, whenever a method variant
includes the features Environment or Organization it must include Gaia as
MASMethod, because Gaia deals with the development of the four MAS components,
while Tropos, the optional MAS-Method child feature, takes into account only the
development of Agent and Interaction.

Moreover, SPLEngineering has the two SPLE levels as child features: DomainEn-
gineering and ApplicationEngineering. The former is a mandatory feature while the
latter is an optional one because in this case study we consider that a MAS-PL method
must propose at least the Domain Engineering level. The DomainEngineering feature
has three mandatory child features – Analysis, Design, Implementation – which corre-
spond to the three domain development phases proposed by Apel et al. Additionally,
Analysis offers two alternative child features - FeatureModel and DecisionModel -
that represent the choice of SPLE techniques to model MAS variability. Therefore,
exactly one of these techniques must be present in a MAS-PL method variant.

Finally, whenever a MAS-PL method includes the ApplicationEngineering feature
it must include its two child features: ProductAnalysis and ProductDerivation. It
should be observed that such a feature model corresponds to the previously described
scope. A diverse scope would give rise to a different feature model.

4.2 Domain Implementation for a MAS-PL method family

While similarities and differences among the method variants of the MAS-PL method
family were specified through a feature model, we used reusable fragments and Delta-
oriented programming to implement such features. Therefore, the implementation of
that MAS-PL method family comprised a set of reusable method fragments organized
in a list of delta modules. Method fragments were sourced from the two AOSE meth-
ods considered in our scope, Gaia and Tropos. Concerning SPLE approaches, we have
reused those reusable fragments provided by the Meduse for MAS-PL approach.

The rest of this section describes how we reused method fragments and imple-
mented delta modules, starting with method fragments.

Method Fragments for MAS-PL Family
In order to deal with SPLE activities and techniques we reused ten of the set of frag-
ments provided by Meduse for MAS-PL. These fragments were sourced from FODA
(for feature model), Synthesis (for decision model), and Apel et al. (for SPLE domain
and application activities). Besides, method fragments sourced from Gaia and Tropos
were provided by the Medee Framework: (i) six fragments sourced from Gaia were
used to guide the analysis and design of agents, environment, interaction, and organi-
zations; (ii) five fragments sourced from Tropos were used to analyze and design

agents and interaction. Summing up, this case study involved twenty-one method
fragments.

Fig. 7 shows two examples of these method fragments, one sourced from Tropos
(Gather MAS-PL Requirement with Tropos) and other sourced from Synthesis (Define
MAS-PL Decision Model).

Fig. 7. Examples of two method fragments for a MAS-PL method family, sourced from Tropos
(left) and Synthesis (right).

Delta Modules for MAS-PL Method Family
A list of eleven delta modules were implemented to specify the modifications to be
applied during the derivation of MAS-PL method variants according to a given meth-
od configuration.

Fig. 8 (left) illustrates four of these delta modules, D-TroposFMAnalysis, D-
GaiaDMAnalysis, D-TroposDMAnalysis, and D-GaiaFMAnalysis, as well as the com-
prised method fragments of the first two delta modules. Note that two of these frag-
ments correspond to those depicted in Fig. 7, namely Gather MAS-PL Requirement
with Tropos and Define MAS-PL Decision Model fragments.

Fig. 8. A partial representation of the List of Delta modules containing method fragments (left),
and the list of Delta modules and attached conditions (right)

Moreover, the list of delta modules determines the order in which such delta mod-
ules must be applied during method derivation (see Fig. 8 right). As explained before,
delta modules were attached to conditions which allow their connection with combi-

nations of features. For instance, a MAS-PL method variant would include the four
method fragments defined in the D-TroposFMAnalysis delta module whenever the
Tropos and FeatureModel features were selected to configure the MAS-PL method
variant.

Method Configuration and Derivation of MAS-PL Method Variants
After implementation, the MAS-PL method family is ready to give rise to method
variants according to a given method configuration. As shown in Table 1 (left), the
eighteen features proposed in this case study offered twenty possible MAS-PL meth-
od configurations, four of them based on Tropos and sixteen based on Gaia.

Table 1. MAS-PL Method Configurations and Derived MAS-PL method variants.

For instance, Configuration 1 is among the smallest MAS-PL method configura-

tions and encompasses eleven features: MAS component, Agent, Iteration, MAS
Method, Tropos, SPL Engineering, Domain Engineering, Analysis, Feature Model,
Design, Implementation. On the other hand, Configurations 19 and 20 encompass
sixteen features and therefore are among the largest ones. The remaining possible
configurations encompass sets ranging from twelve to fifteen features.

The derivation of a MAS-PL method variant consists of incrementally applying to
an empty method the modifications specified by the delta modules attached to valid

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18

MA
S

Co
mp

on
en

t
Ag

en
t

En
vir

on
me

nt
Int

era
cti

on
Or

ga
niz

ati
on

MA
S

Me
tho

d
Ga

ia
Tr

op
os

SP
L

Do
ma

in
En

gin
ee

r.
An

aly
sis

Fe
atu

re
Mo

de
l

De
cis

ion
 M

od
el

De
sig

n
Im

ple
me

nta
tio

n
Ap

pli
c.

Pr
od

uc
t A

na
lys

is
Pr

od
uc

t D
er

iva
tio

n

1 * * _ * _ * _ x * * * x _ * * 11 V1: Domain Eng. w/ FM & A.I.
2 * * _ * _ * _ x * * * _ x * * 11 V2: Domain Eng. w/ DM & A.I.
3 * * _ * _ * _ x * * * x _ * * x x x 14 V3: Domain&Application Eng. w/ FM & A.I.
4 * * _ * _ * _ x * * * _ x * * x x x 14 V4: Domain&Application Eng. w/ DM & A.I.
5 * * * * x _ * * * x _ * * 11 V1: Domain Eng. w/ FM & A.I.
6 * * * * x _ * * * _ x * * 11 V2: Domain Eng. w/ DM & A.I.
7 * * x * * x _ * * * x _ * * 12 V3: Domain Eng. w/ FM & A.E.I.
8 * * x * * x _ * * * _ x * * 12 V4: Domain Eng. w/ DM & A.E.I.
9 * * * x * x _ * * * x _ * * 12 V5: Domain Eng. w/ FM & A.I.O.

10 * * * x * x _ * * * _ x * * 12 V6: Domain Eng. w/ DM & A.I.O.
11 * * x * x * x _ * * * x _ * * 13 V7: Domain Eng. w/ FM & A.E.I.O.
12 * * x * x * x _ * * * _ x * * 13 V8: Domain Eng. w/ DM & A.E.I.O.
13 * * * * x _ * * * x _ * * x x x 14 V9: Domain&Application Eng. w/ FM & A.I.
14 * * * * x _ * * * _ x * * x x x 14 V10: Domain&Application Eng. w/ DM & A.I.
15 * * x * * x _ * * * x _ * * x x x 15 V11: Domain&Application Eng. w/ FM & A.E.I.
16 * * x * * x _ * * * _ x * * x x x 15 V12: Domain&Application Eng. w/ DM & A.E.I.
17 * * * x * x _ * * * x _ * * x x x 15 V13: Domain&Application Eng. w/ FM & A.I.O.
18 * * * x * x _ * * * _ x * * x x x 15 V14: Domain&Application Eng. w/ DM & A.I.O.
19 * * x * x * x _ * * * x _ * * x x x 16 V15: Domain&Application Eng. w/ FM & A.I.E.O.
20 * * x * x * x _ * * * _ x * * x x x 16 V16: Domain&Application Eng. w/ DM & A.I.E.O.
FM = Feature Model DM = Decision Model A = Agent I = Interaction E = Environment O = Organization
(*) mandatory feature (x) optional selected featured (-) optional disable feature () optional unselected feature

MAS-PL Method Configuration
MAS-PL Features

nu
m.

 o
f S

ele
cte

d F
ea

tur
es

Co
nfi

gu
rat

ion
 #

Tr
op

os
-P

L
va

ria
nt

s
Ga

ia
-P

L
Va

ria
nt

s

MAS-PL Method Variants

conditions in a given configuration. Such a derivation was automatically achieved by
the Meduse Composer as follows:

 (i) Finding all delta modules that shall be applied to the MAS-PL method variant,
i.e. those modules attached to a condition evaluated to true for the given configura-
tion. For example, for Configuration 1 the delta module D-TroposFMAnalysis (see
Fig. 8 right) shall be selected, since its attached condition (Tropos and FeatureModel)
is evaluated to true.

(ii) Generating the method variant by applying the modification proposed by the
selected delta modules respecting the order defined by the list of delta modules.

All the twenty MAS-PL method variants presented in Table 1 (right) have been de-
rived and are available in the Meduse for MAS-PL website. Two of these method
variants are depicted in Fig. 9: Tropos-PL Variant 1 and Gaia-PL Variant 16. The
similarities among these variants are highlighted in red: the two method fragments
belonging to Domain Design phase and the entire Domain Implementation phase.

Fig. 9. Two MAS-PL method variants based on Tropos (left) and Gaia (right), highlighting in
red the common fragments among them.

Tropos-PL Variant 1 is among the smallest variants: it encompasses only the Domain
Engineering Iteration, which is composed of three phases and eleven activities. It
proposes modeling MAS-PL variabilities using a feature model during Domain Anal-
ysis Phase. Moreover, it deals with agent and interaction development during Domain
Design Phase. On the other hand, Gaia-PL Variant 16 is among the largest variants: it
covers both the Domain and Application Engineering Iterations and includes the four
MAS components, i.e. agent, environment, interaction, and organization. It proposes
modeling MAS-PL variabilities using a Decision Model, and encompasses five phas-
es that, in their turn, are composed of sixteen activities.

 It should be observed that our approach can generate several extensions for the
same AOSE method. For instance, the SPLE domain analysis may vary according to
the formalism adopted to specify the variability model: feature model or decision mod-
el. Therefore, Fig. 10 illustrates two Tropos based MAS-PL method variants generated
by our approach. In addition to the Tropos-PL Variant 1, we also generated the
Tropos-PL Variant 4 that uses the decision model instead of feature model and also
covers all activities of the SPLE application engineering level.

Fig. 10. Two MAS-PL method variants based on Tropos – the smallest (left) and the largest

(right) - highlighting in green the variability among them.

5 Conclusion

This paper introduced Meduse for MAS-PL, an automated approach that aims at
providing steady methodological support for MAS-PL development. This approach
results from a close collaboration between MAS and SPLE researchers and applies
SPLE principles in two levels: to develop a family of MAS-PL methods and then to
develop MAS product lines.

Meduse for MAS-PL automatically generates methods for MAS-PL based on exist-
ing AOSE methods, by extending them to explicitly support MAS-PL development
according to project needs. Moreover, to speed up this extension Meduse for MAS-PL
capitalizes all knowledge on SPLE activities proposed in [1], providing SPLE best
practices ready to be used for MAS-PL development. Therefore, it promotes the reuse
of both AOSE methods and SPLE best practices. Indeed, and as illustrated by the
presented case study, our approach provides a set of reusable method fragments
sourced from several SPLE development approaches that are ready to be automatical-
ly incorporated to AOSE methods.

We validate our approach by the generation of twenty MAS-PL methods that ex-
tend Gaia and Tropos. However, its principals can be applied to all AOSE methods.
Some of the method variants generated during the case study were used by Master
students in the University Pierre et Marie Curie (Paris 6). Those students apply these
MAS-PL methods to support the development of teams to the multiagent contest3.
They consider the use of the proposed MAS-PL methods to generate several multia-
gent teams. This experience shows that the generated methods are promising. We plan
to propose to several groups of students another project and some criteria to measure
the quality of those methods.

6 Acknowledgement

Sara Casare was supported by CNPq (grant #233828/2014-1), Brazil.

7 Reference

1. Apel, S., Batory, D., Kästner, C., and Saake, G. 2013. Feature-Oriented Software Product
Lines. Berlin: Springer.

2. Brandao, A., Boufedji, D., Ziadi, T., Guessoum, Z. 2015. Vers une approche d'ingénierie
multiagent à base de ligne de produits logiciels. In : 23es Journées Francophones sur les
Systèmes Multi-Agents (JFSMA'15), Cépaduès, p. 49-58.

3. Bresciani, P.; Giorgini, P.; Giunchiglia, F.; Mylopoulos, J. and Perini, A. 2004. Tropos: An
Agent-Oriented Software Development Methodology. In: Journal of Autonomous Agents
and Multi-Agent Systems, vol. 8, no 3, p. 203-236.

4. Brinkkemper, S. 1996. Method Engineering: Engineering of Information Systems Devel-
opment Methods and Tools. Information and Software Technology, vol. 38, no 4, p. 275-
280.

5. Campbell, Grady H. Jr., Faulk, Stuart R., and Weiss, D. M. 1990. An introduction to Syn-
thesis. Herndon, Virginia: Software Productivity Consortium.

6. Casare, S.,Brandão, A. A., Guessoum, Z., and Sichman, J. S. 2014. Medee Method
Framework: a situational approach for organization-centered MAS. Autonomous agents
and multi-agent systems, vol. 28, no 3, p.430-473.

7. Casare, S., Ziadi , T., Brandão, A. A., Guessoum, Z. 2016. Meduse: an Approach for Tai-
loring Software Development Process. In: Proceedings of the 21th International Confer-
ence on Engineering of Complex Computer Systems, ICECCS 2016, p.197-200.

8. Clements, P., Northrop, L. 2001. Software Product Lines: Practices and Patterns, Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

9. Cossentino, M. 2005. From requirements to code with the PASSI methodology. In: Hen-
derson-Sellers, B. and Giorgini, P. (Eds.): Agent-oriented Methodologies, p.79–106, Idea
Group Inc., Hershey, PA, USA.

10. Dehlinger, J., Lutz, R.R. 2005. A product-line requirements approach to safe reuse in mul-
tiagent systems. In: International Workshop on Software Engineering for Large-scale Mul-
ti-agent Systems, p.1–7.

3 https://multiagentcontest.org/

11. Dehlinger, J., Lutz, R. R. 2011. Gaia-PL: a product line engineering approach for efficient-
ly designing multiagent systems. ACM Transactions on Software Engineering and Meth-
odology (TOSEM), vol. 20, no 4, p. 17.

12. Demazeau, Y. 1995. From interactions to collective behavior in agent-based systems. In:
Proceedings of the First European Conference on Cognitive Science. Saint-Malo, p. 117-
132.

13. Gomaa, H. 2004. Designing Software Product Lines with UML: From Use Cases to Pat-
tern-Based Software Architectures. Addison Wesley, USA.

14. Harmsen, A.F. 1997. Situational Method Engineering. Moret Ernst & Young.
15. Henderson-Sellers, B., Ralyté, J. 2010. Situational Method Engineering: State-of-the-Art

Review. J. UCS, vol. 16, no 3, p. 424-478.
16. Kang, K. C., Cohen, S. G., Hess, J. A., Novak, W. E., Peterson, A. S. 1990. Feature-

oriented domain analysis (FODA) feasibility study (No. CMU/SEI-90-TR-21). Carnegie-
Mellon University Pittsburgh Pa Software Engineering Inst.

17. OMG. 2008. Object Management Group. Software & Systems Process Engineering Meta-
Model Specification, version 2.0. OMG document number: formal/2008-04-01.
http://www.omg.org/spec/SPEM/2.0/PDF.

18. Nunes, I., Lucena, C. J. P., Cowan, D., Kulesza, U., Alencar, P., Nunes, C. 2011. Develop-
ing multi-agent system product lines: from requirements to code. International Journal
Agent-Oriented Software Engineering, vol. 4, no 4, p. 353-3.

19. Peña, J., Hinchey, M.G., Resinas, M., Sterritt, R., Rash, J.L. 2007. Designing and manag-
ing evolving systems using a MAS product line approach. Science of Computer Program-
ming, vol. 66, no 1, p. 71-86.

20. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N. 2010. Delta-oriented pro-
gramming of software product lines. In: International Conference on Software Product
Lines. Springer Berlin Heidelberg, p. 77-91.

21. Schaefer, I., Damiani, F. 2011. Pure delta-oriented programming. In: Proceedings of the
2nd International Workshop on Feature-Oriented Software Development, ACM, p. 49-56.

22. Silva, V.; Choren R.; Lucena, C. 2008. MAS-ML: A Multi-Agent System Modelling Lan-
guage. International Journal of Agent-Oriented Software Engineering, vol.2, no.4, p. 382-
421.

23. SPC. 1993. Software Productivity Consortium Services Corporation. Technical Report
SPC-92019-CMC. Reuse-Driven Software Processes Guidebook, Version 02.00.03.

24. Thüm, T., Kästner, C., Benduhn, F., Meinicke, J., Saake, G., Leich, T. 2014. FeatureIDE:
An extensible framework for feature-oriented software development. Science of Computer
Program, vol. 79, p.70-85.

25. Van Gurp, J., Bosch,J. Svahnberg, M. 2001. On the Notion of Variability in Software
Product Lines. In: Proceedings of the Working IEEE/IFIP Conference on Software Archi-
tecture (WICSA '01). IEEE Computer Society, Washington, DC, USA.

26. Zambonelli, F., Jennings, N. R., Wooldridge, M. 2003. Developing multiagent systems:
The Gaia methodology. ACM Transaction on Software Engineering and Method, vol. 12,
no 3, p. 317-370.

