A. Trinchieri, Epidemiological trends in urolithiasis: impact on our health care systems, Urological Research, vol.83, issue.2, pp.151-156, 2006.
DOI : 10.1007/978-1-4615-2556-1_189

J. Denstedt and A. Fuller, Epidemiology of Stone Disease in North America, pp.13-20, 2012.
DOI : 10.1007/978-1-4471-4387-1_2

A. Hesse, E. Brändle, and W. D. , Study on the Prevalence and Incidence of Urolithiasis in Germany Comparing the Years 1979 vs. 2000, European Urology, vol.44, issue.6, pp.709-713, 2000.
DOI : 10.1016/S0302-2838(03)00415-9

Y. Ogawa, Epidemiology of Stone Disease Over a 40-Year Period in Japan, pp.89-96, 2012.
DOI : 10.1007/978-1-4471-4387-1_12

F. Coe, A. Evan, and E. Worcester, Three pathways for human kidney stone formation, Urological Research, vol.63, issue.3, pp.147-160, 2010.
DOI : 10.1002/ar.20656

A. Randall, THE ORIGIN AND GROWTH OF RENAL CALCULI, Annals of Surgery, vol.105, issue.6, pp.1009-1027, 1937.
DOI : 10.1097/00000658-193706000-00014

A. Evan, J. Lingeman, and F. Coe, Randall???s plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle, Journal of Clinical Investigation, vol.111, issue.5, pp.607-616, 2003.
DOI : 10.1172/JCI17038

R. Low and M. Stoller, ENDOSCOPIC MAPPING OF RENAL PAPILLAE FOR RANDALL'S PLAQUES IN PATIENTS WITH URINARY STONE DISEASE, The Journal of Urology, vol.158, issue.6, pp.2062-2064, 1997.
DOI : 10.1016/S0022-5347(01)68153-9

M. Linnes, A. Krambeck, and L. Cornell, Phenotypic characterization of kidney stone formers by endoscopic and histological quantification of intrarenal calcification, Kidney International, vol.84, issue.4, pp.818-825, 2013.
DOI : 10.1038/ki.2013.189

F. Coe, A. Evan, J. Lingeman, and E. Worcester, Plaque and deposits in nine human stone diseases, Urological Research, vol.15, issue.4, pp.239-247, 2010.
DOI : 10.1002/ar.20580

URL : http://europepmc.org/articles/pmc3175811?pdf=render

R. Kuo, J. Lingeman, and A. Evan, Urine calcium and volume predict coverage of renal papilla by Randall's plaque, Kidney International, vol.64, issue.6, pp.2150-2154, 2003.
DOI : 10.1046/j.1523-1755.2003.00316.x

URL : https://doi.org/10.1046/j.1523-1755.2003.00316.x

A. Evan, J. Lingeman, and F. Coe, Renal histopathology of stone-forming patients with distal renal tubular acidosis, Kidney International, vol.71, issue.8, pp.795-801, 2007.
DOI : 10.1038/sj.ki.5002113

C. Verrier, D. Bazin, and L. Huguet, Topography, Composition and Structure of Incipient Randall Plaque at the Nanoscale Level, The Journal of Urology, vol.196, issue.5, pp.1566-1574, 2016.
DOI : 10.1016/j.juro.2016.04.086

URL : https://hal.archives-ouvertes.fr/hal-01313117

S. Khan, Role of Renal Epithelial Cells in the Initiation of Calcium Oxalate Stones, Nephron Experimental Nephrology, vol.49, issue.2, pp.55-60, 2004.
DOI : 10.1074/jbc.M200832200

S. Khan and R. Hackett, Retention of calcium oxalate crystals in renal tubules, Scanning Microsc, vol.5, pp.707-711, 1991.
DOI : 10.1097/00005392-199701000-00118

P. Meria, H. Hadjadj, and P. Jungers, Stone Formation and Pregnancy: Pathophysiological Insights Gained From Morphoconstitutional Stone Analysis, The Journal of Urology, vol.183, issue.4, pp.1412-1416, 2010.
DOI : 10.1016/j.juro.2009.12.016

L. Maurice-estepa and P. Levillain, Crystalline Phase Differentiation in Urinary Calcium Phosphate and Magnesium Phosphate Calculi, Scandinavian Journal of Urology and Nephrology, vol.23, issue.5, pp.99-305, 1999.
DOI : 10.1007/BF00300021

X. Carpentier, M. Daudon, and O. Traxer, Relationships Between Carbonation Rate of Carbapatite and Morphologic Characteristics of Calcium Phosphate Stones and Etiology, Urology, vol.73, issue.5, pp.968-975, 2009.
DOI : 10.1016/j.urology.2008.12.049

URL : https://hal.archives-ouvertes.fr/hal-00430189

M. Daudon and D. Bazin, Vibrational spectroscopies to investigate concretions and ectopic calcifications for medical diagnosis, Comptes Rendus Chimie, vol.19, issue.11-12, pp.1416-1423, 2016.
DOI : 10.1016/j.crci.2016.05.011

URL : https://hal.archives-ouvertes.fr/hal-01347143

A. Evan, J. Lingeman, and E. Worcester, Contrasting Histopathology and Crystal Deposits in Kidneys of Idiopathic Stone Formers Who Produce Hydroxy Apatite, Brushite, or Calcium Oxalate Stones, The Anatomical Record, vol.2, issue.4, pp.731-748, 2014.
DOI : 10.1267/ahc.2.83

URL : http://onlinelibrary.wiley.com/doi/10.1002/ar.22881/pdf

M. Tournus, N. Seguin, and B. Perthame, A model of calcium transport along the rat nephron, American Journal of Physiology-Renal Physiology, vol.280, issue.7, pp.979-994, 2013.
DOI : 10.1007/BF00582541

URL : https://hal.archives-ouvertes.fr/hal-00871608

S. Khan and P. Glenton, Calcium oxalate crystal deposition in kidneys of hypercalciuric mice with disrupted type IIa sodium-phosphate cotransporter, American Journal of Physiology-Renal Physiology, vol.294, issue.5, pp.1109-1115, 2008.
DOI : 10.1152/ajprenal.00033.2006

URL : http://ajprenal.physiology.org/content/ajprenal/294/5/F1109.full.pdf

S. Khan, Histological aspects of the ???fixed-particle??? model of stone formation: animal studies, Urolithiasis, vol.83, issue.509, pp.75-87, 2017.
DOI : 10.1016/j.ucl.2012.09.006