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Abstract

Two-dimensional ionic liquids with single site anion and cation-neutral
dimer are studied by computer simulations and integral equation tech-
niques, with the aim of characterizing differences with single site anion-
cation mixtures, and also with three dimensional equivalents of both mod-
els, in order to see the competition between the Coulomb interactions and
the clustering restrictions due to reduced dimension. We find that the
addition of the neutral site to the cation suppresses the liquid-gas transi-
tion which occurs in the case of the monomeric Coulomb system. Instead,
bilayer membrane type ordering is found at low temperatures. The agree-
ment between the energies and the structural correlations predicted by
theory and the simulation is excellent until very close to the no-solution
region predicted by the theory. These findings suggest various relations
between the nature of the clustering at low temperatures, and the inability
of the theory to enter this region.

1 Introduction
The Coulomb interaction potential in three dimensions (3D) and two dimensions

(2D) is the solution of the Poisson equation in their respective dimensions[1, 2].

This interaction differs in each dimensions in an interesting manner, since in

3D it has a 1/r form, while in 2D it has a − ln(r) form[1]. Despite this fun-

damental difference, we have recently shown[3] that both systems have similar

structure in the fluid phase, namely the charge ordering property[4]. Charge

order is principally a short range feature, which enforces a form of order where
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charges of opposite sign are disposed in quasi-alternance[5]. In 2D, it leads to

a checker-board appearance of the local order[3], due to optimizing of attrac-

tion/repulsion of the pair interactions. Even in the low density regime, where

clustering dominates the structure of the system, the clusters obey charge order.

In the same recent paper[3], we have shown that, replacing the 2D Coulomb in-

teraction by the 3D screened Coulomb form, retained a strikingly similar local

charge order, both in the liquid and gas phases. This finding enforces the idea

that local order is mainly ruled by the strong pair interaction, despite the very

different forms and signs of the full respective Coulomb interactions.

It is with this idea in mind that we wish to study how charge ordering in

2D is affected by the presence of neutral sites attached to the cation. This

is motivated by the so-called room temperature ionic liquids (RTIL), such as

ethylammonium nitrate, for example, which are liquid at room temperature[6]

when ionic system such as NaCl are crystalline. We have previously argued[7]

that it is the presence of inert sites attached to one of the charged atoms,

which allows the system to prefer the liquid state at low temperatures instead

of the solid phase, precisely because the inerts sites hinder the charge order,

which otherwise would induce a crystalline state. In particular, this hindered

charge order produces local clustering of the charged segments, which, in turn,

produces a scattering pre-peak in the structure factors. These effects are well

documented for realistic RTIL in 3D [8, 9, 10, 11, 12, 13, 14]. In the present

work, we will consider the 3D form of screened Coulomb interaction, but for the

strict 2D case, similar to that in our previous study in Ref.[3]. For the 2D case,

it would be interesting to know how this screening of the charge order, induced

by the presence of neutral sites, is affected, when we expect lesser possibilities of

molecular conformations? To this effect, we study here the influence of thermal

disorder at various temperatures, but also at various densities, in order to see

the influence of clustering. In addition, there are 2 other interesting issues. The

first issue concerns the existence of a liquid-gas coexistence at low temperatures,

which has been intensely studied for case of the simple monomer system the

so-called restricted primitive model (RPM)[15, 16, 17, 18, 19, 20] and its 2D

version[21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31]. The second issue concerns the

existence of a Kosterlitz-Thouless (KT) transition[32] in the very low density

region, where no free charges exist below the KT horizontal line in the (density,

temperature) phase diagram[26, 28, 29]. We examine here how these 2 properties

are affected by the presence of neutral sites.

In the present study, we principally focus on the model illustrated in Fig.1,

namely a single site anion and linear molecular cation with sites tangently at-

tached to each other, with the cation site at on end. Our study clearly indicates

that 3D to 2D dimensional reduction hinders the stability of the liquid phase

at lower temperatures, such that the molecular ionic system has a stable liquid

state for temperatures higher than the simple monomer ionic liquid. This is

exactly the opposite behaviour than in 3D. In other words, molecular complex-

ification in 2D restricts the range of the liquid phase. Interestingly, layer-like

clustering is favoured at low densities, enforcing a horizontal asymptote in the

(density, temperature) phase diagram for the stability of the disordered phase
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with respect to the cluster “phase”. Since this cluster “phase” needs to be spec-

ified in relation to the behaviour of the integral equation theory, we can only

conjecture about the underlying KT type behaviour in relation to the layer-like

association which occurs in this part of the phase diagram.

2 Models and technical details
In a previous paper[3], we have considered charged system of monomers of equal

size, with the 3D form of screened Coulomb interaction. In the present paper,

as illustrated in Fig.1, we consider a monomeric anion together with a dimer

made of tangent spheres, one being a cation and the other neutral. All sites are

taken to be spheres of diameter σ. The total site-site interaction reads

βvij(r) = ZiZj
TC
T

exp(−r/λ)
r/σ

+
4T0
T

(σ
r

)12
(1)

where β = 1/kBT is the Boltzmann factor, with T the temperature expressed

in Kelvin, TC = 55700K corresponds to the temperature in the 3D Coulomb

interaction [7] for the choice σ = 3Å, T0 = 100K is arbitrarily chosen. The

screening parameter is chosen to be λ = 2. All these parameters are the same

as in Ref.[3]. The valences are Z1 = −1, Z2 = +1 and Z3 = 0. Unlike our

previous study [3], where we have used reduced temperatures, we will use here

temperatures in Kelvin, which allows to make contact with our previous work

in 3D.

It is important to note that, since we use screened Coulomb interactions it

would be incorrect to conclude that the influence of charge in the short range

order is minor. Indeed, in Ref.[3], we demonstrated that the structure of the

system, as witnessed by the correlation functions, both in real and reciprocal

space, show the same characteristics as when unscreened Coulomb is used. This

remark is even more important since we are comparing the log-Coulomb of the

2D case with a screened version of the 3D case. The reason for this strong

influence of the charges comes from the fact that the Coulomb interactions

dominate the short range ordering through the factor TC � T0 . Interestingly,

this effect is not only important in dense fluid, but also in the gas phase, as we

show below in the Results section.

2.1 Monte Carlo simulations
All Monte Carlo (MC) simulations are done in the canonical (NVT) ensemble

following the same protocol previously outlined in Ref.[3]. With one MC cycle

consisting of a tentative move of N particles, 106 equilibration moves and 107

moves for statistics are performed for each system. Cut off of the potential

was half-length of the simulation box. All simulations were performed with

N = 100 or N = 200 molecules. Increasing the number of particles had no

significant effect on the calculated quantities. The fact that smooth correlation
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functions with very low noise level are obtained is strong indication that the

simulations are well converged.

2.2 Integral equation theory
Concerning the integral equation theory (IET) approach, we have used the 2D

site-site Ornstein-Zernike (SSOZ) formalism[33, 34] together with the hypernet-

ted chain (HNC) closure[34]. The choice for this particular closure in place

of others, such as the mean spherical approximation (MSA), self-consistent

closures[26, 28], or the Hirata-Kovalenko type closure[35], is that the HNC clo-

sure represents the first level of approximation where all correlations higher than

rank 2 are neglected[34, 36].

The SSOZ equation consists in the following matrix equation:

SM = I (2)

where the total structure factor matrix S is given by

S =W +
ρ

2
H (3)

and

M =W−1 − ρ

2
C (4)

The intramolecular part of the total structure factor is defined through the

matrix W as

W =

 1 0 0
0 1 J0(kσ)
0 J0(kσ) 1

 (5)

where J0(x) is the zeroth-order integer Bessel function. ρ = N/V is the total

density of the system. The matrices H and C with respective elements h̃ij(k)
and c̃ij(k) are the 2D-Fourier transforms of the pair and direct correlation func-

tions, hij(r) = gij(r)− 1 and cij(r), where gij(r) is the radial distribution func-

tion between monomeric sites i and j. The 2D Fourier transform of a function

f(r) is defined as

f̃(k) = 2π

ˆ ∞
0

rdr f(r)J0(kr) (6)

Since the Coulomb interaction is short ranged, the 2D Fourier transform of the

direct correlation functions are well defined at k = 0, and it is not necessary

to take the special precautions described in Ref.[3] for unscreened Coulomb

interactions.

The HNC closure equation is

gij(r) = exp [−βvij(r) + hij(r)− cij(r)] (7)
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where the exponential term is missing the so-called bridge function bij(r) , which
contains all the high order rank correlations. Setting bij(r) = 0 is the first level

of controlled approximations, which is why this particular closure is interesting.

Other choices, such as the mean spherical approximation (MSA)[34], represent

even higher level of approximation. Further choices, such as self-consistent

closures[26, 28], or the Hirata-Kovalenko type closure[35], are uncontrolled ap-

proximations, mostly based in empirical methodologies, which could help im-

prove finding numerical solutions when HNC cannot, but such methods cannot

help understand nor appreciate the role played by high order correlation through

bij(r).
Both the HNC and the SSOZ equations are approximations. In particular,

the SSOZ equation used here, has known deficiencies[37]. It is only through

the comparison with simulation that one can assert the range of applicability of

these 2 equations. This is the empirical approach that we use here.

These 2 equations (2, 7) are iteratively solved using standard techniques

developed for the 2D case[38]. The correlation functions are sampled on a

logarithmic grid of 1024 points, and the Fourier transforms are handled through

the Talman technique[39, 40].

The atom-atom structure factors shown in Section 3 are defined as

Sij(k) = 1 +
ρ

2
h̃ij(k) (8)

They are related to the structure factor defined in Eq(3) by removing the in-

tramolecular part. Also we add 1 to the cross terms, instead of the usual δij , in
order to facilitate the graphical representation.

While the simulations meet no problems even when strong clustering is

present, we find that the IET cannot be solved below the no-solution line shown

in Fig.2. As mentioned in Ref.[3], in the case of Coulomb interactions, this be-

haviour does not appear to be due to the onset of a liquid-gas transition, but to

a strong clustering of opposite charges. This clustering increases the first peak

of the unlike ions correlations, which is one of the causes for the raise of the

corresponding structure factor near k=0, in addition to the usual long range tail

of the correlations. These points are discussed in the Results section below.

3 Results

3.1 Phase diagram
Fig.2 shows the no-solution “phase” diagram as obtained by the HNC approx-

imation. The data from the monomer ionic fluid of Ref.[3] is equally shown in

dotted lines. It is seen that the, to the difference of a factor in density, which

could match the difference in volume of the two types of system, the shape is

nearly the same. The dimer model shows an increase at high density which could

correspond to the existence of the solid phase at even higher density. What is

more intriguing is the flat asymptote behaviour at very low densities, as shown

in the inset with densities in log scale. This behaviour bears some resemblance
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with that reported by Lomba et al.[28] (inset of Fig.1), in particular when com-

paring the behaviour of computer simulations from Ref.[18] with that of IET for

the case of charged hard-discs model. This latter model mimics the behaviour of

the true Coulomb 2D system, which undergoes a Kosterlitz-Thouless transition

in the low density region, where pairs of opposite charges bind and the system

becomes electrically neutral for lower temperatures[21, 22, 26]. In Ref.[3], our

results suggested that the theory predicts something very similar, as previously

noted[28]. The low density behaviour of the present system is even more striking

with the KT-like behaviour. However, snapshots of simulations indicate that,

in the vicinity of the no-solution line, despite strong clustering, there are several

free charges, which can be explained by the fact that the interaction is screened,

and particles far away cannot irreversibly form pairs. At lower temperatures, we

observe that all charges form bilayer type clusters and no free charges remain.

So, it is tempting to conclude that the approximate theory predicts this binding

reminiscent of the KT ion pairing.

The working hypothesis of this report is that the no-solution line delimited

by HNC corresponds to a physical line below which the simulations show that

clustering occurs. The simulation themselves do not show any sort of singularity

except for the existence of marked clustering below this line. This is very similar

to what we reported in Ref.[3]. At present we have no specific characterization of

what the “phase” below the no-solution line could represent, other than “cluster

phase”. As can be seen in the energy plot (Fig.4 and Fig.5 discussed below),

there is no sign of thermodynamic singularity in the vicinity of the no-solution

line.

3.2 Snapshots
Fig.3a-d show typical snapshots of the system showing how clusters form below

the no-solution line, for 3 different densities ranging from dense liquid ρ = 0.7
to gas phase ρ = 0.01. For each density, 3 temperatures are shown, a high

temperature (above and close to the no-solution region), a temperature just

below the no-solution region, and the lowest temperature T=500K we simulated.

At this temperature we would expect a solid phase in principle. The contrast

between the disordered behaviour above the no-solution line and the existence

below it of well defined clusters with no or little free particles is obvious and

striking. For the dense liquid, we observe that below the no-solution line charge

and invert groups show micro-segregation. In 3D it is possible to find solutions

with a segregated domain pre-peak in the structure factor, but not in 2D.

The existence of “droplets” for lower densities could suggest that the system

is in a 2 phase region, implying a phase separation. However, we could not

observe such phase coexistence between a presumed gas and a liquid. The fact

that small pieces of bilayers are formed in the dense region indicates that no

liquid phase is formed. It is more tempting to suggest the existence of a cluster

phase rather.

6



3.3 Thermodynamics
Fig.4 shows the excess energies per particle (upper panel) and the constant vol-

ume heat capacities (lower panel) versus temperature, as obtained from com-

puter simulations. Each curve corresponds to a isochore. In relation to the

no-solution diagram in Fig.2, we have drawn the curves for densities below

ρ = 0.1 in dotted lines, and full lines for densities above. The curve for ρ = 0.4
which corresponds to the minimum of the no-solution line is drawn in red. The

two highest densities,ρ = 0.76 and ρ = 0.7 are shown in dotted cyan, since

they have trends different from the other curves. The yellow dots represent the

no-solution line in Fig.2. For each density, the energy is seen to become more

negative as more and more clusters form, which is expected. The heat capacity

is seen to become more noisy in the low temperature cluster region, which is

expected of the rather small size (N=200) in the simulations. In a way, the

appearance of these fluctuations help delimitate the cluster region. However,

we do not see any signature or singularity in the vicinity of the no-solution line.

Indeed, the smoothness of the curves in the vicinity of each yellow dots clearly

indicate that there is no variation of curvature, which would point to a change

of energy due to sharper clustering, and would then reflect as a bump in the

heat capacity. This is not observed here. It is easy to connect the no-solution

points (the yellow dots) in the energy/temperature diagram into a u-shaped

curve, but not in the heat capacity diagram, specially for the high density part.

This is partly due to the fact that the heat capacities change as the minimum

in the phase diagram (shown as a red line in the plots) is crossed.

Fig.5 shows a comparison of the excess energies as obtained from simulations

(in blue) and the theory (magenta), over the temperature range and for 3 typical

densities ranging from high (ρ∗ = 0.7, upper set of curves) to low (ρ∗ = 0.1,
lower set), through an intermediate density (ρ∗ = 0.4, middle set). We observe

a rather good agreement over the range of overlapping temperatures, with a

very similar trend of both calculations. The agreement is excellent for medium

to low densities. The last low temperature point of the theory corresponds

to the no-solution point, and it is clearly seen that there is no trend for any

change of curvature, which would suggest a phase change. In agreement with

this observation, we do not find any singularity in the heat capacities, neither in

the compressibility. This is in contrast with what was observed in the case of an

underlying gas-liquid transition in Ref.[28], where a sharp change in curvature

of the compressibility and the heat capacity was reported in the vicinity of the

no-solution points.

The conclusion we draw in this study is that usual thermodynamic quantities

which help signal first or second order transitions, do not show any singularities

or marked behaviour as the cluster line, or the no-solution of the IET, are

crossed.
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3.4 Cluster size distribution
Cluster size distributions have been calculated by computer simulations by using

a distance criteria, namely the first minimum of the g+−(r) function. Fig.6

shows these distributions, as the number of cluster N(cS) of size cS versus the

cluster size cS , and for typical 4 densities, ranging from high ρ = 0.76 to medium

ρ = 0.4, low ρ = 0.1, to very low ρ = 0.01. For each density, the cluster size

distributions for all the temperatures studied from T = 5000K (top curve in

red) until T = 500K (lowest curve in green) are displayed. The temperatures

corresponding to the no-solution line of Fig.2 are shown in cyan, and those

below this temperature are in grey lines. For all 4 cases, it is clearly seen that

there is a gap separating the high temperature distributions from the lower

ones. The gray curves show a different behaviour than the higher temperature

distributions, with a clear tendency to display higher cluster probabilities for

large sizes. For all 4 cases aside the lowest density, it is seen that the gap

starts more or less below the cyan curve, which indicates a good agreement

with the cluster “signature” given by the theory through the no-solution line

of Fig.2. This signature fails at the very low density, as the no-solution curve

(at T = 3500K) is clearly above the gap signature, shown as the gold line at

T = 1500K. This discrepancy between theory and simulation can be attributed

to the fact that SSOZ equation is known to lead to incorrect predictions for

the very low density region[37]. This means, that the cluster region in very

low density region, as obtained from the simulations, should saturate at a lower

temperature than what is shown from the theory. Otherwise, it would seem

that the no-solution prediction of the HNC theory is in rather good agreement

with predictions from simulations.

3.5 Correlation functions and structure factors
Fig.7a-e show a comparison between the simulation and the HNC approximation

for all the 6 site-site correlation functions (left panel) and corresponding struc-

ture factors (right panel), for different densities and temperatures very close

above the no-solution line of Fig.2, which are the most demanding conditions

to test the theory. These plots principally illustrate the remarkable agreement

between the simulation and IET data. For the dense liquid phase ρ = 0.7, we
also show a plot for a high temperature (Fig.7a), demonstrating that there is not

much quantitative difference with the low temperature case in Fig.7b. Fig.7e

shows a comparison for very low density ρ = 0.01 at T = 3500K, and more

particularly an interesting sub-structure which appears for g+−(r) obtained by

the IET. It concerns a marked double shoulder feature which appears just at

base of the first peak around r ≈ 2σ. This feature is absent from simulation

(magenta curve). However, we find a similar feature in the simulation data,

but for a lower density ρ = 0.002. This is reported as a green curve in Fig.7e.

This feature gives an indirect indication in the clustering differences between

theory and simulations. We believe that the HNC closure tends to exaggerate

near neighbour correlations, as can be noted for the hard sphere fluid[34], but
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also for orientational ordering[40]. Following this feature of the theory, and the

slanting of the no-solution curve in the low density region of Fig.2, it seems

reasonable to suppose that the clustering feature found in the theory happens

at a lower density for the same temperature. This finding points towards again

towards clustering dominating the lower part of the phase diagram. For this

low density ρ = 0.01 in the left panel of Fig.7e, we has shown the correlation

functions h̃ij(k) instead of the Sij(k), since the low density ρ = 0.01 damps

all the features because of the definition Eq.(8). All these figures show minor

disagreements here and there, but these can easily be accounted for the missing

bridge term in Eq.(7)

The figures also show that the very good agreement between the 2 ap-

proaches, holds both in real and reciprocal space. Such agreement was equally

noticed in 3D in Ref.[7]. It was attributed to low fluctuations of the short range

order and the subsequent homogeneity enforced by the strong charge ordering.

Indeed, approximate IET tend to be less accurate when fluctuations are present,

either as reflecting the great possibilities of positional order, such as in simple

liquids, or long range correlations such as in the vicinity of phase transitions.

In contrast, the strong local order imposed by the charge ordering reduces fluc-

tuations and enforce the type of agreement we observe for all the region where

solutions could be found. The fact that the worse agreement is precisely found

for the correlations involving the neutral site X, which have more disorder in

their positioning, further enforces the homogeneity argument presented here.

The fact that the agreement holds all the way until the no-solution line is hit,

is a very strong indication about the nature of the state below the no-solution

line. It suggests that this state is not due to some mechanical instability of

the upper homogeneous phase. If it was, then we would see a progressive loss

of agreement as we near the no-solution line from above. On the contrary,

this second phase is due to clustering and not fluctuations, as illustrated by the

snapshots in Fig.3. The passage from homogeneous phase to cluster phase is not

made through any thermodynamic signature, such as heat capacity or entropy,

nor appearance of critical fluctuations.

The approximate IET cannot account for the clusters which appears below

the no-solution line, because they miss high order correlation through the so-

called bridge function. However, the rather good agreement with simulations

found until the no-solution line, tend to indicate that these bridge diagrams

do not play an important role until this line is met from above. It is possible

that they become suddenly important below this line, hence explaining why

IET cannot get there. This tentative explanation links the cluster “phase” to

the raise in importance of high rank correlations, principally through the bridge

diagram term. This points requires separate investigations.

3.6 Supra-molecular structures and pre-peak
In a previous study of 3D room temperature model ionic liquid by one of

us[7], it was found that the presence of neutral sites induced a local segre-

gation of charged and neutral sites, and in agreement with what is observed
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in realistic such liquids[10]. This segregation reflects itself in the presence of

a low-k pre-peak feature, observed both in the cross charge structure factor

S+−(k) and in like charge structure factors S++(k) and S−−(k). By sepa-

rating out the charge-charge and density-density structure factors through the

Bhatia-Thornton transformation[43], it was found that only the density-density

structure factor retained this pre-peak[7], indicating that it is indeed related to

hetereogeneity in the spatial density distribution.

Fig.8 shows the Bhatia-Thornton (BT) structure factors of selected state

points lying just above the the no-solution line, and corresponding to some of

the structure factors shown in Fig.7b-e. These BT structure factors are in fact

related to a linear transformation from microscopic densities of charged atom

to total density and charge density. The resulting structure factors are defined

as in our previous work [7]:

SNN (k) = S++(k) + S−−(k) + 2S+−(k) (9)

SZZ(k) =
1

4

[
z2+S++(k) + z2−S−−(k) + 2z+z−S+−(k)

]
SNN (k) represent the structure factor related to total density fluctuations, while

charge fluctuations are represented by SZZ(k). We observe again that the agree-

ment between the simulation and IET data is very good. Similarly to Fig.7e,

and again because of the low density ρ = 0.01, the lower right panel shows the

h̃(k) corresponding to the BT structure factor, with h̃cc(k) shifted by 1 in order

to enforce the resemblance with the other plots.

These plots indicate that only the case ρ = 0.4 shows marked pre-peak

feature in Scc(k), whereas the case for ρ = 0.7 shows only a shoulder, and

the low density cases show mostly k=0 density fluctuations. These finding are

consistent with the snapshots shown in Fig.3a-d. At high density, we observe a

segregation of charged and neutral groups, but the dimensionality does not allow

for a marked segregation as in the 3D case. The marked pre-peak for the medium

density case is possibly due to the clear clustering (Fig.3b), which enforces the

local heterogeneity. In Fig.3b, for T=1000K we observe clear chain-like clusters

with evident +- chain formation. In other words, we see that domain segregation

is strongly affected by dimensionality, and that it is stronger in 3D than in 2D.

This finding could be of relevance for the observation of charge segregation in

adsorbed realistic RTILs.

4 Discussion and Conclusion
Although we use a theoretical approach, with simulations and integral equations,

this paper is similar to an experimental paper, in the sense that we present only

outcome of calculations, which in turn suggest some properties of the system. In

particular, we point to the existence of a cluster phase, which is not accompanied

by any of the usual signatures for thermodynamical phase transitions. Since we
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compare approximate theory with simulations, we cannot attest that the no-

solution line represents the actual boundary between the homogeneous and the

cluster phase. If it was possible to detect this line from simulations alone, the

evidence presented here suggests that it could possibly lie below the approximate

no-solution line predicted by IET, but close to it.

Although our results concern only screened version of the 3D Coulomb inter-

action, we do not think that incorporating true 2D Coulomb interaction would

modify the conclusions reached here. This is because it is the strong short range

order is similar in both type of interactions, and we conjecture that it rules the

structural properties of this type of systems. In particular, smectic layer-like

clusters would most probably form even in the case of the log-Coulomb interac-

tion.

Clustering plays an important role, even in simple liquids[41]. It is usually

related to fluctuations, which concerns principally the k = 0 part of the structure
factor, as far as the stability of the system is considered[34]. Our experience

in studying realistic 3D associating liquids, such as water or alcohols, indicates

that fluctuations at k 6= 0, in addition to being related to clustering[42], play

little or no role in the global stability of the system. On the contrary, they

enhance stable local heterogeneity[42]. Therefore, since in the present case,

simulations indicate that bilayer-like clustering appears in the lower part of the

phase diagram, they support the fact that this system is governed by charge

ordering induced clustering everywhere in the phase diagram, albeit to various

degrees. In view of the remarkable agreement found in the correlation functions

obtained from simulation and calculated from the theory, these findings help

supporting the hypothesis that the no-solution line found in approximate IET

could be a physical line distinguishing between different clustering regimes. The

lower part of the phase diagram in Fig.2 would the be dominated by many body

correlations, which cannot be captured by two-body level description. This line

of argument would also explain why such IET are unable to provide solutions

for well mixed but micro-heterogeneous aqueous mixtures, which could equally

require explicit many body correlation description. Subsequent investigation

along these lines are in progress.

Finally, the polar-nonpolar domain segregation is found to be diminished by

dimensional reduction. This is very apparent for dense surface coverage, but

the segregation seems to be restored when particle confinement conditions are

decreased by lowering the surface coverage density. This finding could have

some relevance to 2D adsorption of realistic 3D ionic liquids.
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Figure Captions
Fig.1 Ionic liquid model, with 1 site anion (red) and dimer cation with 1

charged (blue) and 1 neutral (magenta). All sites have same diam-

eter and same 1/r^12 dispersive repulsion (see text).

Fig.2 (Density, temperature) no-solution “phase” diagram from the IET.

Yellow dots correspond to the lowest temperature for which IET

could be solved, and the blue line is connecting them. The dotted

line represent the no-solution line for Model 2 from Ref.[3]. The

inset shows the same diagram but on log scale for the density.

Fig.3a Snapshots for high density ρ = 0.7 at 3 different temperatures T =
2000K, T = 1000K and T = 500K. The anion is red, cation blue and

attached neutral site is magenta.

Fig.3b Snapshots for medium density ρ = 0.4 at 3 different temperatures

T = 1000K, T = 800K and T = 500K

Fig.3c Snapshots for low density ρ = 0.1 at 3 different temperatures T =
2500K, T = 1500K and T = 500K

Fig.3d Snapshots for very low density ρ = 0.01 at 3 different temperatures

T = 3500K, T = 2500K and T = 500K

Fig.4 Excess energy (top) and heat capacity (bottom) as a function of

temperature (divided by 1000), as obtained from the simulations.

Each line correspond to a density in the range ρ = 0.76, 0.70, 0.60,
0.50, 0.40, 0.30, 0.20, 0.10, 0.05, 0.02, 0.01, 0.005 and 0.002. Curves
for very low densities below 0.1 are in dotted lines, as well as those

for very high densities above 0.65 (cyan). The line in red is for

ρ = 0.4, which corresponds to the minimum of the no-solution line

of the IET in Fig2. Points corresponding to this no-solution line are

indicated in orange dots. The green line connecting the orange dots

is indicative (see text).

Fig.5 Comparison of the excess energies between simulations (blue curves)

and integral equations (magenta curves), as a function of temper-

atures, and for 3 densities, ρ∗ = 0.7,0.4 and 0.1. For clarity, the

curves for ρ∗ = 0.7 and ρ∗ = 0.1 have been shifted by +5 and -5,

respectively (the numbers shown in orange next to the labels).

Fig.6 Cluster size distributions for 4 densities (as indicated above each

panel) and temperatures (from top to bottom) T = 5000K (red

curve), 3500K, 3200K, 3000K, 2800K, 2500K, 2000K, 1500K, 1000K,

900K, 800K, 700K, 600K and 500K (green curve). For each density,

the cyan line corresponds to the temperature the closest to the no-

solution line of Fig.2. All size distributions below this temperature

14



are shown in grey lines. For the case ρ = 0.01 (lower right panel),

the cyan line is at T=3500K, while the prediction from simulation

seems to be T=1500K (shown in gold). The insets show a zoom on

the lower size distributions corresponding to clustering as predicted

by simulations.

Fig.7a Correlation functions (left) and corresponding structure factors (right)

for high density ρ = 0.7 and high temperature T = 3000K. X desig-

nates the neutral site of the cation in Fig.1.

Fig.7b Same as Fig.7a, but for ρ = 0.7 and temperature T = 1500K closer

to the no-solution line in Fig.2.

Fig.7c Same as Fig.7a, but for medium density ρ = 0.4 and temperature

T = 1001K

Fig.7d Same as Fig.7a, but for low density ρ = 0.1 and temperature T =
2000K

Fig.7e Same as Fig.7a, but for very low density ρ = 0.01 and temperature

T = 3500K. The green curve is explained in the text.Note, that it is

h̃ij(k) that are plotted in the right panel (see text)

Fig.8 Bathia-Thornton structure factors Scc(k) and Szz(k) for the state

points corresponding to Figs.7b-e. Scc(k) is shown in blue for IET

and dotted green for simulations. Szz(k) is shown in red for IET

and dotted gray for simulations. The lower right panel shows h̃cc
and h̃zz (see text).

.
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.

.

Fig.1 - Ionic liquid model, with 1 site anion (red) and dimer cation with 1

charged (blue) and 1 neutral (magenta). All sites have same diameter and same

1/r^12 dispersive repulsion (see text).

.

16



.

.

. Fig.2 - (Density, temperature) no-solution “phase” diagram from the IET.

Yellow dots correspond to the lowest temperature for which IET could be solved,

and the blue line is connecting them. The dotted line represent the no-solution

line for Model 2 from Ref.[3]. The inset shows the same diagram but on log

scale for the density.

17



.

.

. Fig.3a - Snapshots for high density ρ = 0.7 at 3 different temperatures

T = 2000K, T = 1000K and T = 500K. The anion is red, cation blue and

attached neutral site is magenta.
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.

.

.Fig.3b - Snapshots for medium density ρ = 0.4 at 3 different temperatures

T = 1000K, T = 800K and T = 500K
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.

.

.Fig.3c - Snapshots for low density ρ = 0.1 at 3 different temperatures T =
2500K, T = 1500K and T = 500K
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.

.

.Fig.3d - Snapshots for very low density ρ = 0.01 at 3 different temperatures

T = 3500K, T = 2500K and T = 500K
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.

.

.Fig.4 - Energy (top) and heat capacity (bottom) as a function of tempera-

ture (divided by 1000), as obtained from the simulations. Each line correspond

to a density in the range ρ = 0.76, 0.70, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10, 0.05,
0.02, 0.01, 0.005 and 0.002. Curves for very low densities below 0.1 are in dotted

lines, as well as those for very high densities above 0.65 (cyan). The line in red

is for ρ = 0.4, which corresponds to the minimum of the no-solution line of

the IET in Fig.2. Points corresponding to this no-solution line are indicated in

orange dots. The green line connecting the orange dots is indicative (see text).

.
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.

Fig.5 - Comparison of the excess energies between simulations (blue curves)

and integral equations (magenta curves), as a function of temperatures, and

for 3 densities, ρ∗ = 0.7,0.4 and 0.1. For clarity, the curves for ρ∗ = 0.7 and

ρ∗ = 0.1 have been shifted by +5 and -5, respectively (the numbers shown in

orange next to the labels).

.
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.

.

Fig.6 - Cluster size distributions for 4 densities (as indicated above each

panel) and temperatures (from top to bottom) T = 5000K (red curve), 3500K,

3200K, 3000K, 2800K, 2500K, 2000K, 1500K, 1000K, 900K, 800K, 700K, 600K
and 500K (green curve). For each density, the cyan line corresponds to the

temperature the closest to the no-solution line of Fig.2. All size distributions

below this temperature are shown in grey lines. For the case ρ = 0.01 (lower

right panel), the cyan line is at T=3500K, while the prediction from simulation

seems to be T=1500K (shown in gold). The insets show a zoom on the lower

size distributions corresponding to clustering as predicted by simulations.

.
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.

.

.Fig.7a - Correlation functions (left) and corresponding structure factors

(right) for high density ρ = 0.7 and high temperature T = 3000K. X designates

the neutral site of the cation in Fig.1. Data from theory is plotted in blue and

that from simulation in blue.
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.

.

.Fig.7b - Same as Fig.7a, but for ρ = 0.7 and temperature T = 1500K closer

to the no-solution line in Fig.2.
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.

.

.Fig.7c - Same as Fig.7a, but for medium density ρ = 0.4 and temperature

T = 1001K
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.

.

.Fig.7d - Same as Fig.7a, but for low density ρ = 0.1 and temperature

T = 2000K
.
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.

.

.Fig.7e - Same as Fig.7a, but for very low density ρ = 0.01 and temperature

T = 3500K. The green curve is explained in the text. Note, that it is h̃ij(k)
that are plotted in the right panel (see text)

.
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.

.

.Fig.8 - Bathia-Thornton structure factors Scc(k) and Szz(k) for the state

points corresponding to Figs.7b-e. Scc(k) is shown in blue for IET and dotted

green for simulations. Szz(k) is shown in red for IET and dotted gray for

simulations. The lower right panel shows h̃cc and h̃zz (see text).
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