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Abstract

The prospects of future satellite gravimetry missions to sustain a continuous
and improved observation of the gravitational field have stimulated studies of
new concepts of space inertial sensors with potentially improved precision and
stability. This is in particular the case for cold-atom interferometry (CAI)
gradiometry which is the object of this paper. The performance of a specific
CAI gradiometer design is studied here in terms of quality of the recovered
gravity field through a closed-loop numerical simulation of the measurement
and processing workflow. First we show that mapping the time-variable field
on a monthly basis would require a noise level below 5 mE/

√
Hz. The mis-

sion scenarios are therefore focused on the static field, like GOCE. Second,
the stringent requirement on the angular velocity of a one-arm gradiometer,
which must not exceed 10−6 rad/s, leads to two possible modes of operation
of the CAI gradiometer: the nadir and the quasi-inertial mode. In the nadir
mode, which corresponds to the usual Earth-pointing satellite attitude, only
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the gradient Vyy, along the cross-track direction, is measured. In the quasi-
inertial mode, the satellite attitude is approximately constant in the inertial
reference frame and the 3 diagonal gradients Vxx, Vyy and Vzz are measured.
Both modes are successively simulated for a 239 km altitude orbit and the er-
ror on the recovered gravity models eventually compared to GOCE solutions.
We conclude that for the specific CAI gradiometer design assumed in this
paper, only the quasi-inertial mode scenario would be able to significantly
outperform GOCE results at the cost of technically challenging requirements
on the orbit and attitude control.

Keywords: Cold atom interferometry; space gravity gradiometry; gravity
field recovery; closed-loop simulation

1. Introduction

The GOCE (Rummel et al., 2011) and GRACE (Tapley et al., 2004) mis-
sions have provided unprecedented insights in the static and time-variable
gravitational field of the Earth and proved to be very useful in numerous
fields, from unification of height systems to the determination of global mass
distribution and mass transport in the Earth system (Kusche et al., 2012).

The two satellites of the gravimetry mission GRACE (Gravity Recovery
and Climate Experiment) are orbiting the Earth since 2002. Its major mea-
surement method relies on Satellite-to-Satellite ranging which measures the
varying distance between the two satellites with µm precision using a mi-
crowave tracking system. GRACE provided monthly solutions of the gravity
field during most of its lifetime and therefore enables analysing its temporal
variations. The latter are caused, among others, by ice mass loss in Greenland
or Antarctica, glacial isostatic rebound or changes in the global hydrological
cycle see, e.g. Eicker et al. (2016). The GOCE (Gravity field and steady-
state Ocean Circulation Explorer) mission delivered data between 2009 and
2013, which allowed to determine the geoid (Torge and Müller, 2012) with
an accuracy of about 1 to 2 cm for a spatial resolution of 100 km on the
Earth surface. This provided the basis to establish global physical height
systems (i.e. those related to the gravity field) and - combined with altimet-
ric measurements of the mean sea surface - to estimate global ocean currents.
GOCE is also the first mission which employed gradiometry. The core of the
GOCE gradiometer consists of 3 pairs of electrostatic accelerometers mea-
suring the differential gravitational accelerations on its sensitive axis with a
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noise of about 10 mE/
√

Hz (1 E = 10−9s−2) in a measurement bandwidth
(MBW) between 5 and 100 Hz (Rummel et al., 2011). Hereafter, the noise
level will be expressed (if not mentioned otherwise) in terms of amplitude
spectral density (ASD) which is the square root of the power spectral density.

Novel science results were obtained thanks to GRACE and GOCE, giving
insight in a multitude of processes in the hydrosphere, cryosphere, oceans,
atmosphere and solid Earth that could not be assessed before. As stressed
in various reports as for instance in Pail et al. (2015) or Panet et al. (2013),
there is a strong demand for sustaining a global, homogeneous and continuous
observation of the Earth’s gravitational field. Furthermore, the spatial and
temporal resolution along with the precision should be improved in order
to meet the challenging requirements of the different end users. Therefore,
new concepts for follow-on missions have been developed with the aim to
achieve a better resolution (ideally below 100 km spatially and below 1 month
temporally), a higher accuracy and a longer time series (Gruber and Team,
2014; Elsaka et al., 2014).

In this paper we investigate to what extent a new concept of gradiometer
based on cold-atom interferometry (CAI) sensors (Carraz et al., 2014) can
reach such objectives. Gradiometry offers several advantages: a gradiometer
measures directly a functional of the gravitational field, moreover, it performs
like a high-pass filter increasing the relative sensitivity to the high-frequencies
of the gravitational signal corresponding to the small wavelengths of the field.
The constraints for the measurement bandwidth of a CAI gradiometer might
be relaxed and potentially a higher accuracy might be achieved. Last but not
least, CAI technology provides a very good stability of the gradiometer bias
and scale factor, a high common mode rejection of 140 dB was demonstrated
by McGuirk et al. (2002) and is likely to have white noise over a wide fre-
quency range while the GOCE gradiometer noise was approximately white
only in its MBW.

After a brief description of the physical principle of the gradiometer con-
cept and the conditions to operate it in space, the method of evaluation of
its performance in terms of quality of the recovered gravity field model is
described. We have chosen to carry out the study through a closed-loop sim-
ulation of the measurement process in the time domain. Finally the results
and the technical feasibility of the proposed concept are discussed.
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2. Principle of the CAI gradiometer concept

The gravity gradients Vij are the second-order partial derivatives of the
gravitational potential V :

Vij =
∂2V

∂i∂j
. (1)

where xi and xj, are Cartesian coordinates of the 3 dimensional space. The
resulting 9 components give the GGT (gravitational gradient tensor). In the
following, we note V the GGT and Vij i, j ∈ {x, y, z} any component of
the tensor. Since the gradiometer is an inertial sensor, it is not possible in a
non-inertial frame to measure directly the gravitational gradients, but rather
the gradients of the acceleration field. The latter are however connected to
the gravitational gradients as follows (for the diagonal elements):

Vxx = Γxx − ω2
z − ω2

y

Vyy = Γyy − ω2
z − ω2

x

Vzz = Γzz − ω2
x − ω2

y

(2)

where Γii i ∈ {x, y, z} is the diagonal acceleration gradient along the i-axis
and (ωx, ωy, ωz)

t = Ω is the vector of the angular velocity of the GRF (gra-
diometer reference frame) with respect to the IRF (inertial reference frame).
We will refer hereafter to the terms in ω in equations (2) as the centrifugal
terms. Finally, two other observables must be given in order to define cor-
rectly the gravitational gradient: the position of the measurement point and
the orientation of the measurement frame, i.e. the attitude of the GRF with
respect to the IRF.

In the case of the CAI gradiometer concept presented here, the acceler-
ation gradient is approximated by the difference of acceleration measured
simultaneously at adjacent points. For the x axis, one has for instance

Γxx =
∆ax
l

(3)

where ∆ax is the difference of the x-component of the acceleration between
two points aligned along the x-direction and separated by a baseline l. Similar
expressions hold for the two other diagonal acceleration gradients.

Here we introduce the light-pulse atom interferometry utilized in the ac-
celeration measurement and the CAI gradiometer considered in this study

4



Figure 1: Atom-light interaction for beam splitting. (1) The laser beam features two fre-
quencies ω1, ω2 and is retro reflected at the mirror. This leads to four different components
in the light, distinguished by frequency and / or propagation direction (k). Depending on
the duration of the interaction of the light field with the atoms, the atoms are coherently
excited into a superposition state of initial momentum p0 and p0 + ~(k1−k2) (~ reduced
Planck’s constant) by absorption and stimulated emission of a photon from the incoming
(wave vector k1) and the retro reflected beam (wave vector k2). During this process, the
phase k · d is imprinted onto the atoms, depending on the distance of the atoms to the
mirror d and the effective wave vector k = k1 − k2. (2) In the special case of negligible
velocity of the atom parallel to the effective wave vector k, a four photon process leads to
a symmetric momentum transfer with the superposition of the three momentum states p0

and p0 ± ~(k1 − k2), effectively doubling the effective wave number.
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Figure 2: Atom interferometry scheme for gradiometric measurements as proposed in
(Carraz et al., 2014). During the preparation time tprep an atomic ensemble is generated,
split into two leading to a separation l between the ensembles, and injected into the two
atom interferometers with forward drift velocity v. Here, the atomic ensembles are in
free fall. The three-pulse sequence with drift times T forms a diamond shaped geometry.
The first pulse imprints a reference phase (k · d) onto the atoms to which the phases
imprinted at the two subsequent pulses is compared. In a simplified picture, the total
phase accumulates to kd(0) − 2kd(T ) + kd(2T ), where d(t) denotes the centre of wave
packet position (grey dotted line) and other spurious contributions are omitted. With
d(t) = d0 + v(t) + 1

2aT
2 the phase shift becomes k · aT 2. This result is recovered for

the upper interferometer with the replacement d → d + l. Differential displacements
(d0 = d1 6= d2 6= d3) or vibration of the mirrors (1− 3) are suppressed in the differential
signal. Depending on the total phase shift, the transition probability oscillates between the
inner an the outer output port. During detection, this transition probability is recorded
by flashing light onto the atoms and either collecting the fluorescence or measuring the
absorption. This configuration enables a measurement in 1D and can be reproduced for
the other two axis for a 3D measurement. A preparation time tprep shorter than the total
interferometer time 2T enables an interleaved mode of operation (Carraz et al., 2014).
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which was proposed in (Carraz et al., 2014), based on recent developments in
microgravity experiments (Barrett et al., 2016; Rudolph et al., 2015; Aguilera
et al., 2014; Müntinga et al., 2013). An atom interferometer exploits inter-
ference of matter waves which are coherently manipulated by light fields. At
each atom-light interaction, a phase is imprinted onto the atoms which de-
pends on the relative position between the light field and the atoms (see 1).
The light field, consisting of two frequencies, is retro reflected at a mirror and
drives two-photon transitions during each interaction. This couples different
momentum states which are required to form the interferometer geometry
sensitive to accelerations. Effectively, the mirror serves as a reference plane
for the position of the atoms during the interactions. A typical implemen-
tation for an atom interferometer sensitive to accelerations is a three pulse
sequence as used in various experiments (Peters et al., 1999; McGuirk et al.,
2002; Louchet-Chauvet et al., 2011; Hu et al., 2013; Rosi et al., 2014; Ko-
vachy et al., 2015a; Berg et al., 2015; Freier et al., 2016; Abend et al., 2016)
and also proposed for the CAI gradiometer (Carraz et al., 2014) as shown
in fig. 2. Initially, a beam splitter pulse creates a coherent superposition be-
tween two momentum states. Due to the double diffraction (Lévèque et al.,
2009) employed here, the trajectories drift apart with four single photon mo-
menta. After a free evolution time T , a second pulse coherently inverts the
momenta. This allows closing the atom interferometer with a third beam
splitting pulse after another free evolution time T . The detection reads out
the relative population of the output ports. More elaborated schemes, spa-
tially resolving structures in the atomic ensembles are available (Dickerson
et al., 2013; Müntinga et al., 2013), but in the most simple case, the pop-
ulations N1, N2 of the two ports are just counted. The normalized output
signal then reads

P (φa) = N1/(N1 +N2) = P0 + A · cos(φa) (4)

with offset P0, amplitude A, contrast C = A/P0, and accumulated phase
φa. Neglecting other effects, the low expansion rate enables high beam split-
ting efficiency, and consequently a contrast close to unity C ∼ 1. Neglecting
finite pulse durations (Antoine, 2007), and omitting other / higher order
terms, the phase shift due to accelerations a is calculated (Bordé, 2004; Ari-
mondo et al., 2009) to

φa = k · aT 2 (5)
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where k denotes the effective wave vector corresponding to the four pho-
ton momenta. Here, the three-pulse sequence is preferred to the four-pulse
sequence also discussed in (Carraz et al., 2014), because it offers a higher
contrast and a larger scale factor, scaling as ∼ T 2.

Additional elements important for a light-pulse atom interferometer are
the source generating the atomic ensemble, and the detection system, read-
ing out the output ports of the atom interferometer. For each cycle, the
source prepares an atomic ensemble with a number of atoms N , and a fi-
nite velocity spread σv which corresponds to an (effective) temperature. In
CAI (Carraz et al., 2014), the generation of 87Rb Bose-Einstein condensates
is proposed for the source to enable very low residual expansion rates at a
level of 100µm/s (Kovachy et al., 2015b; Müntinga et al., 2013).

The fundamental limit in such an interferometer is the quantum projection
noise (QPN), implying a minimum phase noise per cycle of

σφQPN
= 1/(C

√
N) (6)

Consequently, the QPN limited acceleration sensitivity is σa = 1
C
√
NkT 2

√
tc
τ

for a cycle time tc, an integration time τ , k = |k|, and acceleration a parallel
to k. Manipulating two of these atom interferometers, spatially separated
by a baseline l, simultaneously with the same beam splitter light fields forms
the gradiometer geometry (McGuirk et al., 2002). The gradient information
is recovered from the differential signal divided by the baseline. In this case,
the QPN limited sensitivity to an acceleration gradient is

σΓ =

√
2

C
√
NkT 2l

√
tc
τ

(7)

for an acceleration gradient Γ in direction of the beam splitters, k · l = kl. In
(Carraz et al., 2014), an interleaved measurement mode is proposed. Several
atom interferometers are operated concurrently with a cycle time tc = 1 s.
With N = 106, k = 8π/(780 nm), T = 5 s, and l = 0.5, a sensitivity of
3.5 mE/

√
Hz is obtained by Carraz et al. (2014), which corresponds to a

white noise with a one-sided ASD of 3.5×
√

2 ≈ 5 mE/
√

Hz.
In principle, the trace of the gradient tensor can be measured by repro-

ducing this set-up in all three axes. In a nadir orientation, an additional
constraint has to be considered. A typical GOCE-like altitude would im-
ply an orbital frequency of Ω ∼ 1 mrad/s which affects the interferometers
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oriented along track and in the nadir direction. Due to the rotation, the
trajectories do not close anymore at the third beam splitting pulse, implying
a significant contrast reduction. The two trajectories will miss each other by
∼ 1.4 mm (in direction of forward drift velocity v) which is significantly larger
than the thermal de Broglie wavelength of the atoms of ∼ 19µm. Without
sufficient overlap, the contrast is lost, rendering the gradiometer insensitive.
Due to the linear dependency, a reduction of the rotation rate by a factor
of ∼ 1000 would be required to recover the contrast. Additionally, a rota-
tion induced phase shift φrot = 2(k× v) ·ΩT 2 appears if a drift velocity v is
present. In the CAI proposal, the atoms are launched into the interferometer
with a forward drift velocity v ≈ 2.4 cm/s, v = |v|, |k×v| = kv. This shift is
cancelled in the differential signal between the accelerometers which contains
the information of the gradient, but only if the forward drift velocities are
the same for both. Due to the finite velocity spread and the finite number of
atoms per ensemble, a random velocity uncertainty of σv/

√
N which is un-

correlated between the interferometers will remain. This limits the maximum
rotation rate compatible with shot noise limited performance to ∼ 1µrad/s,
including some margin. This value is similar to the requirement for closing
the interferometer. Moreover, the finite velocity distribution of the ensemble
implies a velocity dependent dephasing. When averaging over an output port
by counting the population, the signal vanishes (C → 0), since a fringe pat-
tern inside the output port appears for a rotation rate significantly exceeding
∼ 1µrad/s leading to 2(k ·σv) ·ΩT 2 � 0.1π ((Tackmann et al., 2012)). With-
out further modifications, a maximum rotation rate of ∼ 1µrad/s can only
be maintained in the cross-track direction if a nadir pointing mode is chosen.
Counter rotating the mirror to cancel the rotation rate (Freier et al., 2016;
Dickerson et al., 2013; Lan et al., 2012) is not an option due to the interleaved
mode (several concurrent atom interferometers) and the huge dynamic range
requirement of several tens of milli-radians. Note, that a gravity gradient
parallel to k also leads to a non-closed atom interferometer, where the dis-
placement at the last beam splitter pulse is parallel to k. This effect can be
mitigated as described in (Roura et al., 2014; Roura, 2017). An alternative is
the operation in a quasi-inertial pointing mode with maximum spurious rota-
tion rates of 1µrad/s in all three axes. These two pointing modes, nadir and
quasi-inertial, motivate the performance discussion in the following sections.
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3. Framework and method of the simulation

3.1. Objectives of a potential CAI gradiometer mission

Before starting any simulation, it is important to clearly specify the sci-
entific objectives of a potential CAI gradiometer mission, keeping in mind
the expected noise level of the sensor. These objectives will be a key fac-
tor in the choice of the satellite orbit which is an essential parameter of
the simulation study. As previously stated in the introduction, the various
proposals for future space gravity missions emphasize the need to sustain a
continuous monitoring of the time-variable gravity field. However, and as al-
ready noticed in Carraz et al. (2014), a CAI gradiometer in the configuration
described in the previous section is not sensitive enough to detect the corre-
sponding signals with a sufficient signal-to-noise ratio (SNR) on a monthly
basis.

To get an idea of the magnitude of the time-variable gravity signal as
compared against the CAI gradiometer sensitivity, the amplitude spectral
densities of the time-variable Vxx, Vyy and Vzz in the orbital frame of a circular
orbit at 259 km altitude are plotted in Figure 4 together with the expected
gradiometer sensitivity. The time-variable gravitational signal is computed
from one month (April 2006) of the updated Earth System Model from ESA
(Dobslaw et al., 2015), which contains the contribution of the atmosphere,
oceans, cryosphere, land hydrology and solid Earth. The x, y and z-direction
defining the gradiometer reference frame are outlined in Figure 3. One can
see that a sensitivity below 0.1 mE/

√
Hz is required if these gradients are to

be detected with an SNR larger than 1 in the frequencies between 10−3 and
10−2 Hz.

We have therefore decided to focus our study on the ability of a CAI
gradiometer mission to recover the static gravity field. As such, the GOCE
mission represents a perfect benchmark to evaluate the performance of the
CAI gradiometer concept and to quantify precisely how the latter can im-
prove our knowledge of the static field. It has thus been decided to choose for
the simulations a GOCE-like orbit so that, in addition to the true error com-
putation in the closed-loop simulations, a comparison of the GOCE-derived
gravity models and the ones derived from the simulated data can be carried
out.
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Figure 3: Orientation of the axes of the gradiometer reference frame for a nadir pointing
mode. The x-axis is parallel to the along-track direction, the y-axis is perpendicular to
the orbital plane while the z-axis points in the nadir direction.

3.2. Description of the closed-loop simulator

The main results of this study are based on the output of a closed-loop
simulator designed in MATLAB, which enables to synthesise realistically de-
graded observables, namely the estimated orbit, the satellite angular velocity
and attitude and the gravity gradients from which the gravitational model
is finally derived. The same approach has been used for both the nadir and
quasi-inertial mode, with different processing in what concerns the attitude.
Starting from a global gravity field model and an orbit sampled at 1 Hz, the
GGT is computed at each measurement point in the LNOF (Local North
Oriented Frame). Then the GGT is rotated into the gradiometer Reference
Frame which axes define the measurement axes of the gradiometer. This
requires to know for each time the true attitude of the GRF with respect
to a reference frame, say the IRF. In the third step, the GGT components
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Figure 4: Comparison of the Amplitude spectral density of the expected CAI gradiometer
noise to the time-variable signal in Vxx, Vyy and Vzz in the orbital frame of a circular orbit
at 259 km altitude.

(Vyy in the nadir case, the three diagonal elements in the quasi-inertial case)
are degraded by adding the gradiometer noise and error terms due to the
imperfect correction of the centrifugal part. This step also requires to have
a realistic model of the estimation error of Ω. Based on the noisy Ω, the
attitude quaternions of the GRF with respect to the IRF are computed and
transformed into rotation matrices. Combined with the noisy gradients and
the satellite estimated position, these data are used in a Least-Squares (LS)
adjustment (see section 3.3) to recover gravity field models which are even-
tually compared to the initial one.

In this study, we have considered that the different observables were only
corrupted by additive noise, that is we assumed a white noise floor of the
sensors, as it would be the case for a solely shot-noise limited atom interfer-
ometer, ideal suppression of spurious accelerations between the two atom in-
terferometers in gradiometer configuration, and neglected higher order terms.

3.3. Gravity field recovery

As the comparison is done at the level of gravity field models, we briefly
describe the method used to recover them from the simulated gravity gra-
dients. The global gravity field models are usually expressed in terms of
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Spherical Harmonic (SH) series (Hofmann-Wellenhof and Moritz, 2006):

V (r, θ, λ) =
GM

R

N∑
n=0

(
R

r

)n+1 n∑
m=0

[
Cnm cos(mλ) + Snm sin(mλ)

]
P nm(cos θ),

(8)
where V is the gravitational potential, GM is the gravitational constant of
the Earth, R is the equatorial radius of the reference ellipsoid, (r, θ, λ) are
the spherical coordinates (r radius, θ co-latitude, λ longitude), n,m denote
SH degree and order, N denotes the maximum degree of the model expan-
sion, P nm(cos θ) are the fully normalized associated Legendre functions, and
Cnm, Snm are the normalized SH coefficients, also known as Stokes coeffi-
cients, which are the unknowns of the gravity field solution.

The analytical expression of the GGT VLNOF in the local north-oriented
frame can then be directly derived from equation (8). However the gravity
gradients are measured in the GRF. It is therefore necessary to bring the
measured gravitational gradients and the Earth’s gravity field model in the
same reference frame. Therefore we rotate the analytical expression of the
gravitational gradients from the LNOF to the GRF. The rotation is given
by:

VGRF = RVLNOFRt, (9)

where R, the rotation matrix between the two reference frames is computed
from the attitude quaternions. To resolve the observational equation, the
Least-Squares (LS) adjustment method is applied. Concerning the stochastic
model, a unity matrix is used mostly because white noise is assumed in the
simulation. But in some cases, the spectral density of the post-fit residuals
exhibits a coloured behaviour, see more details in Section 5. In such cases,
a full variance/covariance matrix (VCM) of observations is considered in the
LS adjustment. The VCM is estimated from the post-fit residuals and further
treated as the empirical stochastic model in an iterative step. Due to the
large dimension, it is impossible to compute and store a complete VCM for
the whole data set. Alternatively, the VCM is computed arc-wisely, with an
arc length of 15 minutes.

Because of the orbit inclination of 96.5 ◦, there is no observation in both po-
lar regions. This is known as the polar gap problem (Sneeuw and Van Gelderen,
1997). The polar gap will severely affect the quality of the zonal and near-
zonal SH coefficients (orders around 0). These coefficients are therefore omit-
ted in the computation of the error degree variances in the rest of the study.
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4. Description of the simulation data

4.1. Generation of noise-free data

4.1.1. Orbit and gradients in the LNOF

As the magnitude of the high-degree harmonics of the gravitational gra-
dients decreases rapidly with the altitude, it is crucial to have an altitude
as low as possible. For the sake of rigorous comparisons to GOCE, we have
chosen 71 days of the GOCE orbit starting from the 2nd of March 2013. Dur-
ing this period the circular orbit had an average altitude of 239 km and a
repeat cycle of 65 days. It must be pointed out that this altitude is lower
than the altitude that GOCE had most of its lifetime which was typically of
255 km. The time series of the orbit coordinates have been interpolated at 1
Hz from the GOCE L2 dynamical orbit data sampled at 0.1 Hz using spline
functions. The static GGT expressed in the LNOF is computed using the
EIGEN-6c4 model Förste et al. (2014) up to degree/order 360.

4.1.2. Satellite angular velocity

Nadir mode. The generation of the angular velocity Ω is split into two steps:
first, by definition of the nadir mode, the instantaneous angular velocity ωlorf
of the local orbital frame with respect to the IRF has been computed from the
orbital position and velocity and then assigned to the component ωy so that
the main rotation of the GRF at the orbital frequency is indeed about the
y-axis. Second, a residual zero-mean angular velocity δΩ = (δωx, δωy, δωz)

t

is added so that we finally have:

Ω =

 δωx
ωlorf + δωy

δωz

 (10)

This residual angular velocity consists of five successive harmonics of the or-
bital frequency with random phases and a 1/f decreasing amplitude, meeting
the constraint of a total angular velocity perpendicular to the GRF y-axis
smaller than 10−6 rad/s.

Quasi-inertial mode. Following the definition of a truly inertial mode and
keeping in mind the non-perfect attitude control and the notation used in
the previous paragraph, the angular velocity vector of the GRF with respect
to the IRF only consists of tiny residuals: Ω = (δωx, δωy, δωz)

t. However,
we will see in section 5.2 that a better gravitational model can be recovered
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if the GRF rotates together with the orbital plane. In the typical case of
a sun-synchronous orbit, this additional angular velocity is below 2 × 10−7

rad/s, still within the margin of the requirement when added to a spurious
rotation rate of 10−6 rad/s. If we note Ωop = (ωopx , ω

op
y , ω

op
z )t the angular

velocity of the orbital plane with respect to the IRF, expressed in the GRF,
we obtain:

Ω =

 ωopx + δωx
ωopy + δωy
ωopz + δωz

 (11)

This is the reason why it is more appropriate to call this mode the quasi-
inertial mode than the inertial mode.

4.1.3. Attitude quaternions

Rotations and attitude are computed using the quaternion formalism. The
attitude of the GRF with respect to the inertial frame is calculated directly
from the angular velocity described above and an initial condition by inte-
grating the following differential equation:

q̇ =
1

2
Ωq (12)

where q is a unit quaternion describing the rotation and Ω is the angular
velocity matrix of the frame. This equation has been numerically integrated
with the method given in Zupan and Saje (2011). For the nadir mode, the
attitude is initialized with the quaternions describing the coordinates of the
local orbital frame at the initialization time. This way we make sure that
the satellite attitude will be a classical Earth-pointing attitude. To avoid any
possible divergence of the error of the numerical integration, the attitude is
reinitialized every day. This induces a tiny jump in the attitude at midnight
but it has no impact on the results of the simulations.

For the quasi-inertial mode, a question arises: is there a best quasi-inertial
attitude to recover the gravitational field? For the simulations we have de-
cided to keep an attitude for which one axis, namely the y-axis, is always
perpendicular to the orbital plane so that the Vyy gradient will be the same
as in the nadir mode. Therefore the initial quaternions are chosen so that
the y-axis is perpendicular to the orbital frame at the initialization time.
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4.2. Generation of noisy observables
4.2.1. Error of the orbit determination

For the orbit determination, we assume a zero-mean, normally distributed
error with a standard deviation of 2.6 cm added to the orbit inertial coordi-
nates. This precision was typically achieved with GOCE (Bock et al., 2011).

4.2.2. Noise of the angular velocity and attitude quaternions

For the simulation we assume that the satellite payload includes three
star-trackers and a gyrometer for the determination of the angular velocity.
Both kinds of sensor give estimates of the three components of the angular
velocity. Star-trackers and gyrometer outputs are optimally combined at the
level of angular velocity and in the frequency domain using a Wiener filter
like in the processing of the angular velocity of GOCE (see Stummer et al.
(2011)). This method requires to have a model of the power spectral density
(PSD) of the noise of both sensors. Thereafter, we assume we have an exact
knowledge of their spectral characteristics. The gyrometer considered here
is the space fiber-optic gyrometer ASTRIX R© 200 manufactured by Airbus
Defence & Space. We considered a white noise of 6.8 × 10−6 rad/s/

√
Hz, as

guaranteed by the constructor. For the star-trackers, we assumed that the
noise PSD for the three axis follows the model derived in Stummer et al.
(2011) for the y-component of the angular velocity for GOCE. Both noise
spectra are plotted in Figure 5 along with the example of the spectrum of a
combined solution. Below 4×10−5 Hz the angular velocity information is es-
sentially given by the star-trackers while above it is only the gyrometer. The
estimated attitude quaternions are deduced from the noisy angular velocity
by integrating equation (12).

4.2.3. Noise on the gradients in the GRF

The diagonal gravitational gradients are deduced from equations (2). The
final error on the gravitational gradients is therefore the sum of the gradiome-
ter noise and the error due to the correction of the centrifugal terms. The
expression of the error δVxx is given in equation (13) for the term Vxx, where
the measured quantities are topped with a ∼:

Ṽxx = Γ̃xx − ω̃2
z − ω̃2

y

= (Vxx + ω2
z + ω2

y + nΓ)− (ωz + nωz)
2 − (ωy + nωy)2

= Vxx−2ωznωz − 2ωynωy − n2
ωz
− n2

ωy
+ nΓ︸ ︷︷ ︸

δVxx

(13)
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Figure 5: Amplitude spectral density of the noise degrading the estimation of one compo-
nent of the angular velocity of the GRF with respect to the inertial frame.

where nωy (resp. nωz) is the additive noise on ωy (resp. ωz) discussed in the
previous section and nΓ is the gradiometer white noise. Identical expressions
can be derived for the two other gradients, for the nadir and the quasi-inertial
mode.

One must also pay attention to the impact of the error of the attitude
determination on the estimated gravitational gradients. We can show for
analytical purposes that the additional error atδV on the GGT caused by the
attitude determination error is given at first order by the following expression:

atδV = dΘV + VdΘt (14)

where V is the GGT expressed in the GRF and dΘ is the skew-symmetric
matrix of the attitude error.

In particular, we have for the diagonal gradients:

atδVxx = −2dθzVxy + 2dθyVxz (15)
atδVyy = 2dθzVxy − 2dθxVyz (16)
atδVzz = −2dθyVxz + 2dθxVyz (17)

where dθx dθy and dθz are the errors of the Euler angles describing the rotation
between LNOF and GRF.

For the sake of simplicity, we approximate here the GGT Vlnof expressed
in the LNOF along the orbit by a diagonal matrix with V lnof

xx = V lnof
yy =
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−1372 E and thus V lnof
zz = 2744 E. For comparison, V lnof

xy varies between
±0.4 E, V lnof

xz ±8.5 E and V lnof
yz ±1 E. In the nadir case, the GGT expressed

in the GRF will remain essentially diagonal. As a consequence, we only
expect a minor impact of the attitude error on the estimated Vyy. Assuming
a perfectly circular orbit and under the previous hypothesis, the GGT in the
GRF for the quasi-inertial mode is given by

V =

 686− 2058 cos(2ωlorf t) 0 −2058 sin(2ωlorf t)
0 −1372 0

−2058 sin(2ωlorf t) 0 686 + 2058 cos(2ωlorf t)

 . (18)

In this mode, atδVxx and atδVzz will be dominated by the partial projection
of Vxz. If we note σdθy the standard deviation of the angle error dθy, then the
standard deviation of the induced error on the gradient becomes 2|Vxz|σdθy =
4116σdθy |sin(2ωlorf t)|E. With σdθy ≈ 1.7×10−6rad in our case, the error will
have an amplitude of 7 mE modulated at twice the orbital frequency. We
therefore expect the attitude error to be a critical issue in the quasi-inertial
mode and a major contributor to the noise contaminating both Vxx and Vzz.

5. Results

In this section, global gravity field models recovered from gravity gradients
in both nadir and quasi-inertial mode are resolved up to degree/order 240.
Both the true errors (the differences between the recovered gravity field co-
efficients and the input background model, i.e. EIGEN-6C4) and the formal
errors (the accompanied standard deviations of the parameters, obtained in
the LS adjustment) are analysed.

5.1. Nadir mode

Only the gravity gradient in the cross-track direction Vyy is measurable in
this case. We first investigate the impact of the gradiometer noise by running
simulations for 4 different levels of white noise (cases 1 to 4). The different
cases are summarized in Table 1 and the error degree variances are shown in
terms of geoid height in Figure 6(a).

As expected, the gravity field model derived from observations with a
noise of 7.0 mE/

√
Hz performs worst while the model derived for a noise of

2.5 mE/
√

Hz performs best. In between, the performances of the gravity
field models are gradually improved when the noise is decreasing. The model
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Table 1: List and attributes of the different simulations run for the nadir case. nom.
stands for nominal error level.

case 1 case 2 case 3 case 4 case 5 case 6

grad. noise (mE/
√

Hz) 7 5 4 2.5 5 2.5
attitude err. nom. nom. nom. nom. none none

derived from observations with 2.5 mE/
√

Hz noise is about twice better than
that from the larger noise of 5 mE/

√
Hz, especially in the spectral band above

degree 50. This is coherent with the levels of input noise. Furthermore, the
patterns of the true and formal errors coincide with each other. This indicates
that the error propagation of the simulation model is correct. For an identical
orbit and timespan, Figure 6(b) shows that the solution derived from the
GOCE Vyy is slightly better than the CAI gradiometer with a nominal noise
(case 2) for degrees larger than 100. The GOCE solution derived from the
combination of Vxx, Vyy and Vzz (not plotted here) is even better over degrees
larger than 20. We therefore conclude that under the same conditions (orbit
and duration), the CAI gradiometer in nadir mode with a noise of 5 mE/

√
Hz

does not outperform GOCE.
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Figure 6: Error degree variance of the geoid height for the gravitational models derived
from 71-day measurements in nadir mode. Solid curves represent the true errors and
dashed curves are formal errors. In Figure 6(b) the solution without attitude error (cases
5 and 6) and the model error derived from the GOCE Vyy for 71 days of data at the same
altitude are plotted for comparison.
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The pyramid representation of the model errors are also shown in Figure
7. We find that the sectorial and near-sectorial coefficients are determined
with high precision. This is due to the fact that Vyy is approximately oriented
in cross-track direction so that the gravity field features in this direction are
better mapped.

(a) True error case 1 (b) True error case 2

(c) Formal error case 1 (d) Formal error case 2

(e) True error case 5 (f) True error case 6

Figure 7: Pyramid representation of relative errors (logarithm scale) of the Stokes coeffi-
cients. The left column shows simulations with a nominal gradiometer noise of 5 mE/

√
Hz

while in the right column the results for a gradiometer noise of 2.5 mE/
√

Hz are given. For
the first and second row, the computation is made with noisy attitude quaternions while
noise-free quaternions are used for the third row.

However, some faint stripes appear in the pyramid representation of the
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true errors at orders of m = 16 × k, k ∈ N. From the ASD of the post-fit
residuals of case 2 and 4, displayed in Figure 8, the peaks at frequencies of
multiple (with even numbers) cycles per revolution (cpr) are supposed to be
responsible for these stripes since the coefficients at orders m = 16 × k are
particularly sensitive to those frequencies. A similar conclusion is also drawn
in the processing of GOCE gravity gradients, see Stummer et al. (2011).
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Figure 8: Amplitude spectral density of post-fit residuals in the nadir mode.

To further explore the reason for these stripes, the effect of the quaternion
noise is investigated. We generate two new data sets, case 5 and case 6, with
the same noisy Vyy as in respectively case 2 and case 4 but with noise-free
quaternions. In terms of degree variance (see Figure 6(b)), there is no evident
difference between the models (case 2 vs. case 5, and case 4 vs. case 6). But
in the pyramid representation of the true errors in Figure 7, most stripes
disappear in the solutions where the noise-free quaternions are used. Only
one tiny stripe is still visible at the order of about 120. It is supposed to
be caused by the sub-cycle of the repeat ground track orbit which is about
eight days. The ASDs of the post-fit residuals are also compared in Figure
8. With the noise-free quaternions, the ASDs of the residuals at the very low
frequencies (below about 2 cpr) are significantly reduced and the amplitude
of the peaks at multiples of 2 cpr are slightly attenuated. This agrees with
the improvement of the coefficients at orders m = 16× k.

5.2. Quasi-inertial mode

In the quasi-inertial mode the three diagonal gravitational gradients are
measured. As a consequence, we would expect better results than in the nadir
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mode. Here, the most critical point to investigate is the impact of the error of
the estimated GRF attitude. Contrary to the nadir mode, a significant part
of the energy of the GGT is located in the off-diagonal elements of the tensor,
as outlined in section 4.2.3. In particular, any error in the knowledge of the
GRF orientation will introduce a partial projection of Vxz on the diagonal
gradients Vxx and Vzz, which is much larger than the gradiometer noise.

We carry out two simulations, case 1 and case 2, for which the gradiometer
noise is the same and set to its nominal value, i.e., 5 mE/

√
Hz. The difference

between both cases is on the noise of the gyrometer angular velocity. In
case 1, the angular velocity noise is at its nominal value while in case 2
the noise is divided by 2. The consequence is twofold: first the error on
the attitude quaternions is lower in case 2 and second, the error due to the
correction of the centrifugal terms in case 2 is also smaller than in case 1.
For both cases, we derived solutions from each gravitational gradient taken
separately (component-wise solution) and a solution combining the three
gradients (combined solution).

The error degree variance of the true errors of the estimated spherical
harmonic coefficients in terms of geoid height error for both cases are plotted
in Figure 9. As expected, the component-wise solutions from Vxx and Vzz
have a larger error compared to the one derived from Vyy while the latter
compares quite well with the nadir solution (nadir case 2). The solutions
derived from Vxx and Vzz show a similar error which is not surprising since
they are contaminated by the same dominant error related to the attitude
error and the projection of Vxz. The regular oscillations on both error are
due to the modulation of this error at twice the orbital frequency. The
comparison between the solutions of case 1 and case 2 confirms however the
slight improvement of case 2, as can be seen from their respective combined
solutions.

The quality difference of the models recovered from Vyy on the one hand,
and Vxx and Vzz on the other hand, is even better illustrated in the pyramid
representation of the model errors in Figure 10. In this figure, one can see
that stripes at ordersm = 16×k, k ∈ N degrade significantly the gravitational
models derived from Vxx and Vzz, and to a much lower extent from Vyy. These
stripes correspond to the regular oscillations in the degree variance curves in
Figure 9. Like in the nadir case, we also observe the presence of peaks at 2
cpr and multiples in the ASDs of the post-fit residuals of Vxx and Vzz plotted
in Figure 11. They correspond to the error contaminating Vxx and Vzz which
is essentially caused by the attitude error and the partial projection of the
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Figure 9: Degree variances of true errors for the component-wise (Fig.9(a) and 9(b)) and
combined (Fig.9(c)) gravity field solutions derived from 71-day measurements in quasi-
inertial mode. For comparison, the solution in the nadir mode with nominal gradiometer
and gyrometer noises (Nadir case 2 Vyy) is plotted.
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Vxz component also modulated at 2 cpr. This specific error on the gradients
is directly mapped onto the Stokes coefficients of order m = 16 × k, k ∈ N.
We can thus conclude that these stripes are directly related to the attitude
error.

It is noteworthy that Vyy is less affected by these stripes. The reason is
that we have forced the y-axis of the gradiometer to be always perpendicular
to the orbital plane. In this way, we make sure that the projection of the
off-diagonal gradients on Vyy due to the attitude error always have a weak
amplitude, just like in the nadir mode. This is the reason why the GRF must
follow the rotation of the orbital plane: if we keep a truly inertial attitude
then the y-axis would slowly rotate with respect to the orbital plane and
eventually be parallel to it, like Vxx or Vzz initially. Accordingly, the noise
on Vyy due the attitude error would become similar to the one on the 2 other
gradients, with the same notable stripes.

A first idea in order to mitigate these stripes would be to have a more
accurate and precise attitude determination for the quasi-inertial case than
for the nadir case. We will see however that a simple processing can largely
reduce these stripes. We introduce empirical parameters to absorb the low-
frequency contributions that are contained in the post-fit residuals. More
specifically, a drift and a bias term are added to the functional model and
estimated in an arc-wise manner. The length of the arc has been fixed by
trial and error to 15 minutes. These parameters are estimated together with
the Stockes coefficients. Following this method, the gravity field solutions of
case 1 are re-computed and shown in Figure 12. This figure also includes the
plots of the ASD of the corresponding post-fit residuals. The amplitude of
the peaks at 2 cpr and multiples are dramatically reduced for all gradients,
as compared to the previous situation. As expected, the error level and
oscillations of the degree variances for the component-wise solutions of Vxx
and Vzz and the combined solution are also attenuated. This is also reflected
in the pyramid distribution of the true errors in Figure 10 where the stripes
almost totally disappeared.

It can be pointed out that the post-fit residual ASDs drop below 1 mE/
√

Hz
for frequencies smaller than 2× 10−4Hz, which -according to Figure 4- is ap-
proximately the magnitude of the time-variable gravitational signals in this
frequency domain. Yet, this does not allow to detect the time-variable sig-
nal. First because the arc-wisely estimated empirical parameters tend to
absorb the signal and noise at low frequencies (at least lower than 1

15×60
≈

1.1 × 10−3/Hz) and this effect increases as the frequency decreases. There-

24



(a) Vxx in case 1 (b) Vxx in case 2

(c) Vyy in case 1 (d) Vyy in case 2

(e) Vzz in case 1 (f) Vzz in case 2

(g) combined solution in case 1 (h) combined solution in case 2

Figure 10: Pyramid representation of true errors (logarithm scale) of the Stokes coeffi-
cients. The left column shows component-wise and combined solutions of case 1 while the
right column shows results of case 2.
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Figure 11: Amplitude spectral density of the post-fit residuals in the quasi-inertial mode
for case 1 and 2.

fore this signal would not be captured by the gravitational model. Second,
the gravitational signal at frequencies smaller than 1 cpr ≈ 1.8 × 10−4/Hz
is related to spatial variations of the field whose wavelengths, when sensed
along the orbit, is greater than 1 revolution. It is therefore a complex mix
of spatially and / or temporally aliased gravitational signal, also modulated
by variations of the orbit altitude. In our case, where only a static gravity
field is considered, we can see from the example of Vxx in Figure 12 that the
absorption of these low frequencies does not degrade the recovery of the field.

Although white noise is assumed for the gradiometer, we see that the
spectral shape of the post-fit residuals exhibits a slight colour behaviour, es-
pecially in the low-frequency part. To further improve the estimation of the
gravity field solutions, we run a second analysis where the variance/covariance
matrix is taken into account to model the correlation of the observations. We
notice a tiny improvement for degrees smaller than 100, however the error
above degree 100 remains at the same level as before.

6. Discussion

We analyse now to what extent the CAI gradiometer concept can outper-
form GOCE when assuming a nominal gradiometer noise of 5 mE/

√
Hz. To

this end, we extrapolate the error on these models from 71 days to 8 months
assuming the error is purely stochastic and reduces as

√
ti where ti is the

time of integration. To gain an idea of the GOCE solution error, we first
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Figure 12: Degree variances of the true errors of the gravity field model recovered in case
1 (left) and amplitude spectral density of the post-fit residuals (right) when empirical
parameters are included in the LS adjustment. For comparison, the same quantities are
plotted when no empirical parameters are considered for Vxx.

compute a gravity model based on the three diagonal gravitational gradients
of the whole GOCE mission period (November 2009 - October 2013, about
47 months). The least-squares adjustment is performed for GOCE data in
the same way as for our simulations. Then, we compare it to 2 different ref-
erence gravity models: on the one hand, the EIGEN-6C4 model used for the
synthesis of the gravitational gradients in the simulation and, on the other
hand, the GOCO05S (Mayer-Guerr, 2015). Since the comparison concerns
only the contribution of the gradiometer, we have not taken into account the
high-low satellite-to-satellite tracking data used to recover the low degrees
of the gravity model. The results are shown in Figure 13 in terms of geoid
height degree variance. We can note two bumps on the GOCE solution when
it is compared to EIGEN-6C4. One appears in the range between d/o 100
and 130; the other one is visible between d/o 170 and 200. These bumps
are due to the background model errors. This appears clearly when we com-
pare our derived gravity field solutions to a satellite combined solution, i.e.,
GOCO05s. The bumps disappear in the GOCE solution but appear in the
quasi-inertial solution based on EIGEN-6C4. Besides these two bumps, we
can make the following comments:

• As already mentioned in section 5.2, for identical conditions, the so-
lution in the quasi-inertial mode is significantly better than the nadir
mode one, especially above d/o 50. Additionally, the nadir mode with
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Figure 13: Extrapolation of the error of the gravity field solutions to 8 months for the
CAI gradiometer and comparison to the error of the GOCE gradiometer-only solution.
For GOCE, the whole period combined solution is based on the gravitational gradients of
the whole mission period while the low orbit period solution correspond the 8 last months
during which the satellite was at an altitude equal or lower than 239 km.

a nominal noise does not allow to outperform GOCE under identi-
cal conditions (orbit and measurement timespan), see section 5.1. As
a consequence, the nadir mode should be discarded in favour of the
quasi-inertial mode.

• The 8-month quasi-inertial solution is better than the GOCE solution
for the whole mission period. We can thus conclude that an 8-month
mission at an altitude of 239 km and using a 3-axis CAI gradiometer
with a nominal white noise of 5 mE/

√
Hz in the quasi-inertial mode

would outperform the full GOCE mission and eventually yields a more
precision gravity field model. Nonetheless, it should be borne in mind
in this comparison that the GOCE satellite was most of its lifetime at a
higher altitude than 239 km, about 3 months at 239 km and 5 months
lower than 239 km. This fact shows however that it is technically
possible to fly a satellite at an altitude as low as 239 km for a duration
of 8 months.

• For a fairer comparison, we have also plotted the GOCE solution for
the 8 months during which the satellite was at an altitude equal or
lower than 239 km (see Figure 13). Again, the 8-month quasi-inertial
solution at a constant altitude yields a slightly better solution despite
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the fact that the 8-month GOCE solution is partly based on gravity
gradients measured at a lower altitude.

Among the assumptions made in this study, the attitude control require-
ments and the quasi-inertial mode seem particularly challenging, especially
at such a low altitude where the atmospheric drag may cause variations on
the satellite angular velocity greater than 1µrad/s. Inertial pointing satel-
lites are rather uncommon although control feedback strategies to maintain
such a pointing have been studied (Lovera and Astolfi, 2005) and robust so-
lutions using only magnetorquers have been put forward, see e.g. (Celani,
2015) and (Celani, 2016). The MICROSCOPE space mission (Touboul et al.,
2012) launched in April 2016 is an example of a satellite partly operated in
inertial pointing with a specification on the angular velocity stability smaller
than 10−9 rad/s (Touboul et al., 2012). However such an inertial pointing
stability is achieved after a long in-orbit calibration and at an altitude of 720
km, where the atmospheric drag is considerably smaller than at the altitude
we assumed in our simulation.

7. Summary, conclusions and recommendations

Recent developments in light-pulse atom interferometry have opened the
way to the design of new high-accuracy and high precision inertial sensors, in
particular when operated in a microgravity environment where the operating
conditions are optimal. Used in an accelerometer configuration and in pair-
wise assemblies, atom interferometers constitute the backbone of the space
gravitational gradiometer concept introduced in this article. A nominal white
noise of 5 mE/

√
Hz is expected for the CAI gradiometer. Its performance and

ability to recover the Earth’s gravitational field have been investigated via
closed-loop simulations assuming realistically degraded ancillary data (posi-
tion, angular velocity, gradiometer noise and attitude quaternions).

Because the atom interferometer architecture requires to limit the angu-
lar velocity perpendicular to the measurement axis to 1µrad/s, only two
operating modes are possible for the considered CAI gradiometer concept:
the nadir mode and the quasi-inertial mode. In the nadir mode only the
Vyy component, along the across-track direction, is measured. With one ob-
served gradient, our simulations show that the nadir mode does not allow to
clearly outperform GOCE. The results are more promising in the case of the
quasi-inertial mode where the gradiometer can measure the three diagonal

29



components of the GGT. To outperform the whole GOCE mission in term
of geoid accuracy, we conclude that a CAI gradiometer operated in quasi-
inertial mode for at least 8 months, on a circular orbit and at an altitude
of 240 km is required. Of course, this simple scenario is just an indication
and further studies are required to find the best trade-off between the orbit
altitude, the mission life-time and the technical limitations.

Although the quasi-inertial mode proved to be the best operating mode for
the CAI gradiometer considered in this study, keeping such a pointing seems
technically challenging. Therefore we recommend to investigate whether it is
possible to modify the design of the CAI gradiometer so that the 3 diagonal
elements of the GGT can be measured in the nadir mode. In other words, an
improved interferometer architecture that allows the atoms to interfere in an
almost uniform rotation reference frame is highly desirable. A solution for the
compensation of the Earth rotation in ground based set-ups has already been
implemented (Lan et al., 2012). It consists in repeatedly counter-rotating the
reference mirror using tip-tilt actuators. However, implementing such a solu-
tion would require in our case large tilt chirps of the mirror, if a single mirror
is to be used. This is not readily implementable in the case of our inter-
leaved interrogation geometry. As an alternative, we are currently studying
an architecture based on a set of mirrors with pre-adjusted tilts, which would
allow to cancel the effect of rotation at the orbital frequency.

With the 3 diagonal elements of the GGT measured in the nadir mode,
better performances are expected, particularly thanks to the Vzz component
which would be estimated directly along the radial direction. Furthermore,
the off-diagonal gradients would keep a small amplitude, leading to a much
smaller impact of the attitude error determination on the error of the esti-
mated gradients.
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Lévèque, T., Gauguet, A., Michaud, F., et al., 2009. Enhancing the Area of
a Raman Atom Interferometer Using a Versatile Double-Diffraction Tech-
nique. Phys. Rev. Lett. 103, 080405.

Louchet-Chauvet, A., Farah, T., Bodart, Q., et al., 2011. The influence of
transverse motion within an atomic gravimeter. New J. Phys. 13, 065025.

Lovera, M., Astolfi, A., 2005. Global magnetic attitude control of inertially
pointing spacecraft. Journal of guidance, control, and dynamics 28 (5),
1065–1072.

Mayer-Guerr, T., 2015. The combined satellite gravity field model GOCO05s.
In: EGU General Assembly Conference Abstracts. Vol. 17. p. 12364.

33

http://www.sciencedirect.com/science/article/pii/S0264370712000440
http://www.sciencedirect.com/science/article/pii/S0264370712000440


McGuirk, J. M., Foster, G. T., Fixler, J. B. o., Feb 2002. Sensitive absolute-
gravity gradiometry using atom interferometry. Phys. Rev. A 65, 033608.
URL https://link.aps.org/doi/10.1103/PhysRevA.65.033608

Müntinga, H., Ahlers, H., Krutzik, M., et al., 2013. Interferometry with
Bose-Einstein Condensates in Microgravity. Physical Review Letters 110,
093602.

Pail, R., Bingham, R., Braitenberg, C., et al., 2015. Science and user needs
for observing global mass transport to understand global change and to
benefit society. Surveys in Geophysics 36 (6), 743–772.
URL http://dx.doi.org/10.1007/s10712-015-9348-9

Panet, I., Flury, J., Biancale, R., et al., 2013. Earth system mass transport
mission (e.motion): A concept for future Earth gravity field measurements
from space. Surveys in Geophysics 34 (2), 141–163.
URL http://dx.doi.org/10.1007/s10712-012-9209-8

Peters, A., Chung, K. Y., Chu, S., 1999. Measurement of gravitational accel-
eration by dropping atoms. Nature 400, 849–852.
URL http://dx.doi.org/10.1038/23655

Rosi, G., Sorrentino, F., Cacciapuoti, L., et al., 2014. Precision measure-
ment of the newtonian gravitational constant using cold atoms. Nature
510 (7506), 518–521.

Roura, A., Apr 2017. Circumventing heisenberg’s uncertainty principle in
atom interferometry tests of the equivalence principle. Phys. Rev. Lett.
118, 160401.
URL https://link.aps.org/doi/10.1103/PhysRevLett.118.160401

Roura, A., Zeller, W., Schleich, W. P., 2014. Overcoming loss of contrast
in atom interferometry due to gravity gradients. New Journal of Physics
16 (12), 123012.
URL http://stacks.iop.org/1367-2630/16/i=12/a=123012

Rudolph, J., Herr, W., Grzeschik, C., et al., 2015. A high-flux BEC source
for mobile atom interferometers. New J. Phys. 17, 065001.

Rummel, R., Yi, W., Stummer, C., 2011. GOCE gravitational gradiometry.
Journal of Geodesy 85 (11), 777.

34

https://link.aps.org/doi/10.1103/PhysRevA.65.033608
http://dx.doi.org/10.1007/s10712-015-9348-9
http://dx.doi.org/10.1007/s10712-012-9209-8
http://dx.doi.org/10.1038/23655
https://link.aps.org/doi/10.1103/PhysRevLett.118.160401
http://stacks.iop.org/1367-2630/16/i=12/a=123012


Sneeuw, N., Van Gelderen, M., 1997. The polar gap. In: Geodetic boundary
value problems in view of the one centimeter geoid. Springer, pp. 559–568.

Stummer, C., Fecher, T., Pail, R., 2011. Alternative method for angular
rate determination within the GOCE gradiometer processing. Journal of
Geodesy 85 (9), 585–596.
URL http://dx.doi.org/10.1007/s00190-011-0461-3

Tackmann, G., Berg, P., Schubert, C., et al., 2012. Self-alignment of a com-
pact large-area atomic Sagnac interferometer. New J. Phys. 14, 015002.

Tapley, B. D., Bettadpur, S., Watkins, M. o., 2004. The gravity recovery
and climate experiment: Mission overview and early results. Geophysical
Research Letters 31 (9), n/a–n/a, l09607.
URL http://dx.doi.org/10.1029/2004GL019920

Torge, W., Müller, J., 2012. Geodesy. Walter de Gruyter.
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