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FFT-based modelling of transformation plasticity in polycrystalline 
materials during diffusive phase transformation
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Abstract
During heat treatment processes of steel products, transformation plasticity is known to play an 

important role as it affects the final product quality such as shape and residual stresses. To 

investigate this well-known phenomenon, a model coupling crystal plasticity with diffusive phase 

transformation is developed by using a fast Fourier transform (FFT) numerical scheme. Diffusional 

transformation including a plastically accommodated volume change is considered (i.e the 

Greenwood-Johnson mechanism). The model is then used to determine the pre-hardening effect on 

transformation plasticity. It is revealed that pre-hardening results in an anisotropic transformation 

strain; pre-tension decreases transformation strain and pre-compression increases transformation 

expansion along the pre-hardened direction. The model is also used to assess the existing analytical 

model developed by Leblond and Taleb. In this attempt, some features that contribute to the 

transformation plasticity are discussed. Among those, it is found that plastic deformation in daughter 

phase is non-negligibly small especially in the end of phase transformation. These analytical 

solutions predict linear relation between applied stress and transformation plastic strain. This 

reasoning attributes the linear relation to the solution of equivalent plastic strain increase with 

transformation by only the transformation expansion effect neglecting the applied stress effect.

1. Introduction
During the thermomechanical treatments involved in steel processing, transformation plasticity or 

transformation induced plasticity (TRIP) occurs as a result of the variation of the volumic fraction of 

the phases during the solid state transformation. Two main mechanisms are classically invoked: (i) a 

displacive mechanism (i.e. Magee effect [1]) with a shape change during transformation and (ii) a 

diffusive mechanism (i.e. Greenwood-Johnson effect [2]), implying nucleation and growth steps, 

with a volume change plastically accommodated [3]. They both have been the subject of a number of 

experimental studies (see, among others [4][5][6][7][8][9][10]).

The phenomenon is known to play a central role during phase transformation in defining the final 

shape and residual stress state of heat treated materials. Phenomenological models have been 

developed and been used in the framework of finite element thermo-mechanical simulations 

[11][12][13].

The micromechanical modelling of transformation plasticity dates back to the pioneering theoretical 



work of Leblond et al. [14] based on a rigorous homogenisation procedure. Few years later, an 

approximate analytical model has been derived from [15][16] to describe transformation plasticity 

due to the Greenwood-Johnson mechanism. Since then, developments have been suggested based on 

this approach [17]. Besides, it is worth mentioning that a variety of mean-field models have been 

developed; see, for instance, [18][19][20]. Apart from these works, numerical micromechanical 

modelling has also been performed, making use of the finite-element method (FEM) to study 

diffusional transformations. With increasing complexity, numerical investigations have first 
considered the case of a two-phase material with  plasticity, and various nucleation rules, 𝐽2

[14][15][21][22][23], and more recently, the case of polycrystalline materials with crystalline 

plasticity at the slip system level, together with a microstructure described by a Poisson-Voronoi 

tessellation [24].

In the context of classical plasticity (i.e. without solid phase transformation), an efficient numerical 

scheme based on fast Fourier transform (FFT) [25] has been successfully applied to a variety of 

problems and constitutive relations [26][27][28][29][30]. This alternative approach to FEM allows to 

consider large polycrystalline aggregates with reasonable CPU time and memory allocation. Its 

accuracy has been discussed by confronting with FEM simulation results [31]. Besides, meshing of 

the microstructure is not necessary as the computation is directly made on the digital image of the 

material (regular grid of pixels in 2D or voxels in 3D). These features are especially convenient to 

consider experimental microstructural data obtained by fine-scale EBSD or X-ray diffraction 

contrast tomography [32][33][34]. By contrast to FEM, the FFT method is limited to a periodic 

homogenisation scheme which makes it less general.

In the present work, we first investigate the application of the FFT method in the context of plasticity 

induced by diffusional transformation. Following previous investigation, an enhanced numerical 

scheme is employed incorporating the pre-hardening effect, which induces the back stress and thus 

the anisotropic effect on transformation plasticity. Then, use is made of FFT reference results on 

representative polycrystalline aggregates for a critical analysis of two existing analytical 

micromechanical models [15][17]. These analytical models are compared for varying material data 

(transformation expansion coefficient).

2. Formulation of FFT-based numerical scheme
The FFT numerical scheme proposed by Moulinec and Souquet [25] relies on the Green functions 

method to solve a periodic boundary value problem for heterogeneous media. For completeness, its 

formulation is first recalled. It offers a straightforward framework to consider stress-free strains 

related to the solid-state transformation process. Then, the constitutive local equations for crystalline 

plasticity and transformation kinetic are detailed.

2.1. Lippmann-Schwinger equation for periodic media



2.1.1. Formulation

In the case of a periodic boundary problem, the local displacement can be divided into fluctuation 

and average terms such that:

𝒖(𝒙) = 𝒖'(𝒙) + 𝜀𝒙 (1)

where,  is a periodic displacement. The strain field reads:𝑢'(𝑥)

𝜺(𝒖(𝒙)) = 𝜺(𝒖'(𝒙)) + 𝜀 (2)

with .〈𝜺(𝒖'(𝒙))〉 = 0

For a heterogeneous elasto-plastic material, the rate-form of constitutive relation reads:

𝝈(𝒙) = 𝑪(𝒙):𝜺𝑒(𝒙) = 𝑪(𝒙):(𝜺(𝒙) ‒ 𝜺𝑝(𝒙) ‒ 𝜺𝑚(𝒙)) (3)

where  is the elastic tensor at local position  and , ,  and  are elastic, total, plastic and 𝑪(𝑥) 𝑥 𝜺𝑒 𝜺 𝜺𝑝 𝜺𝑚

transformation strain tensor respectively. Equivalently, the constitutive law can be rewitten:

𝝈(𝑥) = 𝑪(𝒙):𝜺(𝒙) + 𝝉(𝒙) (4)

By introducing homogeneous reference media with elasticity , equation (4) can be rewritten as: 𝑪0

𝝈(𝒙) = 𝑪0:𝜺(𝒙) + (𝑪(𝒙) ‒ 𝑪0):𝜺(𝒙) + 𝑪(𝒙):(𝜺𝑝(𝒙) + 𝜺𝑚(𝒙)) = 𝑪0:𝜺(𝒙) + 𝝉(𝒙)

               ,    ,  ,  ∀𝑥 ∈ 𝑉 div𝝈 = 0 ∀𝑥 ∈ 𝑉 𝑢'# 𝝈 ⋅ 𝒏 ‒ #
(5)

where  is a polarisation tensor which comprises the contributions from the elastic heterogeneity, 𝝉(𝒙)

the plastic strain and transformation strains (eigenstrains). Solution of the problem reads:

.𝜺(𝒙) = 𝜀 ‒ 𝜞𝟎 ∗ 𝝉 (6)

FFT-based iterative algorithms have been proposed to solve equation (6). In the following, use has 

been made of the fixed-point method initially proposed by [25].

Equations (5) in Fourier space are written as follows:

,      𝝈(𝝃) = i𝑪0:(𝒖'(𝝃)⨂𝝃) + 𝝉(𝝃) i𝝈(𝝃) ⋅ 𝝃 = 0 (7)

where,  is frequency, and the non-italic character  represents imaginary number. By eliminating  𝝃 i 𝝈
from equation (7), we obtain

𝒖'(𝝃) =
i
2

(𝑵0⨂𝝃 + 𝝃⨂𝑵0)𝝉(𝝃) (8)

where,

, 𝑵0(𝝃) = 𝑲0(𝝃) ‒ 1 𝑲0(𝝃) = 𝑪0:(𝝃⨂𝝃) (9)

𝜺(𝝃) =
i
2

(𝝃⨂𝒖'(𝝃) + 𝒖'(𝝃)⨂𝝃) =‒ 𝜞0(𝝃):𝝉(𝝃) (10)

𝜞0(𝝃) =
1
4(𝑁0

𝑙𝑖𝜉𝑗𝜉𝑘 + 𝑁 0
𝑘𝑖𝜉𝑗𝜉𝑙 + 𝑁0

𝑙𝑗𝜉𝑖𝜉𝑘 + 𝑁 0
𝑘𝑗𝜉𝑖𝜉𝑙) (11)

 is a periodic Green’s operator. Inverse Fourier transformation of equation (10) gives the strain 𝜞0

field within the heterogeneous medium.

The iterative algorithm to solve this problem is described below.

2.1.2. Iterative algorithm



Initialisation: , 𝜺0 = 𝜺𝑛(𝒙) ∀𝑥 ∈ 𝑉

Iteration: :  and  are known(𝑛 + 1) 𝜺𝑛(𝒙) 𝝈𝑛(𝒙)

(a) 𝝈𝑛 = 𝐹𝐹𝑇(𝝈𝑛)

(b) Check convergence

   if no macroscopic stress is imposed𝑒𝑛 = 〈‖div(𝝈𝑛)‖2〉 = 〈‖𝝃 ⋅ 𝝈𝑛(𝝃)‖2〉 < 𝜖

   otherwise𝑒𝑛 =
〈‖div(𝝈𝑛)‖2〉

‖〈𝝈𝑛〉‖ =
〈‖𝝃 ⋅ 𝝈𝑛(𝝃)‖2〉

‖𝝈𝑛(𝟎)‖ < 𝜖

(c)   𝜺𝑛 + 1(𝝃) = 𝜺𝑛(𝜉) ‒ 𝜞0(𝝃):𝝈𝑛(𝝃) ∀𝜉 ≠ 0    and   𝜺𝑛 + 1(0) = 𝜀

(d) 𝜺𝑛 + 1 = 𝐹𝐹𝑇 ‒ 1(𝜺𝑛 + 1)

(e)      𝝈𝑛 + 1(𝒙) = 𝑔(𝜺𝑛 + 1(𝒙))   ∀𝑥 ∈ 𝑉

where,  is a constitutive equation which relates strain and stress (equation (3), in the present case).𝑔

In the case where the macroscopic stress is imposed, the procedure (c) is modified as:

(c’)   .𝜺𝑛 + 1(𝝃) = 𝜺𝑛(𝜉) ‒ 𝜞0(𝝃):𝝈𝑛(𝝃) ∀𝜉 ≠ 0    and   𝜺𝑛 + 1(0) = 〈𝜺𝑛〉 + 𝑪𝟎 ‒ 1:(𝝈𝑛 ‒ 〈𝝈𝑛 ‒ 1〉)

2.2. Constitutive behaviour, microstructure and phase transformation
2.2.1. Constitutive equations by crystal plasticity

Plastic strain is the result of dislocation glide. The slip occurs along certain directions on certain 

planes. Such combinations of directions and planes are called slip systems. Let  be the slip rate on 𝛾𝛼

the  slip system. The plastic strain rate is the determined by the sum of slip rates on all slip 𝛼

systems:

𝜺𝑝 = ∑
𝛼

𝒑𝛼𝛾𝛼
(12)

where  is the Schmid tensor of  slip system.𝒑𝛼 𝛼

𝒑𝛼 =
1
2

(𝒔𝛼⨂𝒎𝛼 + 𝒎𝛼⨂𝒔𝛼) (13)

 and  are respectively the slip direction and slip plane normal of the  slip system. According 𝒔𝛼 𝒎𝛼 𝛼

to the Schmid law, the slip system becomes active when the resolved shear stress  becomes equal 𝜏𝛼

to the Critical Resolved Shear Stress (CRSS) :𝑔𝛼

|𝜏𝛼| = |𝒑𝛼:𝝈| = 𝑔𝛼 (14)

During elasto-plastic deformation, the equation (14) is satisfied. In other words, stress increases 

according to the hardening of each slip system.

For such a rate-independent problem, Hutchinson [35] proposed the following solution for 

determining the slip rate of each slip system by using the consistence condition:

𝜏𝛼 = sgn(𝜏𝛼)𝑔𝛼 (15)

For the small deformation problems, equation (15) can be rewritten as:



𝝈:𝒑𝛼 = ∑
𝛽

ℎ𝛼𝛽𝛾𝛽
(16)

and the general form of the hardening law is:

𝑔𝛼 = ∑
𝛽

ℎ𝛼𝛽|𝛾𝛽| (17)

with  the hardening coefficients. They can be expressed phenomenologically with an additional ℎ𝛼𝛽

evolution law. We adopt the following form [36]:

ℎ𝛼𝛼 = ℎ = 𝐻0sech2 [
𝐻0∑

𝛽
𝛾𝛽

𝜏𝑠 ‒ 𝜏0 ] (18)

ℎ𝛼𝛽 = 𝑞ℎ + (1 ‒ 𝑞)ℎ𝛿𝛼𝛽 (19)
where  is a coefficient parameter,  is the initial yield stress value and  is the saturated stress 𝐻0 𝜏0 𝜏𝑠

value. The parameter , which describes latent hardening, takes values from 1.0 to 1.4 depending on 𝑞

the material.

By using the constitutive laws, one obtains.

𝝈:𝒑𝛼 = 𝑪:(𝜺 ‒ 𝜺𝑝 ‒ 𝜺𝑡ℎ ‒ 𝜺𝑚):𝒑𝛼 = 𝑪:(𝜺 ‒ 𝜺𝑡ℎ ‒ 𝜺𝑚):𝒑𝛼 ‒ ∑
𝛽

𝒑𝛼:𝑪:𝒑𝛽𝛾𝛽 = ∑
𝛽

ℎ𝛼𝛽𝛾𝛽
(20)

and the slip rates are expressible as:
  with   𝛾𝛼 = 𝒇𝛼:(𝜺 ‒ 𝜺𝑡ℎ ‒ 𝜺𝑚) 𝒇𝛼 = ∑

𝛽𝑌𝛼𝛽𝑪:𝒑𝛽 (21)

with

  and  𝑌𝛼𝛽 = (𝑋𝛼𝛽) ‒ 1 𝑋𝛼𝛽 = ℎ𝛼𝛽 + 𝒑𝛼:𝑪:𝒑𝛽 (22)

The matrix  has to be non-singular. For that reason, the maximum number of active slip systems, 𝑋𝛼𝛽

i.e. rank of the matrix , is limited to 5. From equation (21), we can find the value of the shear 𝑋𝛼𝛽

strain rates, which in turn depends on the prescribed strain rate or stress rate.

For the elasto-plastic transition problem, initial values of  and  are generally different. The 𝜏𝛼 𝑔𝛼

incremental form of equation (15) during a finite time increment can be written as follows:

𝜏𝛼 + Δ𝜏𝛼 = sgn(𝜏𝛼)(𝑔𝛼 + Δ𝑔𝛼) (23)

Note that  and  are the values evaluated at the previous step.  represents one increment during 𝜏𝛼 𝑔𝛼 Δ

one time step.

Consequently, equation (16) takes the form:

(𝝈 + Δ𝝈):𝒑𝛼 = sgn(𝜏𝛼)𝑔𝛼 + ∑
𝛽

ℎ𝛼𝛽Δ𝛾𝛽
(24)

Following the previous discussion, the plastic slip increments can be expressed as (see Appendix A):

Δ𝛾𝛼 = ∑
𝛽

𝑌𝛼𝛽(𝝈:𝒑𝛽 + 𝒑𝛽:𝑪:(Δ𝜺 ‒ Δ𝜺𝑡ℎ ‒ Δ𝜺𝑚) ‒ sgn(𝜏𝛽)𝑔𝛽) (25)



If the resolved stress equates CRSS at the previous step, then the equation (25) becomes exactly 

equivalent to as equation (21).

2.2.2. Microstructures

A cubic area volume with regularly allocated calculation points (voxels) is divided into cells (grains). 

This procedure is realised by using the Voronoi tessellation method. First, grain seeds are spread 

inside the cube. The number of the grains is thus fixed at the beginning of the calculation. Then, the 

surfaces which have same distances from two neighbouring grain seeds are considered to be flat 

grain boundaries between these two grains.

    

         (a) Initial austenite phase                    (b) During phase transformation

Fig. 1 Sample Voronoi tessellation and phase transformation; 100 grains in 643 cubic space.

All voxels which are included into one grain have the same crystallographic orientation. Hereafter, 

initial grain seeds and initial crystallographic orientations of each grain are randomly distributed. 

The heterogeneity of the polycrystal then derives solely from the crystalline orientation distributions 

together with the local anisotropy of the single crystal behaviour.

2.2.3. Phase transformation model
Phase transformation is considered here to be diffusive, isotropic and isothermal. As a consequence, 

there are no thermal strains within the polycrystal. This simplifies the problem and provides the 

basic results of transformation plasticity. In accordance with the numerical homogenisation scheme 

with periodic displacement boundaries, the periodicity of the phase transformation has to be imposed. 

One example is shown in Fig. 1 (b); the 100 initial grains and 100 growing new grains (red coloured 

circles).

A finite intermediate zone between parent and daughter phases, where the volume fraction of new 

phase takes value of , is defined at the circumference of the daughter phase particles. 0 ≤ 𝜉 ≤ 1



Within this intermediate zone, the volume fraction of the daughter phase obeys KJMA 

(Kolmogolov-Johnson-Mehl-Avrami) type equation [37]:

𝜉 = 1 ‒ exp ( ‒ 𝑏𝑡𝑛) (26)

where  and  are temperature dependent material parameters defining the intermediate zone 𝑏 𝑛

thickness. When the frontier of a new grain reaches a calculation point, the value of time  in 𝑡

equation (26) is set to be zero and the transformation begins according to the equation.

When the volume fraction exceeds 50%, the constitutive behaviour of the daughter phase is 

considered to be transformed and being a new phase. At the same time, the crystallographic 

orientation is changed according to Kurdjumow-Sachs (K-S) relation [38]. There are 24 possible 

variants for the K-S relation; in the present calculation, one of these 24 variants is randomly selected 

for the new grain.

The calculations start with 100 % parent grains which are subject to a constant uniaxial stress 

loading along the z-axis. The constant applied stress value takes values between -90 MPa and 90 

MPa is held until phase transformation is complete, i.e. the calculation reaches 100 % of daughter 

phase throughout the cubic region.

2.3. Applications
2.3.1. Validation of the numerical model

In order to validate the FFT-based model, the numerical results have been assessed by comparison 

with the exact theoretical result of Leblond [14] for an isotropic polycrystalline aggregate 

undergoing phase transformation without macroscopic applied stress.

In this particular case, it has been shown that the overall plastic strain is necessarily null. As a 

consequence, the exact macroscopic strain of the polycrystal reads

𝜀 = 𝜀𝑚 = 𝛽𝜉 (27)

with , the macroscopic volume fraction of daughter phase. The results obtained for an austenitic 𝜉

polycrystal composed of 100 grains with random orientations are shown in Fig. 2. Note that this case 

uses the same elastic constants for each phase. The numerical response agrees with the exact result. 

The chosen numerical microstructure can thus be considered isotropic. It is noted that there is no 

macroscopic plastic strain despite the plastic deformation occurs at the crystal (microscopic) level.
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Evolution of the macroscopic strain with the volume fraction of transformed 

phase (no applied stress, isotropic polycrystal).

2.3.2. Calculation of transformation plasticity

In the present study, the mechanical behaviour of carbon steel undergoing austenite-pearlite phase 

transformation will be investigated. The set of plasticity parameters for this steel grade is shown in 

Table 1. The macroscopic stress/strain relation of austenite phase and pearlite phase are calculated 

by using FFT model and are depicted in Fig. 3. The selected material parameters have been adjusted 

in order to get a good fit between FFT calculations and experimental data (the experimental data 

corresponding to the austenite phase are also shown in Fig. 3)

Table 1 Parameters for crystal plasticity calculation.

Austenite Pearlite

Bulk modulus (MPa) 135833 150000

Shear modulus (MPa) 62692 69231

 (MPa)𝐻0 10 550

 (MPa)𝜏0 30 100

 (MPa)𝜏𝑠 40 130

𝑞 1.0 1.0

Number of grains 100 100
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(calculations and experiment at 670oC).

In order to analyse thoroughly each model, two cases of transformation expansion coefficients will 

be considered (  and ). The new phase grain seeds are spread 𝛽 = 1.5 × 10 ‒ 3 𝛽 = 4.4 × 10 ‒ 3

randomly and consequently, subsequent isotropic grain growth starts.

Case of small transformation expansion ( )𝛽 = 1.5 × 10 ‒ 3

The stress-strain calculation during phase transformation is performed in a reference volume element 

with periodic boundaries. In this procedure, the equivalent plastic strain accumulation is pronounced 

at the vicinity of the daughter phase as demonstrated in Fig. 4.

The evolution of the average volume fraction of the new phase under stress free condition is shown 

in Fig. 5 (a). Within the period of phase transformation, the strain values change according to the 

magnitude of applied stress (transformation plastic strain). This additional strain effect 

(transformation plasticity) is depicted in Fig. 5 (b). As the applied stress value increases, the 

resulting total strain value also increases. As seen below, transformation plasticity is naturally 

obtained at the macroscopic scale during phase transformation as a result of the scale-transition 

numerical approach.



      
       (a) phase distribution (3 %)      (b) equivalent plastic strain in mother phase (3 %)

      
       (c) phase distribution (10 %)      (d) equivalent plastic strain in mother phase (10 %)

      
       (e) phase distribution (50 %)      (f) equivalent plastic strain in mother phase (50 %)

Fig. 4 Evolution of volume fraction of new phase and macroscopic total strain.
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Fig. 6 Relation between applied stress and transformation plastic strain.

The transformation plastic strain after phase transformation is plotted in Fig. 6 as a function of the 

applied stress. One can observe in the Fig. 6 that there is indeed a linear relation between applied 

stress and transformation plastic strain when applied stress is less than 60 MPa. This relation agrees 

with the predictions of the models by Greenwood-Johnson [2], Leblond [14] or Inoue [11]. The 

factors of proportionality (transformation plasticity coefficient) are equal to  𝐾 +
𝑃 = 2.20 × 10 ‒ 5

(MPa-1) and  (MPa-1), where the superscripts “+” and “-” denote transformation 𝐾 ‒
𝑃 = 2.15 × 10 ‒ 5

plasticity under tensile applied stress and compressive applied stress respectively. Thus, there is no 

significant difference between tensile and compressive applied stresses in the present case. To make 

a quantitative comparison with Leblond’s model, the transformation plasticity coefficient by 

Leblond’s model is  (MPa-1); a good agreement between the two approaches. We 𝐾𝑃 = 2.17 × 10 ‒ 5

can then conclude that the FFT model is able to predict correctly the transformation plasticity due to 

a diffusive Greenwood-Johnson process.

In addition to the proportional relationship between applied stress and transformation plastic strain, 

the results by FFT predict satisfactorily the experimental evidence of non linearity between applied 



stress and transformation plastic strain when applied stress is relatively large.

Case of large transformation expansion ( )𝛽 = 4.4 × 10 ‒ 3

The large transformation strain induced plasticity is analysed. All the conditions except the 

transformation strain are the same as those used for the small transformation expansion case. Fig. 7 

is the transformation plastic strain calculated by FFT numerical model depending on the applied 

constant stresses.
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Fig. 7 Relation between applied stress and transformation plastic strain.

From the obtained data, the transformation plastic coefficient is  (MPa-1) for 𝐾 +
𝑃 = 8.44 × 10 ‒ 5

tensile and  (MPa-1) for compressive applied stress. There is a slight discrepancy 𝐾 ‒
𝑃 = 9.38 × 10 ‒ 5

between transformation plastic coefficients under tensile and compressive stresses but the difference 

is below 10 % even in the large transformation expansion case. The nonlinearity behaviour for large 

applied stress is found to be more pronounced than in the small transformation expansion case.

2.3.3. Pre-deformation effect on transformation strains

Heat treatment process in steels is often accompanied with pre-deformation, such as hot rolling and 

hot forging. Hence, the effect of pre-deformation is inherently linked to the precise shape and 

residual stress analyses. As a basic analysis, let us conduct a uniaxial tension simulation followed by 

phase transformation introducing back stress effect on each slip system for the following simulations, 

such that

𝜏 * (𝛼) = 𝜏(𝛼) - 𝑎(𝛼) (28)

where  is effective resolved shear stress and  is back stress value on the  slip system. Now 𝜏 * (𝛼) 𝑎(𝛼) 𝛼

let  be Armstrong-Frederick type back stress model [39], such that:𝑎(𝛼)

𝑎(𝛼) = 𝐶1(𝐶2𝛾(𝛼) - 𝑎(𝛼)|𝛾(𝛼)|) (29)
where  and  are material constants.𝐶1 𝐶2



A uniaxial tensile calculation up to 10 % strain of polycrystalline aggregates is conducted followed 

by phase transformation calculation under applied constant stress. This sequence is depicted in Fig. 8. 

At 1000 step (10 % strain), the unloading process to a prescribed stress is calculated and then the 

phase transformation calculation is initiated.
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Fig. 8 Calculation sequence for pre-tension transformation plasticity.
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Fig. 9 Transformation strain with pre-tension.

The obtained transformation strains under free applied stress are demonstrated in Fig. 9. A 
remarkable diverge of  (pre-tensile direction) from the other strain components is observed. The 𝜀𝑧𝑧

strain  takes minus value at the beginning of transformation even though the transformation is an 𝜀𝑧𝑧

expanding process. The other two components take the same larger value. Obviously, this diverge is 

controlled by the classical plastic strain and thus the total transformation strain (volume change) 

keeps constant from the input value. In fact, 𝜀𝑚
𝑖𝑖 = 𝜀 𝑚

11( = 0.002146) + 𝜀 𝑚
22( = 0.002153) + 𝜀 𝑚

33

. The mechanism of this remarkable phenomenon ( = 0.000296) = 0.004595≅3 × 𝛽( = 0.001536)

can be given as follows.

During pre-tension, the yield surface moves, and thus material gets hardened for the loading 

direction. By contrast, the material is softer after deformation for the opposite direction exhibiting 

anisotropy. To accommodate the volume difference between parent and daughter phases, as we have 



seen in the previous section, plastic strain occurs at the vicinity of the daughter phase. If the material 

is isotropic, this plastic strain gives no apparent macroscopic strain. However, it is not applicable for 

the anisotropic materials. The present case, the anisotropy in the RVE is induced by the pre-tensile 

calculation. Therefore, it is hard to deform in the tensile direction resulting in the small (even 

negative because of the deformation in the other directions) plastic strain yielding large plastic strain 

in the other directions (because the incompressive plastic deformation). This phenomenon can also 

be found in the experimental works by Taleb et al. [10] in bainitic phase transformation in 16MND5 

steel. The experimental results appear to be very similar to the calculations. Above explanation is 

also valid for the pre-compressed case. To confirm this, -10 % pre-compressed followed by 

unloading and phase transformation calculations are carried out. The calculated results of free 

dilatation are shown in Fig. 10. It is observed that the total strain in z direction is larger than those of 

the other directions even though the local transformation strain is always isotropic. Again, the total 

volume change remains the same value with that of non-hardening condition.
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Fig. 10 Transformation strain with pre-compression.

In analogy with the previous calculations, following pre-hardening, strains under several applied 

stresses during phase transformation are calculated. In this case, the transformation plastic strain 

depending on the applied stress is plotted in Fig. 11.
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Fig. 11 Relation between transformation plastic strain and applied stress.

For small applied stresses (smaller than 60 MPa), the proportional factors (transformation plastic 

coefficients) of each case are given by follows.

Pre-tension :  MPa-1,  MPa-1𝐾 +
𝑃 = 2.12 × 10 - 5 𝐾 -

𝑃 = 1.17 × 10 - 5

Pre-compression:  MPa-1,  MPa-1𝐾 +
𝑃 = 1.36 × 10 - 5 𝐾 -

𝑃 = 2.01 × 10 - 5

The superscript of “+” represents positive applied constant applied stress during phase 

transformation, and “-” represents negative applied stress. It is found that the linear relation between 

applied stress and transformation plastic strain is kinked because of the pre-hardening effect.

3. Assessment of existing analytical models
3.1. Descriptions of selected existing analytical models
3.1.1. Leblond’s model

Leblond has developed an analytical model which allows to calculate the plastic strain state of the 

parent phase which surrounds a spherical inclusion of the daughter phase [15]. According to the 

Greenwood-Johnson mechanism, parent phase crust expansion by phase transformation induces 

some plastic strain in the surrounding parent phase. Leblond expressed the transformation plastic 

strain rate as a function of the volume fraction change, neglecting plastic strain in the daughter phase, 

such that,

𝜀𝑡𝑝 = (1 ‒ 𝜉)〈𝛿𝜀𝑝
1

𝛿𝜉 〉𝑉1
𝜉 (30)

where  is equivalent plastic strain rate caused by transformation plasticity and  𝜀𝑡𝑝 〈𝛿𝜀𝑝
1/𝛿𝜉〉𝑉1

represents the average value within the parent phase of the ratio of plastic strain increment due to 

volume fraction change. Starting with the equation (30), it is assumed that for small or moderately 

high applied stresses, the parent phase is entirely elastoplastic whereas the daughter phase remains 

elastic (or its plastic strain rate remains always much smaller than that of the parent phase).

Using Prandtl-Reuss relation, the equation (30) can be rewritten as:

𝜀𝑡𝑝 =
3(1 ‒ 𝜉)

2𝜎𝑦
1

〈𝛿𝜀𝑒𝑞
1

𝛿𝜉 〉𝑉1
𝑆𝜉 (31)

where  is the applied macroscopic deviatoric stress value. The total equivalent strain increment due 𝑆

to volume change can be obtained by neglecting external stress effects



〈𝛿𝜀𝑒𝑞
1

𝛿𝜉 〉𝑉1
=‒

2𝛽
1 ‒ 𝜉ln (𝜉) (32)

Finally we obtain

𝜺𝑡𝑝 = { 𝟎    if    𝜉 ≤ 0.03

( ‒ 2𝛽

𝜎1
𝑦

)ln (𝜉)𝜉
3
2

𝒔    if     𝜉 > 0.03 � (33)

The total value of transformation plastic strain under constant applied stress is

𝜺𝑡𝑝 =
1

∫
0.03

( ‒ 2𝛽

𝜎1
𝑦

)ln (𝜉)𝜉
3
2

𝒔𝑑𝜉≅0.8648( ‒ 2𝛽

𝜎1
𝑦

)3
2

𝒔 (34)

This model has been shown by Leblond to estimate correctly the transformation plastic strain in 

comparison with the experimental results. An extended model to strain hardening materials is 

suggested [16], namely,

𝜺𝑡𝑝 = { 𝟎    if    𝜉 ≤ 0.03

( ‒ 2𝛽

𝜎1
𝑦

)ln (𝜉)𝜉
3
2

𝒔 ∗     if     𝜉 > 0.03 � (35)

where  is a deviatoric effective stress; the deviatoric back stress is extracted from the deviatoric 𝒔 ∗

stress.

As we have seen above, transformation plasticity models are often expressed as a linear relationship 

between applied stress and transformation plastic strain. This is confirmed by many experimental 

works [11][40][41]. However, when the applied stress exceeds a certain threshold value, the linear 

relation does not hold anymore. The threshold value is often set equal to be a half of the value of 

yield stress value of weaker phase [2][42]. To the authors’ knowledge, no theoretical or numerical 

explanation of this threshold value has been provided yet. However, a phenomenological modelling 

of the transformation plasticity including non-linear regime has been given by Leblond [16]:

𝜺𝑡𝑝 = { 0    if    𝜉 ≤ 0.03

( ‒ 3𝛽

𝜎1
𝑦

)ℎ(𝜎𝑒𝑞

𝜎𝑢 ) ⋅ ln (𝜉)𝜉𝒔    if     𝜉 > 0.03 � (36)

with

ℎ(𝜎𝑒𝑞

𝜎𝑢 ) = { 1    if    
𝜎𝑒𝑞

𝜎𝑢 ≤
1
2

1 + 3.5(𝜎𝑒𝑞

𝜎𝑢 ‒
1
2)    if     

𝜎𝑒𝑞

𝜎𝑢 >
1
2� (37)

where the function  expresses the nonlinearity,  is the applied global equivalent stress ℎ(𝜎𝑒𝑞/𝜎𝑢) 𝜎𝑒𝑞



and  is the global yield stress of the parent phase. The function  is fitted with the results by FEM 𝜎𝑢 ℎ

calculations.

3.1.2. Taleb’s model

Taleb et al. (Taleb and Sidoroff, 2003) modified the Leblond’s model by removing the hypothesis of 

entirely plastic parent phase, such that:

𝜺𝑡𝑝 = {( ‒ 2𝛽

𝜎1
𝑦

)ln (𝜉𝑙)𝜉
3
2

𝒔    if    𝜉 ≤ 𝜉𝑙

( ‒ 2𝛽

𝜎1
𝑦

)ln (𝜉)𝜉
3
2

𝒔    if     𝜉 > 𝜉𝑙� (38)

with

𝜉𝑙 =
𝜎𝑦

1

2𝛽
4𝜇 + 3𝐾

9𝐾𝜇
(39)

where  and  are bulk and shear elastic moduli respectively. Thus, Taleb’s model does not restrict 𝐾 𝜇

the parent phase to be entirely elastoplastic until the volume fraction of daughter phase reaches the 

value indicated by equation (39). Consequently, Taleb’s model is expected to be more accurate 

during the beginning of phase transformation. After the volume fraction of daughter phase becomes 
, this model follows Leblond’s model.𝜉𝑙

3.2. Comparison of the analytical models with FFT numerical results

First, transformation plastic strain for the small transformation expansion case ( ) by 𝛽 = 1.5 × 10 ‒ 3

analytical solutions under several applied stresses is plotted and confronted with FFT numerical 

results in Fig. 12. Note that the line “Leblond” signifies Leblond’s linear equation (33) and 

“Leblond-Mod.” is non-linear equation (35). “Leblond-Mod.” is an enhanced “Leblond” model 

comprises the nonlinearity under high external stress. All these models predict approximately the 

same transformation plastic strain values when applied stress is relatively small, whilst Leblond’s 

modified model overestimates transformation plastic strain at large applied stresses. The mechanism 

of this nonlinearity will be discussed in the later section.
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Fig. 12 Relation between applied stress and transformation plastic strain.
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Fig. 13 Comparison of evolution of transformation plastic strain.

Next discussion is on the kinematic evolution of strain during phase transformation under applied 

stress. Fig. 13 shows the comparison of the evolution curves of the transformation plastic strain 

predicted by FFT, Leblond’s model (33) and Taleb model (38). According to Fig. 13, Taleb’s model 

and FFT results agree at the beginning of phase transformation process. By contrast, Leblond’s 

model overestimates the transformation plastic strain at this stage especially under small applied 

stresses. This agreement between Taleb’s model and FFT results at the beginning of transformation 

can be explained by the Taleb’s modification which considers that the parent phase is not entirely 

elastoplastic at the beginning of phase transformation. The modification is rather important when 

transformation expansion is relatively small. Both Leblond and Taleb’s models underestimate the 

transformation plastic strain during the second half of phase transformation. This seems to be caused 

by plastic deformation of the daughter phase which is neglected by the analytical models. Thus, it is 

counterbalanced by an underestimation of the transformation plastic strain during the final stage for 

Leblond’s model. On the other hand, for Taleb’s model, it underestimates whole transformation 

plastic strain because of the underestimation at the final stage (and due to precise estimation at its 

initial stage) caused by the inappropriate assumption of elastic daughter phase as seen below.



Effect of plastic deformation in daughter phase

To enlighten the each contribution to transformation plasticity by parent and daughter phases, 

equivalent plastic strain of each phase is separately shown in Fig. 14.

0.0000 

0.0005 

0.0010 

0.0015 

0.0020 

0 2 4 6 8 10

Eq
ui

va
le

nt
 p

la
st

ic
 st

ra
in

 εp
, -

Time t, s

0MPa 10MPa 30MPa
50MPa 60MPa 70MPa
80MPa 90MPa

0.0000 

0.0005 

0.0010 

0.0015 

0.0020 

0 2 4 6 8 10
Eq

ui
va

le
nt

 p
la

st
ic

 st
ra

in
 εp

, -

Time t, s

0MPa 10MPa 30MPa
50MPa 60MPa 70MPa
80MPa 90MPa

                 (a) parent phase                         (b) daughter phase

Fig. 14 Strain evolutions of parent and daughter phases during phase transformation.

The equivalent plastic strain in parent phase takes maximum value when approximately 50 % 

transformed. After 50 %, the equivalent plastic strain in parent phase decreases due to the decrease 

in volume fraction. The non-negligible strain in daughter phase accumulates in conjunction with the 

strain decrease in parent phase. Therefore, neglect of the strain in daughter phase is obviously a 

major agent for the underestimation at the end of the phase transformation.

These discussions lead a conclusion that the underestimation of Leblond’s and Taleb’s models in the 

latter half of phase transformation derives from the assumption of elastic daughter phase. To confirm 

this analysis, FFT numerical simulations with elastic daughter phase (infinite yield stress) are carried 

out. The comparison among FFT, Leblond’s equation (33) and Taleb’s equation (38) under several 

applied stresses is shown in Fig. 15.
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Fig. 15
Comparison of evolution of transformation plastic strain (daughter: elastic 

case).

Fig. 15 shows that Taleb’s equation (38) closely agrees with FFT calculation results. Leblond’s 

model overestimates the transformation plasticity, while Taleb’s model agrees well with FFT during 

the whole transformation process when the daughter phase is elastic.

Fig. 16 represents the relation between applied stress and transformation plastic strain for daughter 

phase elastic condition. The transformation plasticity coefficient is  (MPa-1) and 𝐾𝑃 = 1.68 × 10 - 5

again there is no significant difference between tensile and compressive stress conditions. 

Comparing to the daughter phase elastoplastic case, the transformation plasticity coefficient value is 

about 20 % smaller for daughter phase elastic case. This appears also to be in quantitative agreement 

with the discrepancy in total transformation plastic strain between FFT numerical model and Taleb’s 

model. This proved that plasticity in daughter phase should be incorporated especially when the 

daughter phase is relatively soft as ferrite phase.
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Fig. 16
Relation between applied stress and transformation plastic strain (pearlite: elastic 

case).

Mechanism that causes nonlinearity under high applied stress

When the applied stress is large, both Leblond’s and Taleb’s model underestimate transformation 



plastic strain as shown in Fig. 13 (c) and (d). In these cases, the linear relation between 

transformation plastic strain and applied stress is never satisfied (Fig. 6). The reason of this 

nonlinearity is investigated here by FFT computations.

Many models, such as Greenwood-Johnson [2] or Inoue [43], predict a linear relationship between 

applied stress and transformation plastic strain. Therefore, they are valid only for small applied stress 

conditions. As previously discussed, experimental results show that when the applied stress exceeds 

half the yield stress of the parent phase, nonlinearity occurs.

Leblond has analytically modelled transformation plasticity according to the Greenwood-Johnson 

mechanism [15]. This model contains 5 main hypotheses which are recalled here.

H1. The microscopic elastic compliance tensor may be equated to the macroscopic overall elastic 

compliance tensor.

H2. For small or moderately high applied stresses, the austenitic phase is entirely plastic, but the  𝛼

phase remains elastic or its plastic strain rate remains always much smaller than that of the  𝛾

phase.

H3. Both phases are ideal-plastic and obey the von Mises criterion and the Prandtl-Reuss flow rule.

H4. Correlations between  and  can be neglected.𝛿𝜀𝑒𝑞
1 /𝛿𝑧 𝑠1

H5. For small applied stresses, the average stress deviator in phase 1 is almost equal to the overall 

average stress deviator.

We now intend to check which assumptions remain valid, and which are not, for the high applied 

stress regime.

Hypothesis 1 is fulfilled because local elastic anisotropy does not significantly affect transformation 

plasticity.

Concerning hypothesis 2, Fig. 17 shows a probability density distribution of equivalent plastic strain 

when 50 % transformed state calculated by FFT (643 voxels, 100 grains). The results show that most 

voxels remain elastic, which is against the hypothesis. The larger the applied stress, the more voxels 

deform plastically. It means that even though there are many parts which remain elastic, this 

hypothesis cannot be the reason for the nonlinearity under high applied stress.
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                (a) Parent phase                         (b) Daughter phase

Fig. 17 Equivalent plastic strain distribution at .𝜉 = 0.5

We do not discuss hypothesis 3 since our calculations are not based on von Mises and Prandtl-Reuss 

models.

Hypothesis 4 can be verified by numerical results. The terms  (Line 1) and 〈𝛿𝜀𝑒𝑞
1 /𝛿𝜉 ∙ 𝑠1〉𝑉1

 (Line 2) are calculated during phase transformation. The comparison of these 〈𝛿𝜀𝑒𝑞
1 /𝛿𝜉〉𝑉1

∙ 〈𝑠1〉𝑉1

two values is shown in Fig. 18.
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Fig. 18 Effect of correlation between  (1) and  (2) at several applied stress.𝛿𝜀𝑒𝑞
1 /𝛿𝑧 𝑠1

According to Fig. 18, it is clear that correlation between  and  can be neglected. Thus, the 𝛿𝜀𝑒𝑞
1 /𝛿𝑧 𝑠1

hypothesis 4 is well verified. In fact, as shown in Fig. 19, the resultant transformation plastic strains 

calculated with H.4 and without H.4 do not show substantive difference. This verification has also 

been performed by Leblond et al. [15] by using FEM with J2 plasticity.
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Fig. 19 Effect of correlation between  and .𝛿𝜀𝑒𝑞
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Hypothesis 5 is now numerically verified. As for H.4, the average stress value of phase 1 and overall 

stress (average stress of both phase 1 and phase 2) are shown in Fig. 20.
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Fig. 20 Difference between average stress value of phase 1 and overall stress.

The maximum difference between average stress of phase 1 and overall stress until 50 % phase 

transformation is less than 7 %. Hence, the hypothesis 5 is likely to be valid. To confirm this, the 



transformation plastic strain values with several applied stress are shown in Fig. 21; 〈𝛿𝜀𝑒𝑞
1 /𝛿𝑧〉𝑉1

∙

 without H.5 and  with H.5. In this case,  is calculated by using 〈𝑠1〉𝑉1
〈𝛿𝜀𝑒𝑞

1 /𝛿𝑧〉𝑉1
∙ 𝑆 〈𝛿𝜀𝑒𝑞

1 /𝛿𝑧〉𝑉1

analytical solution given by equation (32). As shown in Fig. 21, the hypothesis 5 is verified.
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Fig. 21 Difference between average stress value of phase 1 and overall stress.

In contrast to Fig. 19, where one can observe the nonlinearity between applied stress and 

transformation plastic strain, Fig. 21 shows almost linear relation between them; the difference 

seems to arise from whether the term  is calculated by FFT or by analytic solution given 〈𝛿𝜀𝑒𝑞
1 /𝛿𝑧〉𝑉1

by equation (32).

Fig. 22 shows the transformation plastic strains calculated by equation (31) in which the term 

.is given by analytical solution using equation (32) (1. circle symbol) and FFT solution 〈𝛿𝜀𝑒𝑞
1 /𝛿𝑧〉𝑉1

(2. cross symbol). An important discrepancy is observed.
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Fig. 22 Difference between analytical solution (circle) and FFT (cross) for .〈𝛿𝜀𝑒𝑞
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From the discussion above, it can be concluded that the estimation of term  is 〈𝛿𝜀𝑒𝑞
1 /𝛿𝑧〉𝑉1

responsible for the nonlinearity under high applied stress condition. In addition, it shows that the 

analytical solution given by equation (32) is accurate for small applied stress but it is not valid under 

high applied stress value.

The reason why equation (32) is invalid under high applied stress is that the equivalent strain 

increment  is supposed to be initiated only by transformation expansion. The assumption is 𝛿𝜀𝑒𝑞(𝑥)

valid under small applied stress but applied stress effect on equivalent strain increment is no longer 

negligible when applied stress is large.

3.3. Application of Leblond’s model for strain hardening materials [16] to pre-hardening case
Finally, modified Leblond’s for strain hardening materials (equation (35)) are compared with the 

FFT numerical results. In this calculation, back stress for 10 % initial straining is estimated using 

equation (29). The obtained results for pre-tension case followed by stress-free transformation and 

50 MPa applied stress are shown in Fig. 23. The kinematic change in strain during phase 

transformation is surprisingly in good agreement between Leblond’s model and numerical model 

especially for the stress free condition. The initial curves for 50 MPa applied stress case are slightly 

different each other but the final strain values are very close.
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Fig. 23 Relation between FFT and Leblond model results of pre-tension case.

Another example is for pre-compression case. The back stress is again estimated by equation (29). 

The strain evolutions under stress absent and 50 MPa applied stress cases are demonstrated in Fig. 

24. The Leblond’s analytical model for straining materials revealed that it is applicable to estimate 

transformation strain and transformation plasticity for both tensile and compressive pre-straining 

materials.
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Fig. 24 Relation between FFT and Leblond model results of pre-compression case.

4. Conclusion
An elasto-plastic model for the prediction of the behaviour of a polycrystalline material subjected to 

diffusive phase transformation effect (transformation expansion) has been developed by using the 

discrete fast Fourier transform (FFT) numerical scheme. This alternative approach to the finite 

element method, based on Green functions, offers a simple framework to take into account the effect 

of the local volume expansion on the plastic response of the material. The model confirms that 

Greenwood-Johnson effect is one of the main mechanisms that cause transformation plasticity.

Then, the numerical model is applied to a more complicated phenomenon with pre-hardening effect. 

The pre-hardening leads to a distinct transformation strain evolution, namely pre-tension cause the 

small transformation dilatation (for the tensile direction) remaining total volume being same. The 

pre-compression case is totally opposite to the pre-tension case. This effect can be explained by the 

back stress (kinematic hardening of the austenite phase) and the anisotropy. The calculation results 

are in good agreement with experimental results by Taleb et al..

Finally, Leblond’s and Taleb’s models are compared with the FFT results shedding light on the 

quantitative analysis on the transformation plasticity. For the case of a small transformation 

expansion, the results by FFT are in quantitative agreement with the Leblond’s model in terms of the 

final transformation plastic strain value. However, Leblond’s model overestimates the 

transformation plastic strain at the beginning of phase transformation and underestimates it at the 

end. On the other hand, the Taleb’s model shows a good agreement with the FFT numerical solution 

at the beginning of transformation but underestimates the transformation plastic strain during the 

latter half of phase transformation, which causes an underestimation of transformation plasticity. As 

Taleb has mentioned in his paper, the assumption that “the austenite phase is entirely plastic during 

phase transformation” is responsible for the overestimation of Leblond’s model at the beginning of 

phase transformation. In addition, it is now clear that the underestimation of Leblond’s model at the 



end of phase transformation can be explained by the plastic deformation in daughter phase. By using 

FFT results, it has been confirmed that the average ratio of the equivalent plastic strain increment 

over volume fraction increment, namely , is responsible for the nonlinearity.〈𝛿𝜀𝑒𝑞
1 /𝛿𝜉〉𝑉1

For large transformation expansion case, both Leblond and Taleb models underestimate the 

transformation plastic strain. In the case of large transformation expansion, the period during which 

the parent phase is not entirely elastoplastic is short and thus the differences between models by 

Leblond and Taleb are small. Both models underestimate transformation plastic strain since they 

neglect the effect of an external stress on plastic strain of parent phase as well as the plastic strain in 

the daughter phase. These models are considered to be valid when the parent phase is much harder, 

i.e. bainitic or martensitic.
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Appendix A

Modified rate-independent model for elasto-plastic transient problems

In this appendix, the computation of the plastic slip increments during a strain loading step is 

described. A modification of the Hutchinson’s method (Hutchinson, 1970) is proposed for the 

elastoplastic transition. It allows to consider larger strain increment without affecting the overall 

response.

The plastic strain rate is given by summation of each slip rate on the slip systems, such that

𝜀𝑝
𝑖𝑗 = ∑

𝛼
𝛾𝛼𝑝𝛼

𝑖𝑗
(A-

1)

where,  is slip system  is a Schemid tensor. So, the stress rate of elastoplastic problem can be 𝛼 𝑝𝛼
𝑖𝑗

found as:

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙(𝜀𝑖𝑗 ‒ 𝜀𝑝
𝑖𝑗) 

(A-

2)
where,  is total strain rate and  is elastic stiffness tensor. On the other hand, the 𝜀𝑘𝑙 𝐶𝑖𝑗𝑘𝑙(𝑥)

constitutive equation of elastic problem is given simply as:
𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗 (40)

because total strain rate derives only from elastic strain.

When resolved shear stress  exceeds the value , the material satisfies the yield condition 𝜏𝛼 = 𝜎𝑖𝑗𝑝
𝛼
𝑖𝑗 𝑔𝛼

and the problem becomes elastoplastic. The values  can be found according to the initial hardness 𝑔𝛼

of each slip system and their hardening law.

First of all, let us introduce Hutchinson method which allows one to find the magnitude of slip on 

each slip system. Suppose that the work hardening and resolved stress increment of  slip system 𝛼

during one step equates each other as depicted in Fig. A-1.

𝜏𝛼
𝑛 = sgn(𝜏𝛼

𝑛)𝑔𝛼
𝑛

𝛥𝜏𝛼 = sgn(𝜏 𝛼
𝑛 ‒ 1)𝛥𝑔𝛼

𝜏 𝛼
𝑛 ‒ 1 = sgn(𝜏 𝛼

𝑛 ‒ 1)𝑔 𝛼
𝑛 ‒ 1 

Fig. A-1 Work hardening and resolved stress increment during plastic deformation.



It can also be expressed as following equations.

𝛥𝜏𝛼 = sgn(𝜏 𝛼
𝑛 ‒ 1)Δ𝑔𝛼

𝛥𝜎𝑖𝑗𝑝
𝛼
𝑖𝑗 = ∑

𝛽
ℎ𝛼𝛽Δ𝛾𝛽

(A-

3)

When one introduces the matrix , defined as:𝑋𝛼𝛽

,𝑋𝛼𝛽 = ℎ𝛼𝛽 + 𝑝𝛼
𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝑝

𝛽
𝑘𝑙 

(A-

4)

the following relation can be obtained.

∑
𝛽

𝑋𝛼𝛽Δ𝛾𝛽

= ∑
𝛽

ℎ𝛼𝛽Δ𝛾𝛽 + ∑
𝛽

𝑝𝛼
𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝑝

𝛽
𝑘𝑙Δ𝛾𝛽 = Δ𝜎𝑖𝑗𝑝

𝛼
𝑖𝑗 + 𝑝𝛼

𝑖𝑗𝐶𝑖𝑗𝑘𝑙𝜀
𝑝
𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙(Δ𝜀𝑘𝑙 ‒ Δ𝜀 𝑝

𝑘𝑙)𝑝𝛼
𝑖𝑗 + 𝑝𝛼

𝑖𝑗𝐶𝑖𝑗𝑘𝑙

𝜀 𝑝
𝑘𝑙 = 𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙𝑝

𝛼
𝑖𝑗

(A-

5)

Thus, the slip increment is calculated by using matrix , the inverse matrix of :𝑌𝛼𝛽 𝑋𝛼𝛽

,𝑌𝛼𝛽 = (𝑋𝛼𝛽) ‒ 1 
(A-

6)

such that;

Δ𝛾𝛼 = ∑
𝛽

𝑌𝛼𝛽𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙𝑝
𝛽
𝑖𝑗

(A-

7)

This result rigorously applies only for slip systems which are in the elastoplastic regime during the 

whole strain increment.

Second, let us consider the situation where the state of  slip system of previous increment was 𝛼

elastic and presently elastoplastic. Here, the trajectory of one step can be divided in two paths as 

depicted in Fig. A-2; one is elastic and the other is elastoplastic.

𝜏𝛼
𝑛 = 𝑔𝛼

𝑛sgn(𝜏𝛼
𝑛)

𝑔 𝛼
𝑛 ‒ 1sgn(𝜏 𝛼

𝑛 ‒ 1)

𝜏 𝛼
𝑛 ‒ 1

𝛥𝑔𝛼sgn(𝜏 𝛼
𝑛 ‒ 1)

𝛥𝜏𝛼

Fig. A-2 Division of trajectory in one step into two paths (elastic and elastoplastic).



In this case, (A-3) can be rewritten as:

𝜏 𝛼
𝑛 ‒ 1 + 𝛥𝜏𝛼 = sgn(𝜏 𝛼

𝑛 ‒ 1)𝑔 𝛼
𝑛 ‒ 1 + sgn(𝜏𝛼

𝑛)Δ𝑔𝛼

𝜎𝑖𝑗𝑝
𝛼
𝑖𝑗 + 𝛥𝜎𝑖𝑗𝑝

𝛼
𝑖𝑗 = sgn(𝜏 𝛼

𝑛 ‒ 1)𝑔 𝛼
𝑛 ‒ 1 + ∑

𝛽
ℎ𝛼𝛽Δ𝛾𝛽

(A-

8)

And we obtain the final form of slip increment:

Δ𝛾𝛼 = ∑
𝛽

𝑌𝛼𝛽(𝜎𝑖𝑗𝑝
𝛽
𝑖𝑗 + 𝐶𝑖𝑗𝑘𝑙Δ𝜀𝑘𝑙𝑝

𝛽
𝑖𝑗 ‒ sgn(𝜏 𝛼

𝑛 ‒ 1)𝑔 𝛼
𝑛 ‒ 1) (A-

9)

Uniaxial tensile numerical tests using the FFT numerical scheme with the two proposed method 

(Results A-7 and A-9)) have been carried out.

Fig. A-3 Calculated stress-strain curves with different strain increment par step.

Fig. A-3 shows calculated stress-strain curves with strain increment par step of 10-4 and 10-5. It is 

observed that a large strain increment leads to a softer response. This is due to the early plastic flow 

induced by the implicit method: plastic flow is assumed during the whole strain increment whereas 

the initial state is purely elastic. 
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Fig. A-4 Calculated stress-strain curves with the two proposed methods for the determination 



of the plastic slip increments.

Fig. A-4 is a comparison among two different strain increments (10-4 and 10-5) in one step with using 

Fig. A-4 shows a comparison for two different strain increments (10-4 and 10-5). equation (A-7) by 

using equation (A-7) and the case of increment 10-4 using equation (A-9). The response with the new 

method agrees very well with the reference solution even though the strain increment is large.



    

         (a) Initial austenite phase                    (b) During phase transformation

Fig. 1 Sample Voronoi tessellation and phase transformation; 100 grains in 643 cubic space.
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(calculations and experiment at 670oC).

      
       (a) phase distribution (3 %)      (b) equivalent plastic strain in mother phase (3 %)

      
       (c) phase distribution (10 %)      (d) equivalent plastic strain in mother phase (10 %)

      
       (e) phase distribution (50 %)      (f) equivalent plastic strain in mother phase (50 %)

Fig. 4 Evolution of volume fraction of new phase and macroscopic total strain.
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Fig. 5 Evolution of volume fraction of new phase and macroscopic total strain.
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Fig. 6 Relation between applied stress and transformation plastic strain.
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Fig. 7 Relation between applied stress and transformation plastic strain.
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Fig. 11 Relation between transformation plastic strain and applied stress.
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Fig. 12 Relation between applied stress and transformation plastic strain.
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                    (c) 70MPa                                (d) 90MPa

Fig. 13 Comparison of evolution of transformation plastic strain.
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Fig. 14 Strain evolutions of parent and daughter phases during phase transformation.
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Fig. 15
Comparison of evolution of transformation plastic strain (daughter: elastic 

case).
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Fig. 16
Relation between applied stress and transformation plastic strain (pearlite: elastic 

case).
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Fig. 17 Equivalent plastic strain distribution at .𝜉 = 0.5
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Fig. 18 Effect of correlation between  (1) and  (2) at several applied stress.𝛿𝜀𝑒𝑞1 /𝛿𝑧 𝑠1
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Fig. 19 Effect of correlation between  and .𝛿𝜀𝑒𝑞1 /𝛿𝑧 𝑠1
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Fig. 20 Difference between average stress value of phase 1 and overall stress.
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Fig. 21 Difference between average stress value of phase 1 and overall stress.
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Fig. 22 Difference between analytical solution (circle) and FFT (cross) for .〈𝛿𝜀𝑒𝑞1 /𝛿𝜉〉𝑉1
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Fig. 23 Relation between FFT and Leblond model results of pre-tension case.
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Fig. 24 Relation between FFT and Leblond model results of pre-compression case.
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Fig. A-1 Work hardening and resolved stress increment during plastic deformation.
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Fig. A-2 Division of trajectory in one step into two paths (elastic and elastoplastic).

Fig. A-3 Calculated stress-strain curves with different strain increment par step.
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Fig. A-4
Calculated stress-strain curves with the two proposed methods for the determination 

of the plastic slip increments.



Table 1 Parameters for crystal plasticity calculation.

Austenite Pearlite

Bulk modulus (MPa) 135833 150000

Shear modulus (MPa) 62692 69231

 (MPa)𝐻0 10 550

 (MPa)𝜏0 30 100

 (MPa)𝜏𝑠 40 130

𝑞 1.0 1.0

Number of grains 100 100
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