
HAL Id: hal-01829575
https://hal.sorbonne-universite.fr/hal-01829575

Submitted on 4 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Totally Destructive Many-Particle Interference
Christoph Dittel, Gabriel Dufour, Mattia Walschaers, Gregor Weihs, Andreas

Buchleitner, Robert Keil

To cite this version:
Christoph Dittel, Gabriel Dufour, Mattia Walschaers, Gregor Weihs, Andreas Buchleitner, et al..
Totally Destructive Many-Particle Interference. Physical Review Letters, 2018, 120 (24), pp.240404
�10.1103/PhysRevLett.120.240404�. �hal-01829575�

https://hal.sorbonne-universite.fr/hal-01829575
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

Totally Destructive Many-Particle Interference

Christoph Dittel,1,2,* Gabriel Dufour,2,3 Mattia Walschaers,4 Gregor Weihs,1 Andreas Buchleitner,2 and Robert Keil1
1Institut für Experimentalphysik, Universität Innsbruck, Technikerstr. 25, 6020 Innsbruck, Austria

2Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Str. 3, 79104 Freiburg, Germany
3Freiburg Institute for Advanced Studies, Albert-Ludwigs-Universität-Freiburg, Albertstr. 19, 79104 Freiburg, Germany

4Laboratoire Kastler Brossel, Sorbonne Université, CNRS, ENS-PSL Research University, Collège de France;
4 place Jussieu, F-75252 Paris, France

(Received 22 January 2018; published 15 June 2018)

In a general, multimode scattering setup, we show how the permutation symmetry of a many-particle
input state determines those scattering unitaries that exhibit strictly suppressed many-particle transition
events. We formulate purely algebraic suppression laws that identify these events and show that the many-
particle interference at their origin is robust under weak disorder and imperfect indistinguishability of the
interfering particles. Finally, we demonstrate that all suppression laws so far described in the literature are
embedded in the general framework that we here introduce.
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Many-particle interference is a distinguished feature of
quantum theory. It is grounded in the coherent evolution of
many-particle states, and it provides a resource for appli-
cations ranging from quantum metrology [1] to quantum
computation [2,3] and quantum information [4,5]. Its first
experimental verification dates back to 1987, when Hong,
Ou, and Mandel (HOM) [6] observed the quantum stat-
istical signature of two interfering bosons by injecting one
photon into each input port of a balanced beam splitter. The
bosonic nature of the photons [4,7] causes a totally
destructive interference of the two-particle amplitudes
leading to one particle in each output port, so that both
particles leave the beam splitter through the same port. The
same phenomenon can also be observed in other bosonic
systems, such as trapped 87Rb atoms in a double-well
potential [8] or overlapping beams of metastable 4He atoms
[9]. For indistinguishable fermions, on the other hand,
Pauli’s exclusion principle [10] forbids the simultaneous
occupation of the same physical state. Consequently, two
fermions never leave the beam splitter through the same
port, as demonstrated in electron collisions [11,12].
An important aspect of HOM interference is the fact that

the beam splitter is balanced, that is, it features equal
single-particle probabilities for transmission and reflection
as well as a particular phase relation arising from the
conservation of energy [13]. Consequently, the probability
amplitudes for both photons being transmitted and both

photons being reflected cancel each other perfectly. We
naturally ask the question whether and how totally destruc-
tive interference may arise in more complex scenarios with
larger numbers of particles and ports (henceforth termed
modes). Efforts towards solving this question were under-
taken by feeding two particles into beam splitters with three
[14–16] and four [14,16] modes, via theoretical [17,18] and
experimental [19–21] extensions to three particles entering
a tritter, as well as experiments demonstrating bosonic
bunching for four [22,23] and six [23,24] photons and two
modes. In all of these scenarios, destructive interference
was observed for certain input-output configurations.
Regarding a generalization of the HOM effect to arbitrary
particle or mode numbers, destructive interference was
studied in free-space propagation [25], and several indi-
vidual unitary transformations were investigated for which
a large number of final many-particle output events are
suppressed due to totally destructive interference: the
discrete Fourier transformation [26–31], the Jx unitary
[32,33], Sylvester interferometers [34,35], and hypercube
unitaries [36]. In all of these cases, which can be interpreted
as different generalizations of the two-port beam splitter, so
called suppression laws have been formulated. However, to
which extent all these distinct interference scenarios can be
understood as the consequence of one underlying principle
has remained an unsolved question to date.
Here, we uncover this very principle. While all previous

scenarios [26–28,32–36] considered specific transforma-
tion matrices to infer the associated set of output events that
are fully suppressed by destructive many-particle interfer-
ence, we derive entire classes of transformation matrices,
together with the associated suppression laws, solely from
the permutation symmetries of arbitrary many-particle
input states. We show how to construct these unitaries and
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relate the prediction of suppressed many-particle transmis-
sion events to the simple evaluation of an associated set of
eigenvalues. This formalism unifies all known cases of
many-particle suppression laws under one general perspec-
tive, and it allows the targeted design of multimode
multi-particle setups. For some of the already established
suppression laws, our general result even enlarges the set of
suppressed events. We provide a generic example by
application of our formalism to the discrete Fourier trans-
formation, for which our result coincides with the findings in
[28] for bosons, and extends them for fermions. Furthermore,
we show that totally destructive interference is robust with
respect to partial particle distinguishability and small devia-
tions from the ideal unitary. For an extensive discussion on
technical aspects, various applications and extensions of
these principles, we refer the reader to [37].
We consider the transmission of a Fock state of N

noninteracting particles across an n-mode scattering device.
The configuration of a many-particle state with rj particles
injected in mode j ∈ f1;…; ng is denoted by the initial
mode occupation list r⃗ ¼ ðr1;…; rnÞ and its corresponding
mode assignment list d⃗ðr⃗Þ ¼ (d1ðr⃗Þ;…; dNðr⃗Þ), with dαðr⃗Þ
specifying the mode occupied by the αth particle, α ∈
f1;…; Ng [28,36,38,39]. Analogously, the final particle
configuration is denoted by s⃗ and d⃗ðs⃗Þ. Unless otherwise
stated, we consider all particles as mutually indistinguish-
able bosons (B) or fermions (F) such that the ordering in
d⃗ðr⃗Þ and d⃗ðs⃗Þ is irrelevant.
Given the single-particle unitary U ∈ UðnÞ, with Uj;k the

probability amplitude for a transition from initial mode j to
final mode k, any many-particle transformation is governed
by the scatteringmatrixM ∈ CN×N , withMα;β ≡Udαðr⃗Þ;dβðs⃗Þ,
composed of those rows and columns ofU that correspond to
occupied initial and final modes, respectively. The transition
probability for bosons is related to the permanent of the
scattering matrix, PBðr⃗; s⃗; UÞ ∝ jpermðMÞj2, whereas for
fermions it is given by the determinant, PFðr⃗; s⃗; UÞ ¼
j detðMÞj2 [28,34,36,38–40]. For distinguishable particles
(D), on the other hand, the transition probability is insensitive
to scattering phases and readily obtained from the
single-particle transition probabilities jUj;kj2. It obeys
PDðr⃗; s⃗; UÞ ∝ permðjMj2Þ [28,34,36,38–40] where j:j2
denotes the element-wise modulus squared.
A suppression of final particle configurations due to

totally destructive interference must naturally result from
phase relations in M that lead to a cancellation of all terms
in the determinant or permanent. Given an initial particle
configuration r⃗, we therefore investigate the characteristics
of transformation matrices U that exhibit such phase
relations. Because the transition probability involves con-
tributions from all permutations of the initial (or final)
particle configuration, intuitively, these unitaries are closely
connected to the permutation characteristics of r⃗ (or s⃗).

Consequently, let π ∈ Sn, with Sn the symmetric group
on the set of modes f1;…; ng, denote a nontrivial permu-
tation of all input modes that leaves the initial particle
configuration unchanged. Accordingly, the mode occupa-
tion list r⃗ is invariant under the corresponding permutation
operator P,

Pr⃗ ¼ r⃗; ð1Þ
with Pj;k ¼ δπðjÞ;k. An eigendecomposition of the permu-
tation operator reads P ¼ ADA†, where the columns of the
unitary matrix A correspond to the eigenvectors of P, and
D ¼ diagðλ1;…; λnÞ lists the eigenvalues λj associated
with the jth eigenvector. As A can be any eigenbasis of
P, its columns can be permuted arbitrarily (accompanied
by the corresponding reordering of D) and for each q-fold
degenerate eigenvalue one can freely choose a basis of the
corresponding q-dimensional eigenspace.
If the order of π ism, i.e., Pm ¼ 1, the eigenvalues listed

in D are mth roots of unity. More precisely, the eigenvalues
are determined by the cycle lengths of π: for each cycle
with length l, all lth roots of unity appear in D. For
example, the permutation π ¼ ð123Þð456Þð78Þ consists of
two cycles of length 3 and one cycle of length 2, and the
corresponding permutation operator P has eigenval-
ues feið2π=3Þ; eið4π=3Þ; 1; eið2π=3Þ; eið4π=3Þ; 1;−1; 1g.
As we show in the following, for initial states satisfying

Eq. (1) and any choice of eigenbasis A, any unitary matrix

U ¼ ΘAΣ ð2Þ
exhibits a large number of suppressed final particle con-
figurations. Note that U is specified by the permutation
characteristics of the initial state, and Θ ∈ Cn×n and Σ ∈
Cn×n are arbitrary diagonal unitary matrices accounting for
local phases of initial and final modes, respectively, which
do not affect many-particle interference.
To infer the suppressed output events for unitaries of the

form (2), we utilize the latters’ relation with the permutation
operator P. It can be straightforwardly verified that the
action of P leaves these unitaries unaffected except for
local phases:

PU ¼ ZUD; ð3Þ
with Z ¼ PΘP†Θ†. Note that D is diagonal and unitary by
definition, and Z inherits these properties from Θ through
the permutations induced by P. Equation (3) reveals that
the permuted rows of U (which enter the permanent or
determinant) only differ by local phases defined by Z and
D. Since a vanishing transition probability must be inde-
pendent of Z (which originates from arbitrary local phases
in Θ), Eq. (3) also reveals that totally destructive interfer-
ence can only depend on the eigenvalues in D.
Aswe showbelow, forbidden output configurations can be

determined by the final eigenvalue distribution Λðs⃗Þ ¼
fλd1ðs⃗Þ;…; λdNðs⃗Þg, which contains all N eigenvalues
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Λαðs⃗Þ ¼ λdαðs⃗Þ associatedwith the finalmode assignment list

d⃗ðs⃗Þ, as illustrated in Figs. 1(a) and 1(b). Note that Λðs⃗Þ is a
multiset, that is,multiple instances of its elements are allowed
and theorder is irrelevant. For indistinguishable fermions,we
further introduce the initial eigenvalue distribution Λini,
which is predetermined by the initial mode occupation r⃗
and contains a subset of those eigenvalues listed in D. In
consideration of Pauli’s principle, Eq. (1) holds if and only if
all modes belonging to the same cycle of π are initially empty
or populated by exactly one fermion. Then, each cycle with
length l whose modes are initially populated contributes the
set of eigenvalues ei2πðk=lÞ with k ¼ 1;…; l to the multiset
Λini [see Fig. 1(c) for the previously discussed example].
Whether s⃗ is suppressed can then be determined by the
following suppression laws, which we find after involved
technical manipulations, which are detailed in [37].
Suppression laws.—Let r⃗ be any initial particle con-

figuration of N indistinguishable particles, which is invari-
ant under the mode-permutation operation P defined by a
permutation π ∈ Sn. Let ADA† be any eigendecomposition
of P with eigenvalues D ¼ diagðλ1;…; λnÞ and eigenbasis
A ∈ UðnÞ, Λini and Λðs⃗Þ the initial and final eigenvalue
distribution, respectively, and Θ and Σ arbitrary diagonal
unitary matrices. For the unitary transformation matrix
U ¼ ΘAΣ, final particle configurations s⃗ are suppressed,
i.e., Pðr⃗; s⃗; UÞ ¼ 0, in the case of bosons, if

YN
α¼1

Λαðs⃗Þ ≠ 1; ð4Þ

in the case of fermions, if

Λðs⃗Þ ≠ Λini: ð5Þ

For both particle types, the suppression of a final particle
configuration s⃗ can be immediately determined from the
corresponding final eigenvalue distribution. This entails
drastically reduced computational costs compared to the
conventional method via the evaluation of the permanent or
determinant ofM. Because the eigenvalues are integer roots
of unity, only those bosonic final particle configurations are
allowed for which the phases of the final eigenvalue
distribution add up to zero. For fermions, on the other
hand, the final eigenvalue distribution of nonvanishing
configurations is uniquely defined by Λini. Note that the
trivial permutation P ¼ 1 only has eigenvalues 1, so that
conditions (4) and (5) can never be fulfilled. Thus, unitaries
of the form (2) must exhibit some nontrivial permutation
characteristics (3) in order for a suppression law to take
effect.
As an example highlighting the applicability of the

above suppression laws, we further inspect the example
of Fig. 1: By rotations in the degenerate subspaces
of P [41], we numerically generate 10000 random eigen-
bases A and calculate the mean transition probability
hPB=F=Dðr⃗; s⃗; UÞi for bosons, fermions and distinguishable
particles. Figures 2(a) and 2(b) illustrate the probability

FIG. 1. Initial and final eigenvalue distribution for N ¼ 5
particles injected into n ¼ 8 modes, with input and output mode
occupation lists r⃗ and s⃗, respectively. The input r⃗ is invariant under
the permutation π ¼ ð123Þð456Þð78Þ, with eigenvalue matrix
D ¼ diagðλ1;…; λnÞ, λ1¼λ2¼λ3¼1, λ4¼λ5¼eið2π=3Þ, λ6 ¼ λ7 ¼
eið4π=3Þ, and λ8 ¼ −1. The mode assignment list on output,

d⃗ðs⃗Þ ¼ ð2; 2; 4; 5; 6Þ, then defines the associated final eigen-
value distribution by mapping fλ1;…; λng onto
Λðs⃗Þ ¼ fλd1ðs⃗Þ;…; λdNðs⃗Þg ¼ f1; 1; eið2π=3Þ; eið2π=3Þ; eið4π=3Þg. The
initial eigenvalue distribution Λini, defined by r⃗ together with the
cycle lengths of π, is a subset of fλ1;…; λng: Λini¼feið2π=3Þ;
eið4π=3Þ;1;−1;1g (see main text for the definition of Λini).

FIG. 2. Numerical evaluation of mean transmission probabil-
ities hPB=F=Dðr⃗; s⃗; UÞi for the example illustrated in Fig. 1, with
bosonic (B) and fermionic (F) event probabilities depicted by
blue bars in panels (a) and (b), respectively. Yellow bars represent
event probabilities for distinguishable (D) particles, renormalized
on the set of singly occupied modes in (b). Data were generated
by averaging over 10 000 randomly chosen eigenbases of the
permutation operator P, for all output configurations of bosons,
fermions, and distinguishable particles, respectively. Forbidden
output events are subdivided in classes (I, II, III), where
suppression is due to single-particle dynamics (SPD) in classes
(I, II), and due to many-particle dynamics (MPD) in (III). All
suppressed events of classes (II, III) are predicted by our
suppression laws (SL) (4), (5), while those SPD-suppressed
events in (I) need some special consideration, see [37]. From
altogether 792 bosonic and 56 fermionic transmission events, the
subsets of those with nonvanishing detection probabilities are
collected in set (IV), in increasing order.
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distributions for indistinguishable bosons and fermions,
respectively, together with those for distinguishable par-
ticles. In both cases, there is a domain (III) that reveals a
suppression of final particle configurations due to many-
particle interference. All these suppressed final configura-
tions, as well as those in domain (II), which are associated
with single-particle dynamics, are fully accounted for by
our suppression laws. Note that configurations s⃗ in domains
(I) and (II) occur with zero probability, irrespective of the
particle type and mutual distinguishability. This results
from zeros inU, that is from single-particle dynamics rather
than many-particle interference. A detailed study of these
configurations is provided in [37].
Let us now apply the above formalism to the particular

unitary

UFT
j;k ¼

1ffiffiffi
n

p exp

�
i
2π

n
ðj − 1Þðk − 1Þ

�
ð6Þ

of the discrete Fourier transformation, whichwas thoroughly
studied in the context of suppression laws [27–31]. For any
(cyclic) permutation πFTðjÞ ¼ 1þmod ½jþ ðn=mÞ − 1; n�
of order m, such that n=m ∈ N, we find a mode-exchange
symmetry given by UFT

πðjÞ;k ¼ UFT
j;k exp (ið2π=mÞðk − 1Þ).

By comparison with Eq. (3), we infer Z ¼ 1 and read off
the eigenvalue λk ¼ exp (ið2π=mÞðk − 1Þ) associated with
the kth eigenvector, i.e., the kth column ofUFT. Application
of the above suppression law for indistinguishable bosons
then reveals that, for initial states invariant under πFT, all final
particle configurations for which

Q
N
α¼1 Λαðs⃗Þ ≠ 1 must be

suppressed. This coincides exactly with the findings of [28].
In the case of fermions, we simply have to consider the single
cycle lengthm, such thatΛini contains every eigenvalue (i.e.,
eachmth root of unity) exactly N=m times. Accordingly, all
final states vanish whose final eigenvalue distribution does
not coincide with Λini. This condition provides a stronger
criterion than the one given in [28], where only those final
particle configurations for which

Q
N
α¼1 Λαðs⃗Þ ≠ ð−1Þw, with

w the number of transpositions necessary to permute r⃗
according to P, are predicted to be suppressed. This is only
a subset of the states suppressed according to our new
suppression law (5), which, thus, expands the known
fermionic suppression law for the discrete Fourier trans-
formation. A detailed analysis of the Fourier suppression law
in the present formalism is provided in [37], where we
additionally elaborate upon all other suppression laws so far
described in literature.
In principle, the suppression criteria described above

necessitate perfect indistinguishability of all particles, and
unitaries obeying exactly the mode-exchange symmetry as
specified by Eqs. (2) and (3). In realistic experiments,
however, deviations will arise. In principle, one can calculate
the impact of such deviations explicitly by unitary
reconstruction [42–45] and an accurate treatment of partial
distinguishability in the probability calculations [20,46–49].

Clearly, making full use of this machinery will forfeit
the computational advantage offered by our analytical sup-
pression laws. Therefore, herewe resort to a stability analysis
with respect to small deviations from the ideal situation.
Regarding imperfect transformation matrices, we follow
the procedure in [50] and model unitaries by Uj;k ¼
Uj;kð1þ Δj;kÞ, where U corresponds to the ideal trans-
formation matrix and Δj;k ∈ C describe random deviations
with zero mean. For an output particle configuration
s⃗sp, which is suppressed in the ideal situation,
PB=Fðr⃗; s⃗sp; UÞ ¼ 0, and small inaccuracies, jΔj;kj ≪ 1, a
first order approximation yields a deviation from perfect
suppression according to

δPB=Fðr⃗; s⃗sp;UÞ ≈ NhjΔji2
Q

jsj!Q
krk!

PDðr⃗; s⃗sp; UÞ ð7Þ

with hjΔji denoting the average absolute value of Δj;k. This
implies that the transition probability is only affected in
second order in hjΔji and weighted by the corresponding
probability of fully distinguishable particles (which measures
the magnitudes of the pertinent elements ofU). However, the
sensitivity to distortions increases linearly with N, and for
indistinguishable bosons bunched events are preferentially
emerging by virtue of the factor

Q
jsj!.

The effect of partial distinguishability is investigated
in the tensor permanent approach as developed in
Refs. [46–48,51]. In this method, particles in the same
initial mode are considered fully indistinguishable.
Distinguishability between particles in different modes is
encoded in the distinguishability matrix Sj;k ¼ hΦjjΦki
with jΦji denoting the internal state of a particle in mode j,
which accounts for all potentially distinguishing degrees of
freedom. For fermions, we consider at most one particle per
mode, since a multiple occupation would require total
distinguishability. For indistinguishable particles, Sj;k ¼ 1

for all j, k, while for completely distinguishable particles,
S ¼ 1. Hence, we investigate small partial distinguish-
abilities as encoded by the matrix Sj;k ¼ ð1 − ϵj;kÞeiηj;k ,
where ϵj;k, ηj;k ∈ R account for random deviations. In order
to keep mutual distinguishabilities small, we assume
0 ≤ ϵj;k ≪ 1, while the ηj;k have zero mean and are
bounded by −π=2 ≪ ηj;k ≪ π=2. Again we denote the
average (absolute) value by hϵi and perform a first order
expansion in ϵ, resulting in

δPpart
B=Fðr⃗; s⃗sp; UÞ ≈ NhϵiPDðr⃗; s⃗sp; UÞ ð8Þ

for partially distinguishable bosons and fermions. Here, a
linear dependence on the distortion parameter hϵi arises,
and the deterioration of the suppression is again weighted
by the transition probability of distinguishable particles and
the particle number.
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Both above scenarios of weakly disordered unitary
evolution and of imperfect indistinguishability exhibit only
a gradual deviation from perfect suppression. In this sense,
the suppression laws here derived are robust with respect to
such error sources. However, there are cases where the
validity of the suppression laws may persist even in the
presence of pronounced mutual distinguishability of the
particles. These cases are elaborated upon detail in [37].
In summary, we have shown that the permutation sym-

metry of a many-particle Fock state determines a class of
unitary transformation matrices that lead to a robust sup-
pression of final particle configurations due to the interfer-
ence of all involved many-particle paths. Our present
approach accommodates all known unitary scattering sce-
narios featuring totally destructive many-particle interfer-
ence within one formal framework. Our findings are, in this
sense, not only comprehensive, but they also highlight and
identify the interrelation between symmetry and totally
destructive interference. Their relevance to both bosons
and fermions entails the applicability to a wealth of physical
systems, such as optical interferometers [29], where any
unitary scattering matrix can be implemented with discrete
optical elements [52], or atomic interferometers [53], which
are likely to host controlled complexmany-body interference
in the near future. This will aid any application-based design
of many-particle scattering scenarios. We are thus confident
that our results pave the way for new applications in the
manipulation of many-particle quantum states.
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