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Several distinct classes of unitary mode transformations have been known to exhibit the strict suppression of
a large set of transmission events, as a consequence of totally destructive many-particle interference. In another
work [C. Dittel et al., Phys. Rev. Lett. 120, 240404 (2018)] we unite these cases by identifying a general class of
unitary matrices which exhibit such interferences. Here we provide a detailed theoretical analysis that substantially
expands on all aspects of this generalization: We prove the suppression laws put forward in our other paper,
establish how they interrelate with forbidden single-particle transitions, show how all suppression laws hitherto
known can be retrieved from our general formalism, and discuss striking differences between bosons and fermions.
Furthermore, beyond many-particle Fock states on input, we consider arbitrary pure initial states and derive sup-
pression laws which stem from the wave function’s permutation symmetry alone. Finally, we identify conditions
for totally destructive interference to persist when the involved particles become partially distinguishable.

DOI: 10.1103/PhysRevA.97.062116

I. INTRODUCTION

Based on the permutation symmetry of their many-particle
wave function, the symmetrization postulate [1–4] funda-
mentally distinguishes between two types of quanta: bosons
and fermions. Its consequences are profound for many areas
of physics. In the context of many-particle interference, the
wave function’s symmetry impacts the dynamics such as to
manifest distinct signatures in the counting statistics. The
most prominent scenario involves two identical noninteracting
particles, initially occupying different modes of a balanced
two-mode coupler. In the case of indistinguishable bosons
[5–8], the probability amplitudes for both bosons being trans-
mitted and both being reflected cancel each other perfectly.
This totally destructive two-particle interference forces both
particles to end up in the same final mode. In contrast, for
indistinguishable fermions [9,10], the interference causes both
particles to occupy different final modes, in accordance with
Pauli’s exclusion principle [11,12]. Similar behavior has been
observed for an increasing number of bosons [13–17], and
the emergence of totally destructive interference of bosons
has also been investigated in three- [18–22] and four-mode
[18,21] setups as well as in the absence of scattering ele-
ments [23]. For many-particle states and an arbitrary number
of modes, several specific scattering scenarios giving rise
to totally destructive many-particle interference have been
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identified: the discrete Fourier transformation [24–29], the
Jx unitary [30,31], Sylvester interferometers [32,33], and
hypercube unitaries [34]. In all these cases, the underlying
unitary transformation possesses a highly symmetric structure.
Then, for initial particle configurations which satisfy a closely
related symmetry condition, specific output configurations
occur with zero probability, due to a perfect cancellation of all
contributing many-particle transition amplitudes. This has led
to the formulation of so-called suppression laws [24–26,32–
34], which provide a sufficient condition for the identification
of forbidden output events with little computational expense.
The symmetry properties of the unitary are thus exploited
to circumvent the computationally expensive addition of all
contributing many-particle amplitudes [35].

So far, it has remained an open question whether all those
suppression laws could be understood as the consequence of
one common symmetry property and inferred from a general
condition for totally destructive interference. Furthermore, as
a consequence of the wave function’s symmetry, suppression
laws generally differ for bosons and fermions. Nevertheless,
it was noticed in [26,34] that the fermionic suppression law
can, under certain circumstances, induce the same suppressed
output events as in the bosonic case. No reason for this behavior
could hitherto be identified. Finally, most previous studies
on many-particle interference considered product input states;
however, two-particle entangled states can mimic bosonic
as well as fermionic interference on the balanced two-mode
coupler [36–39], depending on their internal phase. This can
be generalized for arbitrary particle and mode numbers [40]
and suggests that totally destructive interference must also
occur for many-particle input states that cannot be expressed
as product states. Whether suppression laws exist for such
states that are not necessarily totally (anti)symmetric under
permutation is unknown to date.
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In Ref. [41] we formulate a criterion which encompasses
all known suppression laws and, for any given initial product
state, pinpoints unitary transformation matrices which display
totally destructive many-particle interference. These transfor-
mation matrices are largely determined by the eigenbases
of permutations which leave the initial particle configuration
invariant. The suppression of many-particle output events does
not depend on a particular choice of eigenbasis, and the
suppression criterion can be recast in terms of the eigenvalues
of the permutation under consideration.

In Sec. II of the present work, we provide a comprehen-
sive theoretical framework for totally destructive interference,
which extends the concepts presented in [41] and allows us
to prove the general bosonic suppression law. For fermions,
we present two different suppression laws. The first is an
adaptation of the bosonic suppression law, which relies only
on the wave function’s permutation symmetry and provides
a sufficient condition for suppression, closely resembling the
bosonic case. The second provides a more comprehensive
sufficient condition for output event suppression if one ad-
ditionally assumes product input states. Moreover, we also
elaborate on single-particle dynamics, which likewise can lead
to forbidden output events even in the absence of many-particle
interference. While we first derive our suppression laws in the
traditional scattering matrix approach [35], we further show
that they can be consistently inferred from the input state’s
permutation symmetry.

The applicability of our suppression laws to all hitherto
known cases is demonstrated in Sec. III. For the discrete
Fourier transformation [26] the bosonic suppression law is
recovered, while our generalized suppression law goes beyond
the hitherto known fermionic result. We further retrieve the
suppression laws for Sylvester interferometers [32,33] and
hypercube unitaries [34]. For the Jx unitary, the two-boson
suppression law [31] is generalized to arbitrary (bosonic or
fermionic) particle numbers.

In Sec. IV we then extend our analysis to arbitrary pure input
states. We only require the initial state to be permutation sym-
metric, to derive a suppression law which determines unitaries
and associated forbidden output events. The versatility of this
approach is highlighted by examples that treat superpositions
of indistinguishable particles, as well as entangled many-
particle states. Finally, we address partially distinguishable
particles, investigate under which conditions the suppression
laws for indistinguishable particles remain unaffected, and
confirm the zero-probability conjecture formulated in [42].

II. SUPPRESSION LAWS FOR FOCK PRODUCT STATES

A. Preliminaries

Consider the coherent evolution of N identical and nonin-
teracting particles that can be distributed among n modes. The
creation operator associated with a particle in the j th input
(output) mode is denoted by â

†
j (b̂†j ), where j ∈ {1, . . . ,n}.

Our notation does not discern between bosonic and fermionic
creation operators in the following. However, note that the
usual (anti)commutation relations apply, that is,

[âj ,â
†
k] = δj,k, [âj ,âk] = [â†

j ,â
†
k] = 0 (1)

for bosonic and

{âj ,â
†
k} = δj,k, {âj ,âk} = {â†

j ,â
†
k} = 0 (2)

for fermionic operators, and likewise for b̂
†
j and b̂j .

We denote initial many-particle configurations with rj

particles in the j th mode either by their mode occupation
list �r = (r1, . . . ,rn) or by their mode assignment list �d(�r) =
(d1(�r), . . . ,dN (�r)), with dα(�r) specifying the mode number of
the αth particle, with α ∈ {1, . . . ,N}. For indistinguishable
particles, the ordering in �d(�r) is irrelevant and, unless otherwise
stated, �d(�r) is given in ascending order of the modes. The initial
bosonic (B) or fermionic (F) Fock product state defined by �r
reads [43]

|�B (F)(�r)〉 =
n∏

j=1

(â†
j )rj√
rj !

|0〉

= 1√∏n
j=1 rj !

N∏
α=1

â
†
dα (�r) |0〉 , (3)

with |0〉 the vacuum state. Analogously, final particle configu-
rations are denoted by either occupation or assignment lists �s
and �d(�s), respectively, and the corresponding final state reads

|�B (F)(�s)〉 =
n∏

j=1

(b̂†j )sj√
sj !

|0〉 . (4)

The fermionic anticommutation relation (2) in Eq. (3) imme-
diately implies that multiple-mode occupation is forbidden
for indistinguishable fermions, in accordance with Pauli’s
exclusion principle [11].

The evolution from initial to final states is modeled by a
unitary matrix U . In the Heisenberg picture, creation operators
transform according to [26]

â
†
j →

n∑
k=1

Uj,kb̂
†
k, (5)

leading to the mapping |�B (F)(�r)〉 �→ |�B (F)
evo (�r)〉. In (5), Uj,k

specifies the single-particle transition amplitude from input
mode j to output mode k. Born’s rule then gives the probability
to detect the final particle configuration �s as

PB (F)(�r,�s,U ) = ∣∣〈�B (F)(�s)
∣∣�B (F)

evo (�r)
〉∣∣2

. (6)

It is common [24–26,32,34,43] to express the transition
probability (6) for bosons and fermions in terms of the
permanent perm(M) and determinant det(M) of the scattering
matrix M , respectively [35]. The elements of this matrix are
determined by the initial and final particle configurations,
according to Mα,β = Udα (�r),dβ (�s) for all α,β ∈ {1, . . . ,N}. By
evaluation of the scalar product in Eq. (6) one finds

PB(�r,�s,U ) = 1∏n
j=1 rj !sj !

|perm(M)|2 (7)

for bosons and

PF(�r,�s,U ) = | det(M)|2 (8)

for fermions [35]. On the other hand, in the case of distin-
guishable particles (D), one has to sum over all many-particle
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transition probabilities, which results in

PD(�r,�s,U ) = 1∏n
j=1 sj !

perm(|M|2), (9)

with | · |2 the squared modulus of individual matrix elements.

B. Unitary transformation matrices

Following our approach in [41], we now identify those uni-
tary matrices U that exhibit totally destructive many-particle
interferences, given a Fock input state (3) defined by its mode
occupation list �r . We start out from any permutation operation
P that leaves �r invariant,

P�r = �r, (10)

with Pj,k = δπ(j ),k , π ∈ Sn, and Sn the symmetric group on the
set of modes {1, . . . ,n}. An eigendecomposition P = ADA†

then extracts the eigenvectors of P as the columns of the
unitary matrix A ∈ Cn×n and the associated eigenvalues λj

as entries of the diagonal matrix D = diag(λ1, . . . ,λn). Since
P is unitary, the λj exist on the unit circle and appear as phase
factors further down.

We now construct evolution matrices of the form

U = �A	, (11)

with arbitrary, diagonal unitary matrices � ∈ Cn×n and 	 ∈
Cn×n, which describe local phase operations on the input and
output modes, respectively. For Fock states of the form (3),
many-particle interference is insensitive to these local phases
and the only relevant transformation is induced by the matrix
A, composed of the eigenstates of P .

The fundamental reason for choosing U according to
Eq. (11) is anchored in its permutation characteristics. In
particular, U is invariant under P up to a multiplication of
each column with the respective eigenvalue contained in D

and the imprinting of local phases encoded in the diagonal
unitary matrix Z = P�P†�† such that

PU = ZUD. (12)

The unitarity of Z is due to P and � being unitary and its
diagonality results from P being a permutation operator. In
elementwise notation, Eq. (12) reads, for all j,k ∈ {1, . . . ,n},

Uπ(j ),k = exp{i[θ (π (j )) − θ (j )]}Uj,kλk, (13)

with �j,j = eiθ(j ). Since π is bijective, (13) establishes a
symmetric phase relation between the matrix elements Uj,k

and those, Uπ(j ),k , of its image under P . Since local phases
θ cannot affect many-particle interference, the latter must be
controlled by the eigenvalues λk of P . In particular, for a
given output event �s, all the relevant eigenvalues are collected
in the final eigenvalue distribution �(�s) = {λd1(�s), . . . ,λdN (�s)},
given that the transition probabilities (7) and (8) are governed
by the elements Udα (�r),dβ (�s). It contains all N eigenvalues
�β(�s) = λdβ (�s) associated with the final mode assignment list
�d(�s) and is a multiset, that is, the ordering of elements in �(�s)
is unspecified and equal eigenvalues can occur multiple times.

Further characteristics of the unitaries (11), associated
with �r , follow from the cycle decomposition [44] of the
underlying permutation: Let π ∈ Sn consist of cycles with
L different lengths m1, . . . ,mL such that the period of the

permutation is given by the least common multiple (lcm)
of all cycle lengths: Pm = 11 for m = lcm(m1, . . . ,mL) [44].
Accordingly, each cycle with length ml contributes the set
{ei(2π/ml ),ei(2π/ml )2, . . . ,ei(2π/ml )ml } to the eigenvalues of P .

For example, consider the permutation

π =
(

1 2 3 4 5 6 7 8 9 10 11
2 3 1 5 6 4 8 9 7 11 10

)

= (1 2 3)(4 5 6)(7 8 9)(10 11)

with the cycle decomposition of π in the second
line. This permutation has L = 2 different cycle lengths
m1 = 3 and m2 = 2 and is of order m = lcm(2,3) = 6.
The eigenvalues of the corresponding permutation opera-
tor read {ei(2π/3),ei(4π/3),1,ei(2π/3),ei(4π/3),1,ei(2π/3),ei(4π/3),1,

− 1,1} since π consists of three cycles of length m1 = 3 and
one cycle of length m2 = 2.

The canonical matrix AC which diagonalizes P is of block-
diagonal form, up to a permutation of the rows (tantamount
to relabeling the input modes). Each block corresponds to a
cycle of π and, with ml the cycle length, consist of an ml × ml

Fourier matrix [defined in Eq. (31) below]. Modulo permu-
tations of the columns (tantamount to relabeling the output
modes), any eigenbasis A of P can then be obtained from
AC by rotations in the degenerate subspaces. This partially
washes out the block structure as the rotations mix all columns
(eigenvectors of P) with equal eigenvalue. However, the j th
component Aj,k of the kth eigenvector with eigenvalue λk and,
by (11), the matrix element Uj,k , are necessarily zero if all
eigenvectors of AC with eigenvalue λk have a vanishing j th
component. This is the case if j is in a cycle of length ml

and λ
ml

k �= 1. The symmetric phase relation (13) encodes this
characteristic of U since for a mode j which belongs to a cycle
of π with length ml one obtains

Uj,k = Uπml (j ),k = Uj,k λ
ml

k (14)

such that Uj,k = 0 unless λ
ml

k = 1. These zero entries in the
single-particle transition matrix inevitably lead to forbidden
particle transition events on the level of single-particle dynam-
ics, as we show in the following.

C. Forbidden events due to single-particle dynamics

In order to identify those transmission events which are
forbidden as a consequence of the underlying single-particle
dynamics, we consider the initial population of cycles of π :
Given that �r is invariant under π , the number of particles
in each mode of a cycle must be equal so that the total
number of particles in all modes of a single cycle with length
ml is an integer multiple of ml . Since, for given �r and π ,
there can be many cycles with the same length, we denote
the total number of particles that are initially prepared in
cycles with length ml by Nl , where l ∈ {1, . . . ,L}, such that∑L

l=1 Nl = N . This is illustrated in Fig. 1 for the permutation
considered above and for the initial particle configuration
�d(�r) = (1,2,3,7,8,9,10,11), withN1 = 6 andN2 = 2 particles
in modes associated with cycles of length m1 = 3 and m2 = 2,
respectively.

By virtue of Eq. (14), a particle prepared in mode j ,
associated with a cycle of length ml , will always end up in a
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FIG. 1. Example of a cycle decomposition. Magenta balls indicate
the initial occupation in cycles of π according to the particle
configuration defined by the input state’s mode assignment list �d(�r).
Black arrows indicate how the initially occupied cycles contribute to
the total particle numbers N1 and N2 in cycles with lengths m1 and
m2, respectively.

mode k for which λ
ml

k = 1. Hence, for Nl particles associated
with cycles of length ml , taking the ml th power of each element
of the final eigenvalue distribution �(�s) must produce a set with
at least Nl elements equal to unity, i.e.,

Nl(�s) = |{λ ∈ �(�s) : λml = 1}| � Nl, (15)

where | · | denotes the cardinality of a set. Therefore, we find
P (�r,�s,U ) = 0 for the transition probability (regardless of the
particles’ types and mutual distinguishability), whenever, for
any l ∈ {1, . . . ,L},

Nl(�s) < Nl. (16)

A vanishing transition probability can also be characterized
as follows: If the condition (16) is satisfied, then for every
permutation σ ∈ SN there exists at least one particle α (which
depends on σ ) such that α is initially in a cycle of length ml ,
but λ

ml

σ (α) �= 1. Therefore, all elements Mα,σ (α) of the scattering
matrix vanish and perm(M) = det(M) = perm(|M|2) = 0 [re-
call Eqs. (7)–(9)]. Note that the thus-defined forbidden many-
particle transitions are a direct manifestation of the vanishing
entries of the single-particle transformation matrix U and
therefore independent of particle type and distinguishability.

D. Scattering matrix approach

We now turn to genuine many-body dynamics as formalized
by the scattering matrix expressions (7) and (8). The permuta-
tion characteristics (12) of the transformation matrices U are
directly transferred to the scattering matrix M , for which

P̄M = Z̄MD̄, (17)

with P̄α,β = Pdα (�r),dβ (�r), Z̄α,β = Zdα (�r),dβ (�r), and the diagonal
matrix D̄ = diag(λd1(�s), . . . ,λdN (�s)) with the eigenvalues of the
final eigenvalue distribution �(�s) on its diagonal. Note that,
for multiply occupied initial modes, P̄ is not a permutation
operator and Z̄ is not diagonal.

1. Bosons

First, let us consider indistinguishable bosons and investi-
gate the permanent in Eq. (7). Given the fact that a permanent
is invariant under permutations of its argument’s rows and
columns [45], we find

perm(P̄M) = η perm(M), (18)

with the constant factor η �= 0 accounting for
multiply occupied initial modes. On the other hand,

∏N
α=1 exp[i{θ (π [dα(�r)]) − θ (dα(�r))}] = 1, since the number

of particles is equal in all modes corresponding to the same
cycle. Therewith, we obtain, for the permanent of the matrix
product on the right-hand side of Eq. (17),

perm(Z̄MD̄) = η perm(M)
N∏

α=1

λdα(�s)

and, with (18),

η perm(M) = η perm(M)
N∏

α=1

λdα (�s).

Hence, only if

N∏
α=1

λdα(�s) =
N∏

α=1

�α(�s) = 1

can perm(M) �= 0 and, by Eq. (7), we therefore conclude that
PB(�r,�s,U ) = 0 if

N∏
α=1

�α(�s) �= 1. (19)

This is a sufficient condition for the suppression of the output
event �s, as a consequence of the perfect cancellation of many-
particle amplitudes by destructive many-particle interference.
By (19), this interference is unambiguously related to a
simple property of the final eigenvalue distribution �(�s) =
{λd1(�s), . . . ,λdN (�s)}.

Let us illustrate this relation by an example. We consider
an initial particle configuration of N = 5 bosons, �d(�r) =
(1,2,3,10,11), injected into n = 11 modes, and the afore-
mentioned permutation π = (1 2 3)(4 5 6)(7 8 9)(10 11) which
leaves �r invariant. We numerically generate 10 000 eigenbases
of the associated P by random rotations in the degenerate
subspaces. According to our discussion at the end of Sec. II B
above, each q-fold degenerate eigenvalue allows us to rotate
A by a q × q unitary matrix, thus mixing the columns of
A which are (and remain) associated with this eigenvalue.
We calculate the mean transition probability 〈PB (D)(�r,�s,U )〉,
averaged over all realizations of the so-constructed random
unitary, for both indistinguishable bosons and distinguishable
particles. The results are shown in Fig. 2 and can be grouped
into four different domains. Output events listed in domains
(I) and (II) obey the condition (16) and are forbidden by
single-particle dynamics for indistinguishable bosons as well
as for distinguishable particles. For indistinguishable bosons,
all particle configurations listed in domain (III) are suppressed
due to totally destructive many-particle interference, while they
occur with nonzero probability for distinguishable particles.
The suppression law (19) predicts all suppressed events in
domains (III) and (II). Domain (IV) collects all transmission
events which satisfy neither condition (16) nor the suppression
law (19). In our present example, all these configurations occur
with nonvanishing probability for distinguishable as well as
indistinguishable particles.

2. Fermions

Next we consider indistinguishable fermions and, as im-
posed by Pauli’s principle, only those particle configurations
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FIG. 2. Single-particle dynamics and many-particle interference
for bosons. For the input state �d(�r) = (1,2,3,10,11) and 10 000
randomly generated eigenbases of the permutation operator as-
sociated with π = (1 2 3)(4 5 6)(7 8 9)(10 11), the mean transition
probability 〈PB (D)(�r,�s,U )〉 for indistinguishable bosons (B, blue bars)
and distinguishable particles (D, yellow bars) is shown for all 3003
possible output events of N = 5 particles transmitted across n = 11
modes. Vanishing transmission probabilities in domains (I) and (II)
occur due to single-particle dynamics (SPD). The suppression due
to multiparticle dynamics (MPD) in domain (III), as well as the
SPD-suppressed configurations in domain (II), is predicted by the
bosonic suppression law (SL). Only output events listed in domain
(IV) occur with finite probability for indistinguishable bosons.

with at most singly occupied modes. Calculating the determi-
nant of the left-hand side of Eq. (17) reveals

det(P̄M) = (−1)w det(M), (20)

where w denotes the number of transpositions (exchanges of
two particles) required to permute �r according to P . Note that
P̄ is a permutation operator, since we only consider singly
occupied modes in the present, fermionic, case. Analogously to
the case of bosons, we obtain for the right-hand side of Eq. (17),

det(Z̄MD̄) = det(M)
N∏

α=1

λdα(�s). (21)

Equations (20), (21), and (17) immediately imply that det(M)
and thus PF(�r,�s,U ) must vanish if

N∏
α=1

�α(�s) �= (−1)w. (22)

In the following, we refer to this condition as the adapted
suppression law for fermions. This terminology will become
clear in Sec. II E below.

There are, however, additional forbidden transmission
events which are neither predicted by the many-particle sup-
pression condition (22) nor by the single-particle suppression
condition (16). We now derive a condition which also accounts
for those: Given the decomposition (11) of the underlying
unitary, we can write the scattering matrix as

M = �̄Ā	̄, (23)

with the matrix elements �̄α,β = �dα(�r),dβ (�r), Āα,β =
Adα (�r),dβ (�s), and 	̄α,β = 	dα(�s),dβ (�s). Note that Ā is composed
of eigenvectors of P̄ , but does not necessarily form an
eigenbasis. Taking the determinant on both sides of Eq. (23)
then yields

det(M) = det(�̄) det(Ā) det(	̄)

∝ det(Ā),

where det(�̄) �= 0 and det(	̄) �= 0, since �̄ and 	̄ are di-
agonal matrices and have nonzero entries on the diagonal.
Consequently [46],

det(M) �= 0 ⇔ det(Ā) �= 0 ⇔ Ā invertible.

Having in mind that only singly occupied modes are consid-
ered, it is straightforward to verify P̄ Ā = Ā D̄. Therefore, if
Ā is invertible, then

P̄ = ĀD̄Ā−1 (24)

and P̄ and D̄ have the same spectrum. In other words, if
det(M) �= 0, then P̄ and D̄ have the same spectrum. The
spectrum of D̄ is given by the final eigenvalue distribution
�(�s). On the other hand, the spectrum of P̄ depends on the
initial particle distribution over the cycles of π (see Sec. II C):
Each initially occupied cycle with length ml gives rise to
a set of eigenvalues ei2π(k/ml ), with k = 1, . . . ,ml , and the
spectrum of P̄ is given by the multiset sum of these sets.1

For convenience, we denote the spectrum of P̄ by the initial
eigenvalue distribution �ini. Thus, by contraposition, if

�(�s) �= �ini, (25)

then det(M) = 0 and consequently PF(�r,�s,U ) = 0.
By the condition (25), which we will hereafter refer to as the

extended suppression law, we obtained a more comprehensive
suppression law for fermionic initial many-particle product
states. As we elaborate in Appendix A, this condition covers all
output events which are suppressed according to the condition
(22). We conclude that fermions feature a suppression that
is, remarkably, restricting the set of allowed transmission
events more tightly than in the bosonic variant. Mathematically,
this behavior can be traced back to the anticommutativity
of fermionic creation operators, which induces the determi-
nant that emerges in the evaluation of the scalar product in
Eq. (6). While the adapted suppression law (22) conditions
the suppression of the output events �s on the product of
the entries of the final eigenvalue distribution, the extended
suppression law (25) specifies the eigenvalue distribution of
allowed transmission events elementwise, which constitutes a
more stringent criterion.

Note that the extended suppression law (25) is not simply
a combination of the adapted suppression law (22) with
that, (16), for forbidden transmission events due to single-
particle dynamics, as one can appreciate with the following
example. Let us consider the same scenario as discussed for
bosons at the end of Sec. II D 1: For the input state �r =
(1,1,1,0,0,0,0,0,0,1,1) we generate 10 000 random eigen-
bases of the permutation operator which represents π =
(1 2 3)(4 5 6)(7 8 9)(10 11), following the same procedure as
above. Figure 3 lists the resulting mean transition probabil-
ities 〈PF (D)(�r,�s,U )〉 for indistinguishable fermions and for
distinguishable particles, where the latter is renormalized to
all possible output events with at most singly occupied modes,
for better comparability.

1For example, the multiset sum of X = {ei(2π/3),ei(4π/3),1} and Y =
{−1,1} is given by X � Y = {ei(2π/3),ei(4π/3),1, − 1,1}.
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FIG. 3. Single-particle dynamics and many-particle interference
for fermions. For the same setting as in Fig. 2, the mean transition
probability 〈PF (D)(�r,�s,U )〉 for indistinguishable fermions (F, blue
bars) and distinguishable particles (D, yellow bars) is shown, with
the latter renormalized to all 462 possible output events with at most
singly occupied modes. Domains (I) and (II) collect all output events
which are forbidden on the basis of single-particle dynamics (SPD),
while configurations in domains (III) and (IV) are suppressed due to
destructively interfering multi-particle dynamics (MPD). The adapted
suppression law (ASL) identifies suppressed events in domains (II)
and (III), while the extended suppression law (ESL) grasps the
suppression of all configurations in domains (I)–(IV). Output events
in domain (V) are not covered by the suppression laws and occur with
finite probability.

All final particle configurations are grouped into five differ-
ent domains: Domains (I) and (II) list all configurations which
are forbidden due to single-particle dynamics, according to the
condition (16). Suppressed output events due to many-particle
interference are grouped in domains (III) and (IV). While the
adapted suppression law (22) only identifies the forbidden
output configurations in domains (II) and (III), the extended
suppression law (25) predicts all forbidden events [domains
(I)–(IV)]. Finally, domain (V) collects all finite probability
output events for indistinguishable fermions. We note that the
extended suppression law (25) is still formulated as a sufficient
condition, and a scenario with suppressed multifermion states
which are not predicted by (25) is shown in Sec. III A below.

E. Wave-function-based approach

In the scattering matrix approach outlined in the preceding
section, we explicitly investigated under which condition the
permanent and determinant of the scattering matrix M vanish,
respectively. Yet the characteristics of M are inherited from
the overlap 〈�B (F)(�s)|�B (F)

evo (�r)〉 [see Eq. (6)] and thus from the
properties of the involved many-particle state. We now show
that our suppression laws can be consistently derived simply
by considering the permutation symmetries of |�B (F)(�r)〉. As
we proceed to Sec. IV, this approach will allow us to identify
forbidden transitions for even more general states than the so-
far considered Fock states defined in Eq. (3).

We begin with indistinguishable bosons: The appropriate
commutation relations (1) ensure that the state (3), defined
by the particle configuration �r , is symmetric under particle
exchange. From the condition (10), we further have rπ(j ) = rj

such that

|�B(�r)〉 =
n∏

j=1

(â†
j )rj√
rj !

|0〉 (26)

=
n∏

j=1

(â†
π(j ))

rj√
rj !

|0〉 . (27)

Considering the transformation (5) of creation operators under
the action of U , Eq. (26) evolves into

∣∣�B
evo(�r)

〉 =
n∏

j=1

1√
rj !

(
n∑

k=1

Uj,kb̂
†
k

)rj

|0〉 . (28)

On the other hand, for Eq. (27) we find

∣∣�B
evo(�r)

〉 =
n∏

j=1

1√
rj !

(
n∑

k=1

Uπ(j ),kb̂
†
k

)rj

|0〉

=
n∏

j=1

1√
rj !

(
n∑

k=1

Uj,kλkb̂
†
k

)rj

|0〉 , (29)

where we used the symmetric phase relation (13) and∏n
j=1 exp{i[θ (π (j )) − θ (j )]} = 1. As to be expected, the de-

pendence on θ cancels out, since it does not affect many-
particle interference.

Let us compare Eqs. (28) and (29). Obviously, the two
expressions only differ by the multiplication of each creation
operator b̂

†
k with the eigenvalue λk in Eq. (29). Forming the

overlap 〈�B(�s)|�B
evo(�r)〉 with a final state (4) defined by the

particle configuration �s, Eqs. (28) and (29) lead to expressions
which differ by a factor

∏n
j=1 λ

sj

j . It follows that the overlap

must vanish unless
∏n

j=1 λ
sj

j = ∏N
α=1 �α(�s) = 1. Hence, we

obtain, for the transition probability in Eq. (6),

PB(�r,�s,U ) = 0 if
N∏

α=1

�α(�s) �= 1,

which coincides with the suppression law (19) for bosons.
Next we discuss the case of indistinguishable fermions.

The adapted suppression law (22) can be derived analogously
to the bosonic case, with the difference that, due to the
anticommutation relation (2) for fermionic creation operators,
the relation between the two versions of the initial state,
corresponding to (26) and (27), reads

|�F(�r)〉 =
n∏

j=1

(â†
j )rj |0〉

=(−1)w
n∏

j=1

(â†
π(j ))

rj |0〉 , (30)

with w from Eq. (20). We then find, with the same reasoning
as above,

PF(�r,�s,U ) = 0 if
N∏

α=1

�α(�s) �= (−1)w.

Note that, depending on the parity of the initial state permu-
tation as determined by w, the condition (22) either coincides
with the bosonic suppression law (19) (except for a possible
multiple occupation of modes in the bosonic case) or the laws
are distinct. This was noticed in previous investigations [26,34]
and can now be clearly attributed to the permutation symmetry
of the many-particle state.

The derivation of the extended suppression law for fermions
from the input state’s permutation symmetry is rather involved
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and can be found in Appendix B. Our present wave-function-
based approach thus leads to results in perfect agreement
with the findings of Sec. II D. This is to be expected, since
the transition probabilities in Eqs. (7) and (8) result from
considerations on the overlap between the initial and final
state and this overlap also was the point of departure for
our derivations in the present section. However, while the
scattering matrix approach is designed for investigations of
many-particle Fock product states on input, the wave-function-
based approach also allows us to deal with arbitrary pure input
states which are not necessarily separable. This aspect is further
elaborated on in Sec. IV.

III. APPLICATIONS OF THE SUPPRESSION LAWS

The generality of our suppression laws manifests itself in
the fact that, for each initial particle configuration �r , an entire
class of unitary transformation matrices can be determined
that exhibit totally destructive interference. In contrast, all
previous approaches [24–26,32–34] studied a given unitary
matrix to identify input and output configurations which define
a suppressed transmission event. In all these cases studied
earlier, the input configurations are required to be invariant
under certain permutations in order to infer a suppression
law. By means of these specific permutations, we can now
verify that all these unitaries indeed exhibit a symmetric
phase relation (12) and therefore that the associated specific
suppression laws fall into our present general description of
totally destructive many-particle interference.

A. Discrete Fourier transform

As the first example we consider the discrete Fourier
transform for which suppression laws were formulated [24–26]
and tested experimentally [27–29]. The elements of the unitary
transformation matrix under consideration read

UFT
j,k = 1√

n
exp

(
i
2π

n
(j − 1)(k − 1)

)
(31)

for all j,k ∈ {1, . . . ,n}. Initial particle configurations �r are
considered to be periodic with the smallest period χ such
that m = n/χ ∈ N is the number of periods, i.e., the length of
cycles, and N/m ∈ N corresponds to the number of particles
per period [26]. Accordingly, we define the permutation

πFT(j ) = 1 + mod[j + χ − 1 ,n], (32)

which consists of χ cycles with length m. It follows that the
number of distinct cycle lengths is L = 1. By construction, the
corresponding permutation operator PFT leaves �r invariant,
and by plugging Eq. (32) in (31) we find the symmetric phase
relation of the unitary

UFT
πFT(j ),k = UFT

j,k exp

(
i
2π

m
(k − 1)

)
.

Comparing this to the general condition (13), one can identify
the unitary as an eigenbasis of the permutation operator, with
the eigenvalues λk = exp[i 2π

m
(k − 1)] and Z = 11 in (12). The

bosonic suppression law (19) predicts the suppression of all

output events �s with

N∏
α=1

exp

(
i
2π

m
[dα(�s) − 1]

)
=

N∏
α=1

exp

(
i
2π

m
dα(�s)

)
�= 1.

(33)

With the period χ = n/m of the initial particle configuration,
the condition (33) can be rephrased as

mod

[
χ

N∑
α=1

dα(�s),n

]
�= 0, (34)

which coincides with the formulation of [25,26].
Note that we assumed χ to be the smallest period of the

initial state. In general, �r can also be invariant under permuta-
tions πFT with periods χ ′ in (32) which are integer multiples
of χ . From Eq. (34) it follows that final configurations �s which
are allowed for χ are likewise allowed for χ ′. In turn, if �s
is suppressed for any period χ ′ = lχ with l ∈ N, it is also
suppressed for period χ .

Further, note that single-particle dynamics alone do not lead
to any suppression for the Fourier transform, since UFT

j,k �= 0
for all j,k ∈ {1, . . . ,n}. This is in agreement with the condition
(16), given that the permutation πFT only consists of cycles
with the same length, that is, L = 1.

Finally, to recover the fermionic suppression law derived in
[26], we apply the adapted suppression law (22), for which the
number of inversions in Eq. (20) is given by w = (m − 1)N/m

[note the discussion above Eq. (A1)]. Since (−1)w = 1 for even
N/m or odd N , and (−1)w = −1 for odd N/m and even N ,
we obtain, for even N/m or odd N ,

mod

[
χ

N∑
α=1

dα(�s),n

]
�= 0 ⇒ PF(�r,�s,UFT) = 0, (35)

and for odd N/m and even N ,

mod

[
χ

N∑
α=1

dα(�s),n

]
�= n

2
⇒ PF(�r,�s,UFT) = 0, (36)

in agreement with [26]. However, we showed above that
our extended suppression law (25) provides an even stronger
criterion as compared to (22) and therefore improves beyond
the hitherto known suppression law [26]. We find that all
transmission events are suppressed for which each mth root of
unity does not occur exactly N/m times in the final eigenvalue
distribution �(�s).

Let us illustrate this with the specific example considered
in [26] for N = 4 indistinguishable fermions injected into
n = 12 modes [see Fig. 4(b) in [26]]. For the input state
�d(�r) = (1,4,7,10) (bottom row in the figure), which is invariant
under πFT for the smallest period χ = 3, suppressed output
events were distinguished as “predicted” (black tiles in the
figure) or “unpredicted” (green tiles) by the suppression law
of [26]. An unpredicted incident is the output event �d(�s) =
(1,2,5,6): For χ = 3, n = 12, and m = 4, we have even N ,
odd N/m, and Eq. (36) yields mod[χ

∑N
α=1 dα(�s),n] = 6 =

n/2 and thus does not predict this event to be suppressed.
In contrast, according to the extended suppression law (25),
we need to compare the final eigenvalue distribution to the
initial eigenvalue distribution. For m = 4, the eigenvalues
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read λk = ei(π/2)(k−1) and the initial eigenvalue distribution is
�ini = {1,−i,−1,i} while the final eigenvalue distribution of
�s is given by �(�s) = {1,i,1,i} �= �ini. This implies that the
output event �s must be suppressed.

A closer inspection reveals that all unpredicted events for
this input state as well as for the input state �d(�r) = (1,2,7,8) are
now identified by the extended suppression law (25). However,
the input state �d(�r) = (1,3,7,9) [penultimate line in Fig. 4(b)
in [26]] exhibits some further suppressed output events, which
remain unpredicted, for example, the state �d(�s) = (1,4,6,7).
The origin of this effect, as well as for suppressed outputs of
nonperiodic input states, is open for future investigation.

B. Sylvester matrices and hypercubes

The unitary form of Sylvester matrices US and the hy-
percube unitary UH for a suitably chosen evolution time can
be discussed together since they only differ by local phase
operations [� and 	 in Eq. (11)]. This is apparent from their
respective matrix representations [32–34]

US = 1√
n

(
1 1
1 −1

)⊗d

(37)

and

UH = 1√
n

(
1 i

i 1

)⊗d

, (38)

with the latter obtained from the former upon multiplication of
the second row and column of (37) by i. Here d = log2 n ∈ N
is the dimension of the hypercube and Sylvester interferometer.
As elaborated in detail in [34], we assume that the initial
particle configuration under consideration is invariant under
a permutation πSH with period m = 2. The permutation πSH is
specified by a set �p = (p1,p2, . . . ) with pi �= pj for all i �= j

and pi ∈ {2,4,8, . . . ,n}: Each element pi of �p corresponds
to a pairwise exchange of all modes along dimension log2 pi ,
which is obtained in the tensor product form of Eqs. (37) and
(38) by a Pauli σx operation acting on the factor log2 pi . As
detailed in [34], this permutation reads

πSH(j ) = j +
∑
pk∈ �p

x(j,pk)
n

pk

,

where x(·,·) denotes the Rademacher functions [47] defined as

x(j,p) = (−1)�p(j−1)/n�,

with the floor function �z� rendering the greatest integer that
is less than or equal to z. By utilizing the Walsh functions [48]

A(j, �p) =
∏
pk∈ �p

x(j,pk),

one obtains the symmetric phase relations (13), which read,
for all j,k ∈ {1, . . . ,n},

US
πSH(j ),k = US

j,k exp

(
iπ

[A(k, �p) − 1

2

])

and

UH
πSH(j ),k = UH

j,k exp

(
iπ

[A(k, �p) − 1

2

])

× exp{i[θH(π (j )) − θH(j )]}, (39)

where θH(j ) = π
4

∑d
l=1[1 − x(j,2l)]. Note that the equiva-

lence of Eq. (39) with the phase relation given in [34] can
be proven by induction. Since the similarity of both unitaries
is established by

UH = �HUS	H,

with �H
j,j = 	H

j,j = exp[iθH(j )], suppressed transmission
events are the same in both cases and can be identified by
inspection of the eigenvalues λk = exp(iπ A(dk, �p)−1

2 ).
Exploiting our bosonic suppression law (19), we find that

for an input state invariant under πSH, all those output events
�s are suppressed for which

N∏
α=1

exp

(
iπ

A(dα(�s), �p) − 1

2

)
�= 1. (40)

With A(·,·) ∈ {1,−1}, this is equivalent to

N∏
α=1

A(dα(�s), �p) = −1 ⇒ PB(�r,�s,US,H) = 0,

which coincides with the findings in [34].
For fermions, by virtue of (25), output events �s with �(�s) �=

�ini are suppressed. Since �ini contains each eigenvalue 1 and
−1 exactly N/2 times, we find the condition for suppression
as stated in [34]:

N∑
α=1

A(dα(�s), �p) �= 0 ⇒ PF(�r,�s,US,H) = 0.

As a final note, just as for the Fourier matrix considered in
Sec. III A, US,H

j,k �= 0 for all j,k ∈ {1, . . . ,n}. Therefore, single-
particle dynamics cannot explain any of the suppressed events
under the action of US,H.

C. The Jx unitary

In our last example, we focus on the Jx unitary, for which
suppression laws were formulated for N = 2 particles and
experimentally verified with bosons [30,31]. By means of the
above considerations, we now show that this unitary encodes
the eigenbasis of a certain permutation operation, except for
local phase operations. This then allows us to generalize the
hitherto known results to bosonic and fermionic configurations
with arbitrary particle number.

The matrix representation of the Jx unitary is generated by
the angular momentum operator in the x direction, U J(t) =
eiJx t/h̄, with [30,31,49]

[Jx]j,k = h̄

2
[
√

k(n − k)δj,k+1 +
√

j (n − j )δj,k−1].

For an evolution time t = π/2, the unitary can be expressed
in terms of its own eigenstates |u(j )〉. With the notation
U J(π/2) ≡ U J, its elements read [31,49]

U J
j,k = ei(π/2)(j−k)u

(j )
k ,
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where u
(j )
k denotes the kth component of eigenstate |u(j )〉 and

is given by [30,31,49]

u
(j )
k = 2−(n+1)/2+k

√
(k − 1)!(n − k)!

(j − 1)!(n − j )!
P

(j−k,n−j−k+1)
k−1 (0),

with P (α,β)
γ (0) the Jacobi polynomial [50] of order γ evaluated

at the origin. By means of the symmetries proper to the Jacobi
polynomials, one finds

U J
n+1−j,k = U J

j,k exp

(
iπ

[
k − j + n − 1

2

])
. (41)

It thus becomes evident that a mirror symmetry with respect
to the central mode governs the dynamics. The pertinent
permutation π J with period m = 2 reads

π J(j ) = n + 1 − j

for all j ∈ {1 . . . ,n}. Note that, for odd n, the mode
j = (n+ 1)/2 is unaffected by π J, that is, π J[(n + 1)/2] =
(n + 1)/2. Consequently, the permutation π J consists of
(n− 1)/2 cycles of length 2 and of one cycle of length 1 such
that L = 2. For even n, however, L = 1, since there are only
cycles of length 2.

With the above, we can characterize the suppressed events in
the general scenario for arbitraryn andN . By (41), the unitary’s
symmetric phase relation (13) reads, for all j,k ∈ {1, . . . ,n},

U J
π J(j ),k = U J

j,k exp[iπ (k − 1)]

× exp{i[θ J(π J(j )) − θ J(j )]},
with θ J(j ) = πj/2. This identifies the eigenvalues λk =
exp[iπ (k − 1)] which we need to formulate suppression laws.
For bosonic input configurations which are invariant under π J

(i.e., mirror symmetric), our suppression law reveals that all
output events which adhere to

N∏
α=1

exp{iπ [dα(�s) − 1]} �= 1

must be suppressed. Accordingly, all events with an odd
number of bosons transmitted into modes with even label
(corresponding to negative eigenvalues) are suppressed. The
results obtained for the special case N = 2 [30,31] follow
directly from this more general condition. For fermions, our
suppression law (25), together with the fact that 1 and −1 are
the only eigenvalues of the permutation operator of π J, implies,
for odd n and odd N ,

|{λ ∈ �(�s) : λ = 1}| �= N + 1

2
⇒ PF(�r,�s,U J) = 0; (42)

otherwise

|{λ ∈ �(�s) : λ = 1}| �= N

2
⇒ PF(�r,�s,U J) = 0,

which includes also the special case N = 2 [30].
The Jx unitary with an odd number of modes also offers

an example where single-particle dynamics enforce forbidden
many-particle transmission events. As discussed above, for odd
n, the permutation π J consists of one cycle with length m1 = 1
and of other cycles all with length m2 = 2. In the following
we assume that there is at least one particle injected into mode

(n + 1)/2, which corresponds to the cycle with length 1, that is
N1 > 0. Following our discussion in Sec. II C, Eq. (16) reveals
that all many-particle configurations for which

N1(�s) < N1 (43)

or

N2(�s) < N2 (44)

are forbidden, irrespective of the particles’ mutual distin-
guishability. In our present case, N2(�s) = N by (15) and the
condition (44) can never be fulfilled. This leaves us with the
condition (43), which states that all the N1 particles starting
in the central mode must exit in an odd mode (associated with
eigenvalue 1) or, equivalently, that all allowed transmission
events can transmit at most N2 particles into even modes.

In the case of indistinguishable fermions, the condition (43)
is already built into the fermionic suppression law (42): Since
we require odd n and N1 > 0, we have N1 = 1 while N2 =
N − 1 must be even so that N is odd. By (15), output events are
forbidden for which N1(�s) = |{λ ∈ �(�s) : λ = 1}| < N1 = 1.
Accordingly, |{λ ∈ �(�s) : λ = 1}| = 0 for these events, which
are already covered by the suppression law (42) since 0 �=
(N + 1)/2.

In conclusion, all hitherto known unitaries which exhibit
totally destructive many-particle interference are retrieved
within our framework: Up to local phase operations � and 	

[recall Eq. (11)], these unitaries diagonalize the permutation
operator which leaves the initial state invariant. By rotations
in the degenerate subspaces (recall the discussion at the end of
Sec. II B), they can be related to their block-diagonal canonical
matrices AC consisting of Fourier unitaries which diagonalize
the individual cycles of the permutation. It is worth noting that
some unitaries (up to local phase operations) can diagonalize
multiple permutation operators and thus give rise to multiple
suppression laws. One of these is the hypercube unitary
(38) which simultaneously diagonalizes permutation operators
corresponding to different sets �p. For initial configurations
invariant under several such permutations, this leads to rich
suppression effects as detailed in [34].

IV. SUPPRESSION FOR ARBITRARY PURE STATES

In the previous sections our discussion was restricted to
initial states of the form (3), that is, we only considered
configurations �r of indistinguishable particles with a definite
number of particles per mode. Now we relax this assumption
and consider any initial pure state |�{â†

j,|I 〉}〉 which can, in

some way, be expressed by creation operators â
†
j,|I 〉 acting on

the vacuum |0〉. Note that this does not assume a maximal total
number of particles and not even a fixed total particle number.
While j again labels the mode number 1, . . . ,n, we moreover
consider additional degrees of freedom of the particles, which
are specified by the internal states |I 〉. Unless otherwise stated,
we assume that different internal states are not necessarily
orthogonal to each other. In our approach, we jointly treat
bosons and fermions, keeping in mind the (anti)commutation
relations (1) and (2).

Much as above, we start out from an arbitrary permutation
operation P that leaves |�{â†

j,|I 〉}〉 unchanged except for a
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phase ϕ ∈ R:

|�{â†
j,|I 〉}〉

P−→ eiϕ |�{â†
j,|I 〉}〉 . (45)

As before, P will only permute modes j ∈ {1, . . . ,n}, that is,

â
†
j,|I 〉

P−→ â
†
π(j ),|I 〉, (46)

while leaving the internal state unaffected. In a unitary evo-
lution, interference effects exhibited by states of the form
|�{â†

j,|I 〉}〉 are generally sensitive to local phase operations
on the input modes. We therefore assume that there are no
initially imprinted local phases and set � = 11 in Eq. (11). The
evolution of |�{â†

j,|I 〉}〉 is then described by the unitary

U = A	, (47)

with, as before, A being any eigenbasis of P and 	 accounting
for arbitrary local phase operations on final modes. Since we
exclude initial phase operations, the symmetric phase relation
(13) simplifies to Uπ(j ),k = Uj,kλk such that the evolution of
the creation operators â

†
j,|I 〉 and â

†
π(j ),|I 〉 can be expressed as

follows:

â
†
j,|I 〉

U−→
n∑

k=1

Uj,kb̂
†
k,|I 〉, (48)

â
†
π(j ),|I 〉

U−→
n∑

k=1

Uj,kλkb̂
†
k,|I 〉. (49)

As above, we are interested in the suppression of specific
output mode occupations. Therefore, we investigate whether
the evolved state |�evo{â†

j,|I 〉}〉, the image of |�{â†
j,|I 〉}〉 under

(48), has nonvanishing overlap with any of the final states

|�(�s,�)〉 ∝
N∏

α=1

b̂
†
dα (�s),|Iα〉 |0〉 ,

which represent sharp output mode occupations, with an
arbitrary set � = (|I1〉 , . . . , |IN 〉) of internal states |Iα〉 in
the final mode dα(�s). In particular, we examine under which
conditions 〈�(�s,�)|�evo{â†

j,|I 〉}〉 = 0 for all possible �.
According to (45) and (46), we have

|�{â†
j,|I 〉}〉 = e−iϕ |�{â†

π(j ),|I 〉}〉 . (50)

In close analogy to the comparison of Eq. (28) with (29) for
product states, one finds, by comparison of Eq. (48) with (49),
that the overlap 〈�(�s,�)|�evo{â†

j,|I 〉}〉 must be zero for all �

unless e−iϕ
∏N

α=1 λdα(�s) = 1, since each creation operator b̂
†
k,|I 〉

in Eq. (49) is accompanied by the eigenvalue λk , irrespective of
|I 〉. Thus, all final particle configurations �s must be suppressed
for which

N∏
α=1

λdα(�s) =
N∏

α=1

�α(�s) �= eiϕ. (51)

Note that many-particle Fock product states of the form (3)
also satisfy the initial assumption in Eq. (45), with eiϕ = 1
for bosons and eiϕ = (−1)w for fermions. Equation (51) thus
reproduces the bosonic suppression law (19) and the adapted
suppression law for fermions (22), respectively.

For the general fermionic suppression law (25) we have not
been able to derive a similar generalization for arbitrary pure
states. Its derivation shown in Appendix B reveals no clue
towards an adaptation to general pure states |�{â†

j,|I 〉}〉 and we
only find that certain many-particle states such as superposi-
tions of Fock product states which generate the same initial
eigenvalue distribution lead to the fermionic suppression con-
dition (25). This seems natural since the suppression law (25)
specifically requires a known initial eigenvalue distribution.
However, for an arbitrary initial pure state |�{â†

j,|I 〉}〉, such an
initial eigenvalue distribution is not well defined, because the
symmetry (45) may hold for superpositions of product states
which generate different initial eigenvalue distributions or even
represent different particle numbers.

Let us stress once again that condition (51) is based on
the input state’s permutation symmetry (45) alone, regardless
of the specific particle type, and on the particles’ mutual
distinguishability. This provides us with remarkable insight
into the connection between many-particle interference and
distinguishability. However, before we pursue this direction
further, we discuss two short examples that highlight the
general applicability of our formalism to symmetric states of
the form (45).

A. Superpositions of indistinguishable particles

In our first example, we assume a fixed number N of
perfectly indistinguishable bosons such that the internal state
|I 〉 is the same for all N bosons under consideration. Further,
let P be any permutation operator corresponding to a per-
mutation π ∈ Sn of period m. For any initial many-particle
configuration �r , we create an initial state |�B(�r)〉 obeying
Eq. (45) by superposition of the Fock product states defined
by �r,P�r, . . . ,Pm−1�r ,

|�B(�r)〉 = 1√
m

m−1∑
l=0

ei(2π/m)lk |�B(P l�r)〉 , (52)

with |�B(�r)〉 from Eq. (3) and k an arbitrary integer. With
Pm = 11, it is straightforward to verify that

|�B(�r)〉 P−→ e−i(2π/m)k |�B(�r)〉 .

By (45), the evolution of |�B(�r)〉 under a unitary (47) sup-
presses all output events �s with

N∏
α=1

�α(�s) �= e−i(2π/m)k. (53)

The simplest scenario for such an evolution is the single-
particle router. Assume we can prepare a single particle in
the superposition of n = m modes 1√

m

∑m−1
l=0 â

†
l+1 |0〉 (e.g., by

performing the Fourier transform UFT on â
†
1 |0〉) and we have

control over the phase in each mode, respectively, and set
|�〉 = 1√

m

∑m−1
l=0 ei(2π/m)lk â

†
l+1 |0〉 with k ∈ {0, . . . ,m − 1}.

When |�〉 is imaged through another Fourier transform which
is the canonical unitary matrix associated with P and satisfies
(47), the condition for suppression (53) reveals that the particle
will definitely be transmitted to the final mode that corresponds
to the eigenvalue e−i(2π/m)k . Since for each k ∈ {0, . . . ,m − 1}
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there is only one such mode, we can route the particle in
any desired mode by setting k accordingly. This concept is
widely used in optical wavelength-division multiplexing via
the insertion of controllable phases in the Fourier plane of
multichannel imaging devices [51].

B. Suppression for entangled states

In our second example we include additional degrees of
freedom and consider the evolution of an N -particle entangled
state

|�k〉 ∝
m−1∑
l=0

ei(2π/m)lk
N∏

α=1

â
†
πl (dα (�r)),|Iα〉 |0〉 , (54)

with particles in modes �d(�r), �r a particle occupation which
is invariant under the permutation π of order m, and the
assignment of the particles’ internal states varying in each
summand. Here |Iα〉 is the internal state of the αth particle
and if 〈Iα|Iβ〉 = δα,β , the missing prefactor in (54) is given by
1/

√
m. For any k ∈ Z, the permutation characteristics of these

states is given by

|�k〉 P−→ e−i(2π/m)k |�k〉 .

According to Eqs. (45) and (51), all output events �s with

N∏
α=1

�α(�s) �= e−i(2π/m)k

are suppressed. For states of the form (54), the same suppres-
sion behavior applies as for superpositions (52) of indistin-
guishable particles. This highlights that the suppression hinges
on the wave function’s symmetry, which is the same in both
cases.

A special realization of entangled states in the manner of
(54) are the (maximally entangled) Bell states |�±〉. In this
case, we consider the permutation π = (12) and the mode
assignment list �d(�r) = (1,2) of N = 2 particles with inter-
nal states |I1〉 = |↑〉 and |I2〉 = |↓〉. Using bosonic creation
operators and the notation â

†
dα (�r),|Iα〉 |0〉 = |Iα〉dα (�r), Eq. (54)

generates (up to a proportionality factor) the Bell states

|�±〉 ∝ (|↑〉1 |↓〉2 ± |↓〉1 |↑〉2), (55)

where the plus sign corresponds to k = 0 and the minus sign to
k = 1. As the permutation π performs an exchange of modes
1 and 2, we find

|�±〉 P−→ ±|�±〉 . (56)

Now consider the evolution of |�±〉 → |�±
evo〉 according to the

one-dimensional Sylvester matrix (37),

US = 1√
2

(
1 1
1 −1

)
,

which describes an eigenbasis of P with eigenvalues λ1 = 1
and λ2 = −1 (and represents the action of a balanced two-
mode coupler or beam splitter). According to (51), all output
events �s for which

λd1(�s)λd2(�s) �= ±1 (57)

must be forbidden. Since the only eigenvalues are λ1 = 1 and
λ2 = −1, we find that |�+

evo〉 exhibits vanishing amplitude
for both particles in separate modes, while |�−

evo〉 has no
overlap with any state where both particles occupy the same
mode, mimicking the behavior of indistinguishable bosons and
fermions, respectively. This has been verified experimentally
[36,37] and is in agreement with a full calculation which
produces

|�+
evo〉 ∝ (|↑〉1 |↓〉1 − |↑〉2 |↓〉2),

|�−
evo〉 ∝ (|↓〉1 |↑〉2 − |↑〉1 |↓〉2).

Here it is worth noting that the suppression law (57) does not
require orthogonal internal degrees of freedom 〈↑|↓〉 = 0. In
fact, any other internal states |I1〉 and |I2〉 could have been
chosen as long as the symmetry (56) is fulfilled.

C. Perfect suppression for partial distinguishability

In the preceding section we discussed suppression laws for
entangled states without explicit assumptions on the particles’
mutual distinguishability. In the case of Bell states |�±〉,
for example, the suppression of the discussed final particle
configurations appears independently of the overlap 〈↑|↓〉.
Thus, totally destructive interference is not necessarily affected
by mutual particle distinguishability. A similar situation was
noticed [13,17] for Fock product states injected into a two-
mode coupler and for a particular many-particle Fock product
state subject to the discrete Fourier transform (31) [52]. A
more detailed analysis of the latter case [42] led to the
zero-probability conjecture that attributes totally destructive
interference to an exact cancellation of many-particle ampli-
tudes arising from a subset of completely indistinguishable
particles (these particles being partially distinguishable from
the remaining particles involved). Moreover, it was conjectured
that the suppression persists if the degree of distinguishabil-
ity between this subset and the other particles is changed.
In view of the above scattering scenarios, we now show
that the dependence of the described suppression on mutual
particle distinguishability is in perfect agreement with the
zero-probability conjecture and we further address the origin
of this effect.

We begin with many-particle product states as in Eq. (3) and
investigate under which conditions the attribution of internal
states |I 〉 to the particles does not affect the state’s permutation
symmetry, thereby leaving the suppression law unaltered. For
the many-particle state to be invariant under the permutation
operator P associated with π ∈ Sn, all modes j belonging to
the same cycle c of π must have an identical particle content.
As illustrated, for example, in Fig. 4, they must contain the
same number Nc of particles, with the same set of internal
states {|Ic,q〉}q=1,...,Nc

. The initial state can therefore be written
as

|�B (F)〉 ∝
∏

c∈cycles(π)

∏
j∈c

Nc∏
q=1

â
†
j,|Ic,q 〉 |0〉 . (58)

The particles are thus divided in sets, labeled by c ∈ cycles(π )
and q = 1, . . . ,Nc, which all share the same internal state
|Ic,q〉. The state (58) clearly satisfies (45), irrespective of
the mutual distinguishability between distinct sets of indis-
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FIG. 4. Example for a state |�B〉 that is invariant under the
permutation π , but describes many partially distinguishable particles.
The particles, illustrated by balls, occupy three different cycles of π ,
c1 = (1 2 3), c2 = (7 8 9), and c3 = (10 11). Each mode in cycle ck

is occupied by Nck
particles. The particles’ coloring represents their

internal state, given by |Ick,j 〉 for k ∈ {1, . . . ,3} and j ∈ {1, . . . ,Nck
}.

tinguishable particles. However, once the degree of distin-
guishability between particles within these sets changes, the
initial state violates (45) and the suppression law (51) loses
its validity. This exactly coincides with the conjecture in
[42], which is grounded on a decomposition of transition
amplitudes corresponding to different sets of indistinguishable
particles, just as considered here. Consequently, in our case, the
suppression of many-particle product states does not depend
on the mutual distinguishability between particles in modes
corresponding to different cycles of π or particles within a
cycle that belong to different sets. Note that this also applies to
the extended fermionic suppression law (25) for many-particle
Fock product states, which can be verified by including internal
states in the derivation in Appendix B.

For arbitrary pure states |�{â†
j,|I 〉}〉, particle distinguishabil-

ity plays a secondary role for totally destructive interference.
For example, in Sec. IV B we discussed the suppression for
entangled states (54). While the state of each individual particle
is undefined, the degree of their internal states’ mutual indistin-
guishability can be changed without affecting the suppression
of final particle configurations. The suppression arises from the
state’s symmetry (45) and is unaffected by the particles’ mutual
indistinguishability, just as in the case of many-particle product
states. Thus, it is more relevant to consider the permutation
characteristics of the states rather than the properties of the
individual particles when making statements on suppressed
transmission events: Any changes of the state |�{â†

j,|I 〉}〉, be it
in the mode occupation or in the internal degrees of freedom,
for which the permutation symmetry (45) remains unaffected,
have no effect on the level of suppressed transmission events
as predicted by (51).

V. DISCUSSION AND CONCLUSION

In Secs. II and III we discussed multimode scattering of
permutation symmetric Fock product states of indistinguish-
able particles and found a generic class of unitary transforma-
tion matrices which generate vanishing output events due to
perfect destructive interference of many-particle amplitudes.
By means of our suppression laws (19), (22), and (25), we
rederived all previously known scattering scenarios that exhibit
totally destructive many-particle interference. Moreover, our
extended fermionic suppression law (25) exceeds the one

hitherto known for the discrete Fourier transform [24–26] and
we generalized the earlier suppression law for two particles in
the Jx unitary [30,31] to arbitrary particle numbers.

Our investigations in Sec. IV show that the suppression of
transmission events does not necessarily require fully indis-
tinguishable particles. Instead, we identified the many-particle
input state’s permutation symmetry as the crucial factor. As
highlighted in Sec. IV C, the validity of our suppression laws
(19), (22), and (25) is thus independent of the mutual particle
distinguishability, as long as the permutation symmetry of the
initial state remains unaffected.

We found the dependence of the suppression on the per-
mutation symmetry using the wave-function-based approach,
introduced in Sec. II E for Fock product states and generalized
in Sec. IV for arbitrary pure states. In the general case, we
considered any pure state that is invariant under a permutation
operation except for a global phase. This phase then determines
the condition for suppressed output events. Naturally, the
bosonic (19) and the adapted fermionic suppression law (22),
which are only based on the wave function’s permutation
symmetry, are contained in this more general approach. How-
ever, the extended fermionic suppression law (25) for many-
particle Fock product states stands by itself. No indication
for a generalization to permutation-symmetric pure states was
found, since the initial permutation-symmetry alone seems to
preclude any definition of an initial eigenvalue distribution.

The only assumption underlying our suppression law (51)
for general pure states is the input state’s permutation sym-
metry. This was demonstrated in Sec. IV for superpositions
of Fock product states and entangled states, both obeying
the same permutation symmetry and thus being subject to
the same suppression criterion. Moreover, we highlighted
that the input state’s permutation symmetry is not necessarily
affected by mutual particle distinguishability. Consequently,
the suppression of transmission events can persist even in the
presence of partially distinguishable particles.
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APPENDIX A: PROOF OF INCLUSION

Here we show that the extended suppression law for
fermions (25) already includes the adapted suppression law
(22). That is, all final particle configurations which are deter-
mined to be suppressed according to (22) are also suppressed
according to (25): If the initial particle configuration �r is
invariant under P , either all modes of a given cycle are
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occupied by one fermion or none of them are. Hence, for
each occupied cycle with length ml , one has to perform ml − 1
inversions in order to permute �r according to P . Furthermore,
considering Pauli’s exclusion principle [11], there are exactly
Nl/ml occupied cycles of length ml . Thus, the number of
inversions w in Eq. (30) is given by w = ∑L

l=1(ml − 1)Nl/ml .
That is, according to Eq. (22), all final particle configurations
for which

N∏
α=1

�α(�s) �= (−1)
∑L

l=1(ml−1)Nl/ml (A1)

are suppressed. On the other hand, according to the extended
suppression law (25), the product of all eigenvalues in the final
eigenvalue distribution �(�s) of an allowed state must equal the
product of all eigenvalues of the initial eigenvalue distribution
�ini, which yields

N∏
α=1

�α(�s) =
L∏

l=1

⎛
⎝ ml∏

j=1

ei(2πj/ml )

⎞
⎠

Nl/ml

=
L∏

l=1

ei[πNl (ml+1)/ml ]

= (−1)
∑L

l=1(ml−1)Nl/ml

and reveals that all final configuration �s which are allowed
according to the extended suppression law (25) are also allowed
by the adapted law (22). By contraposition, all configurations
�s which are determined to be suppressed according to (22) are
also suppressed according to (25).

APPENDIX B: PROOF OF THE EXTENDED FERMIONIC
SUPPRESSION LAW IN THE WAVE-FUNCTION-BASED

APPROACH

To start with, we consider a fermionic initial state (3) which
is permutation (anti)symmetric according to Eq. (30) (that is,
the initial particle configuration �r is invariant under P). It
evolves under a unitary transformation matrix as specified in
Eq. (11); following Eq. (5), we obtain

∣∣�F
evo(�r)

〉 =
N∏

α=1

(
n∑

k=1

Udα (�r),kb̂
†
k

)
|0〉 .

The overlap with a final state |�F(�s)〉 [defined in Eq. (4)] can
then be expressed as a sum over elements σ of the symmetric

group SN :

〈�F(�s)|�F
evo(�r)〉 =

∑
σ∈SN

Tσ ,

Tσ = sgn(σ )
N∏

α=1

Udα (�r),dσ (α)(�s). (B1)

We now make the following hypothesis (H): For all σ ∈ SN ,
one can find a pair of distinct particles μ and ν initially
occupying modes dμ(�r) and dν(�r) which belong to the same
cycle of π and such that λdσ (μ)(�s) = λdσ (ν)(�s).

Letting ml be the length of the cycle, there exists a κ ∈
{1, . . . ,ml − 1} such that

πκ [dμ(�r)] = dν(�r). (B2)

Utilizing the permutation phase relation (13) κ times, together
with (B2), yields

Udν (�r),k =Udμ(�r),kλ
κ
k exp{i[θ (dν(�r)) − θ (dμ(�r))]}. (B3)

We now consider the permutation σ ′ obtained by composing
σ with the transposition of μ and ν, that is, σ ′(μ) = σ (ν),
σ ′(ν) = σ (μ), and σ ′(α) = σ (α) for α �= μ,ν. Using Eq. (B3)
and sgn(σ ′) = −sgn(σ ), we find for the summands of Eq. (B1),

Tσ = −
(

λdσ (μ)(�s)

λdσ (ν)(�s)

)κ

Tσ ′,

and by our hypothesis, Tσ = −Tσ ′ . The summands in Eq. (B1)
therefore cancel two by two and 〈�F(�s)|�F

evo(�r)〉 = 0, i.e.,

(H) ⇒ �s is suppressed.

By contraposition, if �s is allowed, then there exists a permu-
tation σ ∈ SN such that for all cycles of π and for all pairs of
distinct particles (μ,ν) initially in modes belonging to the same
cycle, λdσ (μ)(�s) �= λdσ (ν)(�s). It follows that each initially populated
cycle of length ml contributes ml distinct eigenvalues to the
final eigenvalue distribution. However, recalling the discussion
above Eq. (15), these eigenvalues must also be ml th roots
of unity. Therefore, each initially populated cycle of π with
length ml contributes all the distinct ml th roots of unity to the
final eigenvalue distribution, and by the definition of the initial
eigenvalue distribution �ini above Eq. (25) we conclude that

�s is allowed ⇒ �(�s) = �ini.

The extended suppression law (25) follows by contraposition.
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