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Abstract
Aim: Accurate predictions of cetacean distributions are essential to their conserva-
tion but are limited by statistical challenges and a paucity of data. This study aimed at 
comparing the capacity of various statistical algorithms to deal with biases commonly 
found in nonsystematic cetacean surveys and to evaluate the potential for citizen 
science data to improve habitat modelling and predictions. An endangered popula-
tion of humpback whales (Megaptera novaeangliae) in their breeding ground was used 
as a case study.
Location: New Caledonia, Oceania.
Methods: Five statistical algorithms were used to model the habitat preferences of 
humpback whales from 1,360 sightings collected over 14 years of nonsystematic re-
search surveys. Three different background sampling approaches were tested when 
developing models from 625 crowdsourced sightings to assess methods accounting 
for citizen science spatial sampling bias. Model evaluation was conducted through 
cross-validation and prediction to an independent satellite tracking dataset.
Results: Algorithms differed in complexity of the environmental relationships mod-
elled, ecological interpretability and transferability. While parameter tuning had a 
great effect on model performances, GLMs generally had low predictive perfor-
mance, SVMs were particularly hard to interpret, and BRTs had high descriptive 
power but showed signs of overfitting. MAXENT and especially GAMs provided a 
valuable complexity trade-off, accurate predictions and were ecologically intelligible. 
Models showed that humpback whales favoured cool (22–23°C) and shallow waters 
(0–100 m deep) in coastal as well as offshore areas. Citizen science models converged 
with research survey models, specifically when accounting for spatial sampling bias.
Main conclusions: Marine megafauna distribution models present specific challenges 
that may be addressed through integrative evaluation, independent testing and ap-
propriately tuned statistical algorithms. Specifically, controlling overfitting is a prior-
ity when predicting cetacean distributions for large-scale conservation perspectives. 
Citizen science data appear to be a powerful tool to describe cetacean habitat.
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1  | INTRODUC TION

Species distribution models (SDMs) have become an indispensable 
tool for ecologists and conservationists to describe the complex 
ecological relationships between species and their environment, 
and to predict distributions over multiple spatial (e.g., Mannocci, 
Monestiez, Spitz, & Ridoux, 2015) and temporal scales (e.g., Legrand 
et al., 2016; Morán-Ordóñez, Lahoz-Monfort, Elith, & Wintle, 2017). 
Correlative SDMs rely on statistical algorithms to fit empirical obser-
vations of species occurrence to environmental conditions (Austin, 
2007; Elith & Leathwick, 2009; Guisan & Zimmermann, 2000; 
Guisan et al., 2013). Considering the great potential for SDMs to 
inform conservation, a growing field of research has emerged to de-
velop applicable models and improve their predictive performance. 
A multitude of statistical algorithms are now available to build SDMs: 
profile models (e.g., ecological niche factor analysis (ENFA), Hirzel, 
Hausser, Chessel, & Perrin, 2002), regression models (e.g., gener-
alized linear models (GLMs), generalized additive models (GAMs), 
Hastie & Tibshirani, 1990; multivariate adaptive regression splines 
(MARS), Friedman, 1991), machine learning (e.g., maximum entropy 
(MAXENT), Phillips, Anderson, & Schapire, 2006; boosted regression 
trees (BRTs), Friedman, 2001; random forests (RFs), Breiman, 2001; 
support vector machines (SVMs), Boser, Guyon, & Vapnik, 1992) and 
Bayesian approaches (occupancy models, MacKenzie, 2006), among 
others. These methods have been compared empirically (Aguirre-
Gutiérrez et al., 2013; Elith et al., 2006; Oppel et al., 2012; Phillips 
et al., 2009) and with simulated data (Elith & Graham, 2009; García-
Callejas & Araújo, 2016; Qiao, Soberón, & Peterson, 2015) in various 
contexts. Most studies have stressed the existing trade-off between 
the descriptive and predictive performance of all models, hence em-
phasizing the fact that model evaluation and transferability are data- 
and study-specific (Qiao et al., 2015).

The descriptive and predictive power of SDMs has proved par-
ticularly useful to understanding the spatial patterns of rare spe-
cies or species living in ecosystems that are technically challenging 
to survey (Dunn, Buchanan, Cuthbert, Whittingham, & McGowan, 
2015; Engler, Guisan, & Rechsteiner, 2004; Stirling, Boulcott, Scott, 
& Wright, 2016). Given their wide-ranging behaviour, their rarity 
and the remote habitats they live in, cetaceans fall in this category 
(Redfern et al., 2006), with added observational challenges due to the 
high proportion of time they spend below the surface. Also, as many 
cetacean species are in need of protection from emerging anthropo-
genic threats (Avila, Kaschner, & Dormann, 2018), SDMs are greatly 
valued for their ability to predict probabilities of presence in unsur-
veyed locations where spatial management is needed (Breen, Brown, 
Reid, & Rogan, 2017; Gomez et al., 2017; Mannocci, Roberts, Miller, 
& Halpin, 2017; Redfern et al., 2017). However, cetacean distribution 
models have unique statistical challenges that warrant specific meth-
odological exploration. Robust predictions have been derived from 
density surface models (Miller, Burt, Rexstad, & Thomas, 2013), but 
a large proportion of cetacean research efforts worldwide is not de-
signed to collect data compatible with this approach (e.g., distance 
measurements, systematic effort). Indeed, nonsystematic cetacean 

surveys conducted at-sea are often characterized by a heteroge-
neous spatiotemporal distribution of effort, which can be biased to-
wards easily accessible habitats, areas and times with better weather, 
or known areas of use (Corkeron et al., 2011). As a result, cetacean 
habitat datasets tend to display patterns of spatial autocorrelation 
(Dormann et al., 2007), hierarchical structures (Roberts et al., 2017) 
and unmeasured confounding effects (e.g., detection distance de-
pending on vessel type, weather, etc.) that can affect SDMs.

MAXENT is among the most popular approach to SDMs 
(Radosavljevic & Anderson, 2014) and has been applied on numer-
ous occasions for cetacean habitat modelling (e.g., Lindsay et al., 
2016; Smith et al., 2012). GLMs and, more recently, GAMs have 
been applied successfully to many cetacean species (e.g., right 
whales, Rayment, Dawson, & Webster, 2015; harbour porpoise, 
Gilles et al., 2016; blue whales, Redfern et al., 2017). BRTs have been 
less frequently applied to cetacean studies (Derville, Constantine, 
Baker, Oremus, & Torres, 2016; Torres et al., 2013). At last, SVMs 
have received less attention in the SDM community (Drake, Randin, 
& Guisan, 2006) and have never been applied to cetacean habitat 
modelling. A few comparative analyses of SDMs algorithms have 
been conducted using cetacean survey data (Macleod, Mandleberg, 
Schweder, Bannon, & Pierce, 2008; Praca, Gannier, Das, & Laran, 
2009; Zanardo, Parra, Passadore, & Möller, 2017), but no recent 
attempt has explored the ability of increasingly popular modelling 
methods, such as machine learning, to deal with the biases inherent 
in the data used for modelling cetacean habitats at large scales.

Many of the technical challenges of data collection in marine 
ecosystems can be overcome by combining data from multiple 
sources (Pacifici et al., 2016). To this extent, citizen science may be a 
promising opportunity to increase the quantity and spatial extent of 
cetacean observations for habitat modelling efforts (Tiago, Pereira, 
& Capinha, 2017). Citizen science, as a form of crowdsourcing, can 
be broadly defined as “the engagement of nonprofessionals in sci-
entific research” (Miller-Rushing, Primack, & Bonney, 2012), and 
the method may vary from fully trained and equipped volunteers 
operating in well-defined study areas, to anecdotal reports of ob-
servations by members of the general public. In cetacean research, 
sighting data may be gained from the general public, fishing oper-
ators, ferries, oil and gas platforms, cargo ships or whale-watching 
operators. Citizen science geographical data have been used suc-
cessfully to study cetacean behaviour and ecology on several occa-
sions (Bruce, Albright, Sheehan, & Blewitt, 2014; Thorne et al., 2012; 
Tobeña, Prieto, Machete, & Silva, 2016; Torres et al., 2013), but their 
application to SDMs is fraught with an array of statistical challenges 
(Bird et al., 2014). Indeed, the probability of recording a species at a 
given site is always based on both the probability of species occur-
rence and of an observer recording the data. In citizen science, the 
sampling effort is rarely recorded, and as a result, it is often hard to 
determine whether a higher encounter rate at a site is due to high 
habitat suitability or simply to a higher observer effort (Bird et al., 
2014). The correct implementation of methods to account for un-
even survey effort, particularly when it was not explicitly quanti-
fied, is crucial for cetacean SDMs because highly mobile species are 



thought to be especially sensitive to background sampling (Brotons, 
Thuiller, Araújo, & Hirzel, 2004).

This study investigates the distribution of an emblematic species, 
the humpback whale Megaptera novaeangliae, in New Caledonia, 
south-western Pacific Ocean. Humpback whales that spend the 
austral winter in New Caledonian waters are part of the Oceanian 
breeding population and are classified as endangered by the IUCN 
(Childerhouse et al., 2009). Furthermore, the recently created 
Natural Park of the Coral Sea (Decree GNC:2014-1063) requires in-
depth knowledge of the spatial distribution and habitats of migra-
tory megafauna to support large-scale management in the region. 
Fourteen years of whale observations recorded through boat-based 
nonsystematic research surveys and crowdsourcing are used to 
model the habitat preferences of humpback whales in the New 
Caledonian Economic Exclusive Zone (EEZ) through a presence-
background SDM approach. The aim of this study was to (a) com-
pare the performance of different SDMs statistical algorithms using 
a typical cetacean survey dataset and (b) evaluate the potential for 
crowdsourced cetacean observations to describe and predict habi-
tat preferences using various background sampling techniques that 
account for sampling bias. An independent humpback whale satel-
lite tracking dataset is tested for robust validation of the modelling 
approaches.

2  | METHODS

2.1 | Study area

Located in south-western Pacific Ocean (Figure 1) the New 
Caledonian EEZ spans more than 1.3 million km2 and is characterized 

by a complex seabed topography. The area includes a main island, 
“Grande Terre,” as well as remote reef complexes such as the 
Chesterfield-Bellona plateaus (60 m deep on average), seamounts 
such as Antigonia seamount (60 m deep), and shallow banks such 
as the Fairway-Landsdowne banks (200–0 m deep). The main-
land is surrounded by a barrier reef that delineates large lagoons. 
Shallow waters are therefore found both nearshore and offshore 
(defined here as waters at least 10 km away from any reef or land). 
New Caledonia is visited every austral winter by a humpback whale 
breeding substock that is part of the endangered Oceanian popula-
tion (Childerhouse et al., 2009).

2.2 | Data collection

Data processing and statistical analysis were performed with r 
(version 3.3.2, R Core Team, 2016), qgis (version 2.18.3, QGIS 
Development Team, 2016) and arcmap (version 10.3, ESRI, 2016).

2.2.1 | Research surveys dataset

At-sea humpback whale surveys were conducted from June to 
October, over 14 years between 2003 and 2016. The survey ef-
fort was nonsystematic as it did not follow transect lines (see 
“haphazard” surveys in Corkeron et al., 2011) and was conducted 
in closing mode (cetaceans were approached after detection). The 
location of survey effort was determined to maximize chances of 
whale encounter while accounting for common cetacean survey 
limitations: weather conditions, harbour proximity and vessel ca-
pacity (e.g., Derville et al., 2016). As a result, effort and observa-
tions were spatially biased towards coastal and reef areas, a data 

F IGURE  1 Research surveys and 
humpback whale observations (2003–
2016) in New Caledonian waters (a). 
Shallow reefs are shown in grey over a 
depth raster. GPS tracklines of the boat 
are shown in black, with most of the 
survey effort concentrated in the South 
lagoon (b). Humpback whale observations 
are represented with red points 
(n = 1,360)



clustering pattern commonly found in cetacean sea survey datasets 
(Kaschner, Quick, Jewell, Williams, & Harris, 2012). Most of the sur-
veys (65%) were conducted in the South Lagoon (Figure 1). Small 
semirigid hulled inflatable boats were typically used (76% survey 
days), with three to five trained observers aboard (see Garrigue, 
Greaves, & Chambellant, 2001). To a lesser extent (24% survey 
days), larger vessels such as catamarans and oceanographic ves-
sels were used to survey other areas of the New Caledonian EEZ 
(Figure 1). Cetaceans were searched for by naked eye in Beaufort 
sea states ≤3. All GPS boat tracklines were standardized to display 
one position per minute (initial resolution ranging from 1 posi-
tion/30 s to 1/min). Presence locations were recorded as the posi-
tion of the vessel for each whale group encounter. Encounters are 
considered independent events, as repeated observations of the 
same individual whale within a survey day rarely occurred (Derville, 
Torres, & Garrigue, 2018).

2.2.2 | Citizen science dataset

Crowdsourced sightings of marine mammals included in this analy-
sis were recorded from June to October 2003–2016 through a ma-
rine mammal observation network coordinated by NGO Opération 
Cétacés since 1991 www.operationcetaces.nc. Sightings were con-
served when: (a) the volunteer provided a picture allowing an ac-
curate identification of the species, (b) the volunteer had advanced 
cetacean species identification skills or (c) enough description was 
provided to perform species identification with little doubt (e.g., 
shape of the fluke/dorsal, specific surface activities). Precise GPS 
positions were recorded in 50% of cases. Other sightings were 
positioned within 2 km confidence in 82% cases (up to 5 km max) 
using the description of the locations (usually referencing small 

reefs/bays) projected in a GIS website (https://explorateur-carto.
georep.nc/).

2.2.3 | ARGOS tracking dataset

Adult humpback whales were tagged in coastal and offshore waters 
around New Caledonia from 2007 to 2016, in August and September 
(n = 43, for more details see Garrigue, Clapham, Geyer, Kennedy, & 
Zerbini, 2015) with implantable transmitters (SPOT5, SPLASH-10 
©Wildlife Computers). Whales of both sexes were equally sampled 
(21 females, 21 males and one unknown), including females with a 
calf (n = 14). ARGOS locations of lowest quality (classes “B” and “Z”; 
Nicholls, Robertson, & Murray, 2007), overlapping with land or im-
plying unrealistic speeds (>12 km/h), were removed.

2.2.4 | Environmental data

Dynamic environmental conditions averaged at a monthly temporal 
scale were included in this analysis based on hypothesized hump-
back whale preferences. A monthly scale was considered a good 
temporal trade-off to capture coarse scale intra and interannual 
oceanographic processes (e.g., El Niño Southern Oscillation phenom-
enon) that could affect whales in their tropical breeding latitudes 
(Fernandez, Yesson, Gannier, Miller, & Azevedo, 2017; Mannocci, 
Boustany, et al), while allowing for almost gap-free remotely sensed 
maps. Sea surface temperature (SST) and diffuse attenuation at 
490 nm (K490) were extracted from remotely sensed data sources 
at weekly resolutions and averaged per month from June to October 
of each year (Table 1). SST has frequently been correlated with many 
top predator distributions (Scales et al., 2014) and specifically breed-
ing humpback whales (Bortolotto, Danilewicz, Hammond, Thomas, 

TABLE  1 Predictor variables implemented in the habitat preference models for humpback whales in New Caledonian waters

Predictor Description Unit Resolution Source

SST Sea surface temperature °C 0.04° monthly NOAAa SWFSC ERD (MODIS)b 
https://oceancolor.gsfc.nasa.gov/

K490 Diffuse attenuation at 490 nm – 0.04° monthly NASAc/GSFC (MODIS)d https://
oceancolor.gsfc.nasa.gov/

DEPTH Depth m 500 m DTSIe + NOAA ETOPO Composit 
www.ngdc.noaa.gov/

DISSURF Distance to closest land/reef km 500 m Millennium Coral Reef Mapping 
www.imars.marine.usf.edu/MC/

S.AVG Mean slope rad 5 km mw

S.COV Coefficient of variation of the slope – 5 km mw

A.AVG Mean aspect (slope orientation) rad 5 km mw

CPRO Profile curvaturef – 5 km mw

Notes. mw, moving window.
aNational Oceanographic and Atmospheric Agency.
bModerate Resolution Imaging Spectroradiometer, dataset reference: erdMH1sstd8day.
cNational Aeronautics and Space Administration.
dDataset reference: erdMH1kd4908day.
eDirection des Technologies et des Services de l’Information.
fFor more details on curvature, see: https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm

www.operationcetaces.nc
https://explorateur-carto.georep.nc/
https://explorateur-carto.georep.nc/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/
http://www.ngdc.noaa.gov/
http://www.imars.marine.usf.edu/MC/
https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm


& Zerbini, 2017; Rasmussen et al., 2007; Smith et al., 2012). K490, 
which is a measure of turbidity, has also been linked with ceta-
cean distribution (Mendez, Rosenbaum, Subramaniam, Yackulic, & 
Bordino, 2010). K490 tends to be systematically higher inside the 
tropical lagoon environment (see Supporting Information Appendix 
S1) and was therefore included as a proxy of suitable humpback 
whale habitat in shallow lagoons (Lindsay et al., 2016).

Depth (DEPTH) was primarily extracted from a 500-m resolution 
bathymetric chart, and small gaps were filled with the ETOPO 1 maps 
(Table 1). Several topographic variables were derived from bathym-
etry to best capture the seabed topographic complexity (Bouchet, 
Meeuwig, Salgado Kent, Letessier, & Jenner, 2015) of the unique 
New Caledonian region. Mean slope (S.AVG), coefficient of variation 
of the slope (S.COV) and mean aspect (A.AVG, orientation of the 
slope) were calculated using a 5 × 5 km moving window. Euclidean 
distance to the closest land or shallow reef (DISSURF) was calcu-
lated from coastline and reef shapefiles (Andréfouët, Chagnaud, 
Chauvin, & Kranenburg, 2008). At last, profile curvature (C.PRO) was 
calculated using the arcmap “3D Analyst Tool” and averaged over a 
5 × 5 km moving window to estimate the convexity of the slope and 
reveal terracing of seabed structures such as seamounts (Table 1).

To ensure consistency across statistical algorithms, all envi-
ronmental variables were scaled and centred, by subtracting the 
mean and dividing by the standard deviation calculated over the 
full presence-background dataset. At last, Pearson’s coefficients 
were calculated between environmental variables in the presence-
background dataset to prevent collinearity (control that r < 0.5 for 
all variables).

2.3 | Modelling habitat preferences

2.3.1 | Using research survey data

Humpback whale occurrence data collected during research sur-
veys were modelled relative to environmental conditions with five 
algorithms: GLM, GAM, BRT, MAXENT and SVM. While nonsystem-
atic cetacean surveys are generally not designed to record data as 
presence–absence, they often include some sort of sampling effort 
estimation, through the recording of times on effort and boat GPS 
tracklines. Here, the areas surrounding boat tracklines were used to 
characterize available environmental conditions between sighting 
locations (presence) and area surveyed (background, e.g., Derville 
et al., 2015; Torres, Read, & Halpen, 2008). Tracklines were seg-
mented into on-  and off-effort sections. A set of points, denoted 
background points (a.k.a “pseudo-absences”), was sampled within 
the on-effort survey track strip-width, spanning 4 km to each side 
of the tracklines to reflect the average detection distance of the 
semi-inflatable boat used in most surveys (pers. comm. Garrigue), 
although detection distance might have been larger with the bigger 
research vessels. Daily samples of background points were gener-
ated with a minimum distance of 1 km from each other, but inde-
pendent of presence locations. The number of background points 
was proportional to the time on effort per survey day (on average 35 

points per 5-hr survey). Combined background and presence points 
constituted a binomial dataset of 18,046 data points.

Cross-validation is a common model evaluation procedure and a 
powerful tool to account for hierarchical structures within the data-
set, such as spatial autocorrelation (Roberts et al., 2017). Here, Monte 
Carlo cross-validation accounted for dependencies in the observation 
data, namely the daily autocorrelation resulting from daily clusters in 
the extent and intensity of the survey effort. The dataset was divided 
into 638 blocks containing presence and background points for each 
day of survey. Fifty training datasets containing 90% of randomly se-
lected days of survey were sampled without replacement. As a result, 
each training dataset of the cross-validation contained many blocks 
(each block is a survey day) and was paired with an evaluation data-
set containing the remaining blocks. Presence and background points 
were weighted to control for prevalence, so that the sum of weights 
on presences was equal to the sum of weights on background points 
in each training dataset (Elith, Kearney, & Phillips, 2010).

Boosted regression trees, SVMs and MAXENT models were 
subject to a preliminary tuning stage ensuring optimal performance 
within the scope of our training datasets. In the GLMs, each predic-
tor was included as a cubic orthogonal polynomial (see Supporting 
Information Appendix S2). In the GAMs, restricted maximum likeli-
hood was used to optimize parameter estimates for the thin-plate 
regression splines (see Supporting Information Appendix S2). All 
models were first tested using a set of nine predictors, including eight 
environmental variables plus Julian day, then run using a smaller set 
of predictors after removing the ones that contributed the least (See 
Supporting Information Appendix S3). Julian day was added to the 
set of predictors to account for the seasonal phenology of hump-
back whales in breeding areas that results in a peak of prevalence in 
August. The contribution of each predictor was directly provided in 
the r summaries for BRTs and MAXENT models, but assessed using 
the “caret” r package (version 6.0) for GLMs/GAMs. For SVMs, the 
recursive feature elimination algorithm (Guyon, Weston, Barnhill, & 
Vapnik, 2002) was applied for linear kernels only (as this method is 
not available for radial kernel SVMs), and the resulting ranking crite-
ria were rescaled to sum to 100. For GLMs, the contribution of the 
three orthogonal polynomial terms was summed per predictor. All 
contributions were averaged over the 50 cross-validation runs.

Partial dependence plots were produced for each predictor vari-
able and averaged over the 50 cross-validation runs of each statis-
tical algorithm. These plots allow the graphical visualization of the 
marginal effect of a given variable on the response while all other 
predictors are held constant at their mean sampled value (Friedman, 
2001). They provide a useful ecological interpretation of SDMs, 
though should be regarded with caution when strong interactions 
exist between the predictors (Goldstein, Kapelner, Bleich, & Pitkin, 
2015).

2.3.2 | Using citizen data

Three different sampling approaches were tested to generate back-
ground points, hereon referred to as “UNIFORM”, “TARGET” and 



“POP.” The number of background points was set separately for each 
approach to generate the same background density as in the research 
survey models (estimated to a minimum of 0.02 point/km2). In the 
UNIFORM sampling approach, 36,300 background points (equiva-
lent to 605 per month) were randomly sampled over the entire New 
Caledonian EEZ (covering 1.6 M km2, Figure 2b). The TARGET sam-
pling is based on a popular method developed by Phillips et al. (2009) 
in which the spatial bias in the sightings data is transferred to the 
background data by approximating areas where the probability of de-
tection is nonzero. In practice, the areas of background sampling may 
be limited to those where sightings of species within the same taxo-
nomic group have been reported by the public. Here, 2,340 back-
ground points (equivalent to 39 per month) were sampled in 25 km 
buffers surrounding all marine mammal observations in the citizen 
science New Caledonian dataset (n = 818 sightings across 15 marine 
mammal species, including humpback whales, background area cov-
ering 0.1 M km2, Figure 2c). At last, the POP sampling approach was 
designed to correct the spatial bias in crowdsourced sightings by in-
cluding a proxy of human densities in the background data (Figure 2d). 
This approach relies on the assumption that sampling is biased to-
wards waters that are more accessible/closer to human settlements 
or that are more attractive to people. In New Caledonia, most of the 
population concentrates in the mainland “Grande Terre,” specifically 
in the capital Noumea (Figure 2a). Also, lagoons and waters surround-
ing the reef’s outer edge are popular sites for recreational activities. 
The POP background sampling was designed to sample 36,300 back-
ground points over the EEZ proportionally to local human density 
(see Supporting Information Appendix S4).

The relationship between the observations of humpback whale 
groups by citizens and environmental conditions was modelled using 
GAMs with the same settings as the research survey GAMs. Monte 
Carlo cross-validation was applied over 50 randomly sampled train-
ing and evaluation datasets representing respectively 90% and 10% 
of the total datasets stratified by months. Weights for presence and 
background points were applied similarly to the research survey 
models. GAMs were applied to seven predictors: DEPTH, DISSURF, 
S.AVG, S.COV, K490, SST and month to account for humpback whale 
migratory phenology.

2.4 | Validation and prediction

The descriptive power of each model was assessed by calculating 
the area under the ROC curve (AUC) of the training datasets (“int.
AUC”). AUC measures the capacity of the models to classify be-
tween presence and background points and ranges between 0 and 
1 (Swets, 1988). This metric allows a “threshold-independent” evalu-
ation of model performance, a useful characteristic for model com-
parison. Predictive performance was assessed by calculating AUC 
over the evaluation datasets (“ext.AUC”), which is the withheld data 
portion in each cross-validation iteration. The absolute value of the 
difference between ext.AUC and int.AUC was also calculated to as-
sess the degree of overfitting in the model (“diff.AUC”, Warren & 
Seifert, 2010). A threshold to convert continuous predicted prob-
abilities into a binomial output was estimated for each model run, 
using the threshold value that maximized specificity (true negative 
rate) and sensitivity (true positive rate) over the evaluation dataset 
predictions (Liu, Newell, & White, 2016). Using this threshold, two 
metrics of predictive performance were derived: the sensitivity of 
models when predicting ARGOS tracking locations (“sensitivity.
ARGOS”, in % correctly classified as presences), and the true statistic 
skill when predicting the evaluation datasets (“TSS”; Allouche, Tsoar, 
& Kadmon, 2006). Following the tuning of BRTs, SVMs and MAXENT 
models, two different settings were selected for each approach: the 
model with highest ext.AUC was considered the best predictive 
model (annotated “.pred”), while the model with the lowest diff.AUC 
was considered the most stable model (annotated “.stable”). At last, 
the predictive performance of the citizen science models was tested 
relative to the 50 research survey evaluation datasets, hence allow-
ing the estimation of AUC values (“comp.AUC”) comparable to the 
research survey ext.AUC.

Humpback whale habitat suitability was predicted on a grid 
with 500 × 500 m cells covering the EEZ. For this purpose, SST 
and K490 were averaged beforehand over June to October, from 
2003 to 2016. Julian day and month were fixed to the date of the 
peak of humpback whale presence for the research survey and citi-
zen science models, respectively, on 28th August. Predicted layers 
for each model were averaged over the 50 cross-validation runs 

F IGURE  2 Citizen science 
observations of humpback whale groups 
(2003–2016) in New Caledonian waters 
(a). Observations are represented with 
red points (n = 625). Schematics of the 
three background sampling methods 
are provided: the UNIFORM sampling 
(b), the TARGET sampling restricted to 
areas surrounding sightings (c) and the 
POP sampling weighted in proportion to 
human densities (d). In the last approach, 
darker shades of grey represent a higher 
probability of sampling



(Roberts et al., 2017), and the standard deviations of predictions 
were mapped to report uncertainty (see Supporting Information 
Appendix S3). The similarity between average predicted maps was 
assessed using Pearson’s coefficients. Environmental extrapola-
tion was not limited in the predictions per se, but the areas where 
environmental conditions strayed outside their training ranges 
were highlighted in the final maps of habitat suitability to be inter-
preted with caution (e.g., Mannocci, Roberts et al., 2017).

3  | RESULTS

Dedicated research surveys covered 49,843 km across 14 years and 
638 days of effort (see Supporting Information Appendix S3, Table 1). 
Survey effort covered 21% of the EEZ waters and encountered a total 
of 1,360 humpback whale groups (annual mean = 97 ± SD 40 groups). 
A total of 625 humpback whale group encounters were recorded 
opportunistically by citizen scientists (annual mean = 45 ± SD 28). 
Sightings were recorded predominantly by park rangers (29%) and 
whale-watching operators (22%). After filtering the 43 raw ARGOS 
tracks, 1,539 locations of 4,180 were conserved.

3.1 | Modelling habitat preferences from research 
survey data

All models were first applied to the set of nine predictors; then, the 
predictors that contributed the least, CPRO and A.AVG, were re-
moved for further analysis (Supporting Information Appendix S3).

The comparison of parameter tunings for BRTs, SVMs and 
MAXENT models showed a trade-off between diff.AUC and ext.
AUC/TSS (Table 2). For a given algorithm, the impact of tuning on all 
evaluation metrics was large; for instance, MAXENT models showed 
a 9% increase in ext.AUC when applied with hinge features in com-
parison with linear features only. Models, selected for their “predic-
tive performance” (high ext.AUC and TSS), were less “stable” from 
training to evaluation (larger diff.AUC).

The same trade-off was present in the broad comparison of the 
five statistical algorithms. Diff.AUC was highest for BRTs, and the 
SVM.pred model, reflecting increased overfitting of the relation-
ships. Statistical algorithms can be ranked in increasing diff.AUC: 
SVM.stable—MAXENT.stable, GAM, GLM—MAXENT.pred, SVM.
pred, BRT.stable, BRT.pred; and in decreasing ext.AUC: BRT.pred, 
SVM.pred, BRT.stable, MAXENT.pred, GAM, GLM, MAXENT.sta-
ble, SVM.stable. TSS was correlated to ext.AUC (n = 8, Pearson’s 
r = 0.98) and was surprisingly high for GAMs considering its medium 
ext.AUC. Sensitivity calculated over the ARGOS data tended to be 
lower in more complex models that had high ext.AUC (BRTs, SVM.
pred, GAMs).

The five statistical algorithms mostly agreed on the relative con-
tribution of the main variables. DEPTH, DISSURF, and SST were the 
major contributors, together accounting for 54%–96% of the con-
tributions (Table 3). Yet, both algorithm type and tuning impacted 
the predictor’s contributions. Contrary to GLMs and GAMs where 
DISSURF was preponderant, BRTs found that DEPTH was the most 
important predictor, with very little effect of DISSURF. In an inter-
esting manner, K490 had a relatively high contribution in BRTs and 

TABLE  2 Parameters and validation metrics of habitat preference models for humpback whales in New Caledonian waters. The mean and 
(±) standard deviation of each metric is calculated over 50 runs of the cross-validation. For SVMs, BRTs and MAXENT models, metrics for 
the parameterization that led to the best diff.AUC (“stable model”) and ext.AUC (“predictive model”) are reported

Tuning int.AUC ext.AUC diff.AUC TSS sensitivity.argos %

Research survey model

GLM 0.724 ± 0.003 0.714 ± 0.032 0.011 ± 0.035 0.349 ± 0.053 61.8 ± 6.3

GAM 0.736 ± 0.003 0.727 ± 0.031 0.009 ± 0.034 0.373 ± 0.05 42.7 ± 4.9

MAXENT.stable linear, beta 1a 0.675 ± 0.005 0.675 ± 0.041 0 ± 0.046 0.274 ± 0.063 53.3 ± 9.8

MAXENT.pred hinge, beta 1a 0.747 ± 0.004 0.736 ± 0.031 0.011 ± 0.034 0.364 ± 0.055 46.1 ± 6.2

SVM.stable linear, cost 
0.01b

0.669 ± 0.005 0.669 ± 0.041 0 ± 0.046 0.27 ± 0.062 70.9 ± 14.5

SVM.pred radial, cost 
10b

0.772 ± 0.003 0.744 ± 0.029 0.028 ± 0.032 0.39 ± 0.047 42.8 ± 7.0

BRT.stable lr 0.005, tc 1c 0.767 ± 0.004 0.738 ± 0.033 0.029 ± 0.036 0.364 ± 0.056 43.9 ± 7.8

BRT.pred lr 0.005, tc 3c 0.843 ± 0.004 0.775 ± 0.027 0.069 ± 0.029 0.425 ± 0.045 40.8 ± 5.9

Citizen science models

UNIFORM 0.990 ± 0.001 0.990 ± 0.005 0.001 ± 0.006 0.936 ± 0.021 47.0 ± 6.8

POP 0.947 ± 0.003 0.937 ± 0.017 0.010 ± 0.02 0.754 ± 0.041 46.0 ± 10.1

TARGET 0.927 ± 0.004 0.919 ± 0.027 0.009 ± 0.031 0.733 ± 0.075 43.9 ± 12.3

Notes. aMAXENT models were applied with a linear or hinge feature and beta parameter equal to 1.
bSVMs were applied with linear or radial kernel type and cost of constraint violation equal to 0.01 or 10.
cBRTs were applied with a learning rate of 0.005 and a tree complexity of 1 or 3.



GLMs. Tuning affected contributions: MAXENT.stable favoured SST, 
while MAXENT.pred favoured DEPTH.

Ecological relationships between humpback whale occurrence 
and environmental conditions (Figure 3) showed different trends 
across the five statistical algorithms and varying complexity. In rela-
tion to overfitting trends revealed by high diff.AUC and ext.AUC in 
Table 2, BRTs showed noisy response curves. On the contrary, GLMs, 
SVMs and MAXENT models captured the general trends in the re-
lationships but missed some specific features. For instance, habitat 
suitability globally increased with increasing DISSURF in BRTs, GLMs 
and MAXENT models, whereas SVMs predicted high suitability only 
for small DISSURF values (around 20 km). GAMs predicted a bimodal 
relationship to DISSURF, with a high suitability around 35 km, then 
between 130 and 200 km, and a decrease for larger distances.

Overall, humpback whales favoured shallow waters about 
0–100 m deep, and relatively cold-water temperatures, between 
22°C and 23°C. Models demonstrated that whales had a preference 
for relatively flat seabeds (low S.AVG), of medium to relatively high 
topographic complexity (S.COV 1 – 2% and above), which could 
represent the top of banks, seamounts or reef lagoons. At last, the 
probability of occurrence increased with lower values of K490, but 
most models demonstrated a peak between 0.1 and 0.2, denoting a 
preference for medium turbidity.

The algorithms differed in their predictions over certain zones 
(Figure 4 and Supporting Information Appendix S3), such as the 
Loyalty Islands, which were suitable in GAMs and SVMs but not in 
the other approaches. GAMs, BRTs and MAXENT models predicted 
smoother gradients over the study area, while GLMs predicted low 
suitability in most lagoons and SVMs had strong cut-offs in the pre-
dicted values. The algorithms also differed in their predictions into 
unsampled environmental space (dashed areas, Figure 4): BRTs and 

MAXENT models predicted a high suitability for the whole southern 
part of the study area, while GLMs predicted high suitability every-
where in the extrapolation zone. The extrapolations from GAMs ap-
peared to be mostly driven by the bathymetric pattern. In general, 
spatial overlap between ARGOS tracking locations and areas of high 
habitat suitability was high for all models (e.g., Figure 4e), especially 
South of the mainland. Excluding areas of extrapolation, the five mod-
els agreed on humpback whale preference for shallow waters, which 
resulted in high habitat suitability predictions for reef complexes 
(Chesterfield-Bellona, North Lagoon, South Lagoon), banks (Fairway-
Landsdowne, Orne bank), coastal waters (Loyalty Islands) and shallow 
seamounts of the Lord Howe seamount chain and Norfolk Ridge.

3.2 | Modelling habitat preferences from citizen 
science data

The three citizen science models had high AUC (> 0.90, Table 2). The 
UNIFORM model had the best predictive performance (highest ext.
AUC and sensitivity.argos), followed by the POP and TARGET mod-
els. Most important, the TARGET model and to a lesser extent the 
POP model better predicted research survey occurrences (comp.
AUC = 0.573 ± 0.006 and 0.541 ± 0.003, respectively) than the 
UNIFORM models (comp.AUC = 0.538 ± 0.004).

The three citizen science models differed in the relative con-
tribution of predictors (Table 3). The TARGET model was the most 
similar to the research survey models, with SST and DEPTH having a 
great influence. DISSURF was a major contributor to the UNIFORM 
model only. At last, in all three models, K490 was among the most 
influential predictors.

Predicted maps of habitat suitability (Figure 5) were very 
similar between the UNIFORM and POP models (Figure 5a,c, 

TABLE  3 Mean contribution of environmental variables to habitat preference models for humpback whales in New Caledonian waters. 
Values are ranked and scaled to 100 separately for each algorithm (greatest influence in bold). Coefficients of variation (%) of the mean 
contribution calculated over 50 cross-validation runs are indicated by ±. For SVMs, BRTs and MAXENT models, contributions for the 
parameterization that led to the best diff.AUC (“stable model”) and ext.AUC (“predictive model”) are reported

a S.AVG S.COV JULIAN/MONTH K490 SST DISSURF DEPTH

Research survey model

GLM 5.5 ± 17.7% 11.0 ± 8.8% 9.9 ± 11.1% 19.4 ± 9.7% 19.0 ± 8.8% 21.6 ± 13.5% 13.6 ± 13.0%

GAM 2.2 ± 27.3% 2.3 ± 21.7% 9.8 ± 11.2% 10.7 ± 23.4% 22.9 ± 8.7% 28.4 ± 10.2% 23.7 ± 9.7%

MAXENT.stable 7.7 ± 34.7% 0.4 ± 54.6% 0.2 ± 127.2% 0.9 ± 28.6% 40.8 ± 7.4% 28.9 ± 10.0% 21.2 ± 13.6%

MAXENT.pred 1.2 ± 30.0% 1.4 ± 60.9% 4.1 ± 17.4% 2.4 ± 20.5% 23.8 ± 9.6% 20.4 ± 6.6% 46.6 ± 4.4%

SVM.stable 2.5 ± 32.4% 0.4 ± 38.4 0.3 ± 89.5% 0.6 ± 36.8% 75.1 ± 1.7% 12.9 ± 6.4% 8.2 ± 22.3%

BRT.stable 6.1 ± 8.6% 5.6 ± 13.6% 2.4 ± 13.4% 20.9 ± 5.5% 27.0 ± 6.8% 2.6 ± 12.8% 35.5 ± 4.3%

BRT.pred 6.9 ± 6.5% 17.4 ± 5.1% 4.6 ± 7.0% 16.5 ± 5.5% 23.9 ± 6.5% 5.2 ± 6.3% 25.6 ± 4.5%

Citizen science models

UNIFORM 0.6 ± 66.7% 1.9 ± 21.1% 1.3 ± 46.2% 13.8 ± 12.3% 9.4 ± 17.0% 37.2 ± 7.8% 35.7 ± 12.6%

POP 1.7 ± 35.3% 1 ± 30.0% 11.1 ± 17.1% 55 ± 5.5% 6.2 ± 14.5% 7.7 ± 15.6% 17.4 ± 16.1%

TARGET 1.6 ± 37.5% 2.1 ± 33.3% 4.4 ± 38.6% 39.9 ± 7.8% 20.7 ± 16.9% 1.7 ± 88.2% 29.5 ± 20.7%

Notes. aAverage slope (S.AVG), Julian date (JULIAN) for research survey models or month of year (MONTH) for citizen science models, coefficient of 
variation of the slope (S.COV), diffuse attenuation as turbidity index (K490), sea surface temperature (SST), distance to closest reef or land (DISSURF) 
and depth (DEPTH).



Pearson’s r = 0.98). Despite being affected by environmental ex-
trapolation over part of the study area (Figure 5b), the TARGET 
models prediction maps fitted more closely with the research 
survey maps (Figures 4e, 5b, Pearson’s coefficient: r = 0.74), with 

offshore shallow waters such as the Fairway-Landsdowne bank 
showing particularly high suitability. The three citizen science 
models predicted all waters located in reef or coastal habitats to 
be suitable.

F IGURE  3 Mean partial dependence plots obtained by five statistical algorithms to model humpback whale occurrence from research 
survey data with respect to environmental variables: DEPTH: depth; DISSURF: distance to closest reef or land; S.AVG: mean slope; S.COV: 
coefficient of variation of the slope; SST: sea surface temperature and K490 = diffuse attenuation at 490 nm (turbidity). Solid lines represent 
the mean marginal effect of each variable relative to the probability of presence, over 50 cross-validation runs. Probabilities on the y-
axis originally ranging from 0 to 1 were normalized per model to be centred on zero. Rug plots show the distribution of values in the full 
presence-background research survey dataset, in percentiles, and provide a measure of confidence on the fitted responses. For SVMs, BRTs 
and MAXENT models, only the plots obtained with the “predictive” tuning (highest ext.AUC) are reported



4  | DISCUSSION

The multisource New Caledonian humpback whale dataset allowed 
an in-depth methodological investigation of practices (background 
sampling, statistical algorithms, model tuning, evaluation and 
predictions) to generate informative SDMs using nonsystematic 
and citizen science data for cetacean species. Derived results are 
broadly applicable to other marine megafauna modelling efforts as 
observations collected during nonsystematic surveys and through 
citizen science are representative of worldwide research efforts 
to study marine mammals. Statistical algorithm comparisons per-
formed on the research survey dataset revealed differences in the 
complexity of the environmental relationships modelled, the eco-
logical interpretability of outputs and model transferability across 
large geographical scales. Although citizen science models did not 
perform as well as the research survey models, they predicted 

similar humpback whale suitable habitats and benefited from spe-
cifically tuned background sampling approaches that account for 
spatial bias of effort.

In nonsystematic closing mode surveys, covariates affecting de-
tection may not be precisely recorded (e.g., sea state, vessel type/
height, number of observers) and may vary within and between 
surveys days. While presence-background approaches should not 
be considered a solution to imperfect detection (Monk, 2014), they 
can be applied safely as long as detection probability is not directly 
correlated to the habitat variables of interest. Such correlation 
may exist if a cetacean species spends more time at the surface 
when resting/feeding in specific habitats for instance. A general 
balance between model complexity and generality was observed, 
in concordance with the conceptual framework detailed by Guisan 
and Zimmermann (2000). Models that more closely fit the relation-
ships in the training data were less efficient at model extrapolation 

F IGURE  4 Maps of mean predicted 
humpback whale habitat suitability from 
research survey models. Habitat suitability 
was averaged over 50 cross-validation 
runs for each statistical algorithm, and 
a coloured log-scale was applied to 
values ranging from 0 to 1. Colours 
represent fixed percentages of probability 
distributions of the suitability predicted 
values (e.g., the highest 10% corresponds 
to the decile with highest values over 
each map). Areas of extrapolation where 
at least one environmental variable 
expanded outside the range observed in 
the training dataset are dashed. Filtered 
positions from satellite tags deployed in 
the region are shown with black squares 
in panel (e). For SVMs, BRTs and MAXENT 
models, only the plots obtained with the 
“predictive” tuning (highest ext.AUC) are 
reported



to new data, a relationship found both when comparing different 
statistical algorithms and different tunings of a given statistical 
algorithm. Whatever the parameterization, BRTs systematically 
suffered from overfitting and as a result displayed noisy partial 

dependence plots and predicted maps. The complexity of SVMs 
and MAXENT models strongly depended on tuning; for instance, 
radial kernel SVMs were overfitted, whereas the linear kernel ver-
sion ranked the lowest in explanatory power, along with GLMs, and 
MAXENT models applied with linear features. The performances 
of MAXENT models applied with hinge features and of GAMs were 
intermediate in terms of predictive performance and stability, as 
measured by ext.AUC and diff.AUC. While GLMs and GAMs were 
not tested with different parameterizations in this study, it must be 
noted that tuning may also affect regression-based methods (e.g., 
through polynomial degree or smoothing basis size).

Considering that many marine SDMs are applied in a spatial 
conservation planning context (Cleguer, Grech, Garrigue, & Marsh, 
2015; Gomez et al., 2017; La Manna, Ronchetti, & Sarà, 2016; 
Pérez-Jorge et al., 2015; Robinson et al., 2011), it appears that 
statistical algorithms that intrinsically limit overfitting should be 
prioritized. Indeed, managers are confronted with extrapolation 
needs, and SDMs are often implemented to predict the presence of 
a species in a place/time in which data are not available (Mannocci 
et al., 2015; Redfern et al., 2017). For instance, with proper tun-
ing, all algorithms predicted the Fairway-Landsdowne banks to be 
a favourable area for humpback whales. The discovery of this new 
potential area of humpback whale use is supported by the satellite 
tracking of two humpback whales (Garrigue et al., 2015), and will 
help target future research efforts and inform conservation pol-
icy. Furthermore, given their wide ranges and mobility, migratory 
cetacean species are likely to have broad fundamental ecological 
niches (Guisan & Zimmermann, 2000). Yet, broad niches are gen-
erally more difficult to model than narrow ones (Morán-Ordóñez 
et al., 2017), specifically with MAXENT (Qiao et al., 2015). In this 
context, overfitting the species–environment relationships in a 
given study area is likely to strongly affect the transferability of 
the models (Torres et al., 2015) and underestimate the breadth of 
the species’ niches. On the contrary, approaches such as GAMs and 
MAXENT with hinge features were capable of modelling humpback 
whale habitats with a relatively high level of complexity, while con-
serving a good transferability to novel geographical areas. While 
using the restricted maximum-likelihood method successfully pe-
nalized overfitting in this case study, the complexity of the GAM-
fitted responses may be further controlled by tuning the basis size 
for smoothing (e.g., Mannocci, Roberts et al., 2017), hence also pro-
viding the opportunity to include explicit knowledge regarding the 
species’ response to environmental gradients (Austin, 2007).

At last, our statistical comparison underlines that there is no such 
thing as a universally “best” SDM approach (Qiao et al., 2015). The 
study goal should be clearly identified upfront, whether it is to pro-
duce accurate and/or precise spatial predictions or description of local 
species–environment relationships. Then, model selection depends 
on two main issues: the use of evaluation metrics and critical ecolog-
ical thinking. This study confirms that model evaluation should rely 
on metrics that promote the best predictive performance while min-
imizing overfitting. AUC is advantageous because of its threshold-
independent nature, but its interpretation in a presence-background 

F IGURE  5 Maps of mean predicted humpback whale habitat 
suitability from citizen science models. Habitat suitability was 
averaged over 50 cross-validation runs for each statistical 
algorithm, and a coloured log-scale was applied to values ranging 
from 0 to 1. Colours represent fixed percentages of probability 
distributions of the suitability values (e.g., the highest 5% 
corresponds to the half-of-decile with highest values over each 
map). Areas of extrapolation where at least one environmental 
variable expanded outside the range observed in the training 
dataset are dashed



context is not straightforward (Jiménez-Valverde, 2012; Phillips 
et al., 2006). Diff.AUC cannot be interpreted as easily as in Warren 
and Seifert (2010) when prevalence and presence-background over-
lap vary between the training and the evaluation dataset. However, 
diff.AUC may be used to relatively compare transferability between 
models as long as it is averaged over consistent cross-validation runs. 
At last, the combination of diff.AUC with TSS and ext.AUC appeared 
like a good trade-off to reveal both stability and predictive perfor-
mance of the models. Moreover, using a truly independent valida-
tion dataset can be challenging (Roberts et al., 2017) but ensures the 
robust estimation of predictive error. Tracking data may constitute 
such independent data to evaluate or supplement habitat models 
(e.g., Louzao et al., 2009; Pinto et al., 2016) although it is inherently 
limited to measuring model sensitivity (i.e., capacity of the model 
to predict tracking locations as presences), unless other metrics are 
derived from tracking locations (Pinto et al., 2016). The tracking data 
have to be contemporaneous with the model calibration dataset and 
unbiased by sex, social class or tagging location. In this study, most 
tags were deployed in the South Lagoon (n = 34, 76%); hence, 30% 
of the track positions were located in this area. As a result, model 
predictive performance was relatively high for any model that pre-
dicted high suitability in the South Lagoon. At last, ARGOS location 
error tends to be relatively high when tracking large whales (most 
locations are of quality “B” with precision >50 km; Nicholls et al., 
2007). Hence, prior to using these locations for validation of a habi-
tat model, variables could be averaged in the vicinity of the location, 
or imprecise positions could be filtered out (as was the case in this 
study). At last, the visual inspection of predicted maps overlapped 
with the tracks actually proved more useful than the quantification 
of predictions to this dataset.

Also model evaluation must include the close examination of 
the variables’ relative contributions, partial dependence plots and 
spatially projected predictions. Indeed, models with similar per-
formances have been found to predict distributions differently 
because of different functional relationships (Elith & Graham, 
2009) and/or because the relative contribution of variables dif-
fered (Zanardo et al., 2017). Here, SVMs seem to have deserved 
their “black-box” reputation (Goldstein et al., 2015) as their ecolog-
ical interpretation was arduous. For instance, contributions of the 
predictor variables could only be assessed when using linear ker-
nels, whereas the radial kernels that provided the best predictive 
performance could not be interpreted as easily. On the contrary, 
although showing signs of overfitting, BRTs are more interpretable 
machine-learning approaches that were the only models to identify 
DEPTH as the dominant variable over DISSURF. In line with this 
trend, although they relied more on DISSURF than DEPTH, GAMs 
captured a multimodal relationship relative to DISSURF, revealing 
preferences for coastal as well as remote waters more than 100 km 
from shore. While this relationship should be regarded with caution 
considering the spatially skewed survey effort (favouring specific 
study areas, such as Antigonia or the South Lagoon), it also shows 
that complex environmental relationships might be revealed with 
increased effort in offshore waters. The preference for coastal 

waters has been extensively documented in humpback whale 
breeding grounds (Bortolotto et al., 2017; Cartwright et al., 2012; 
Guidino, Llapapasca, Silva, Alcorta, & Pacheco, 2014; Smith et al., 
2012; Trudelle et al., 2016) but only recently has satellite teleme-
try revealed the use of waters far from any coast or reef (Dulau 
et al., 2017; Garrigue et al., 2015; Trudelle et al., 2016). Through 
robust and independent niche modelling, this study confirms that 
humpback whales are not constrained by proximity to sheltered 
shorelines, but rather by depth, as whales appear to be preferen-
tially found in shallow waters, both in coastal and offshore areas—a 
pattern clearly captured by BRTs and GAMs.

Citizen science models aligned with the main ecological relation-
ships highlighted in the research survey models. K490 was partic-
ularly influential compared to the research survey models, which 
could be explained by the high proportion of whales observed by the 
general public in the lagoons surrounding the mainland that are char-
acterized by relatively high turbidity compared to the open ocean. 
When sampling bias was corrected in the TARGET method, ecologi-
cal relationships converged with the research survey model and SST 
was also found to be particularly influent. The preferred SST range 
in research survey models (22°C–23°C) was similar to ranges found 
in neighbouring breeding grounds (GBR, Smith et al., 2012) but rela-
tively low compared to worldwide breeding temperatures reported 
by Rasmussen et al. (2007). However, as recurrently highlighted in 
cetacean SDMs (Becker et al., 2017; Redfern et al., 2006) it is hard to 
differentiate the direct effect of a variable such as SST, from indirect 
effects due to a correlation with other unmeasured variables, includ-
ing competition, prey distribution and social interaction.

At last, citizen science models of humpback whale habitat 
preferences showed promising predictive capacities compared 
to the research survey models, yet were contingent upon back-
ground sampling. Given the wider distribution of background 
points compared to the research survey dataset, int.AUC and 
ext.AUC metrics appeared to be inflated (Barve et al., 2011), and 
the use of comp.AUC was crucial to a robust model evaluation. 
The TARGET model, which accounted for spatial bias, performed 
better than the simple UNIFORM model to predict new indepen-
dent data (comp.AUC) and showed the best ecological match to 
research survey predictions. However, it is also detrimentally 
restricted by environmental extrapolation and the background 
sampling buffer size is likely to have an impact on predictive 
performance (Barve et al., 2011; Fourcade, Engler, Rödder, & 
Secondi, 2014). With smaller sample sizes, the predictive ca-
pacity of the TARGET model to large areas is likely to decrease. 
The POP model appears like an interesting alternative in such 
cases, as it does not restrict the environmental space in which 
background is sampled, but still accounts for sampling bias. In a 
conceptual manner, the POP model reflects the assumption that 
human activity concentrates in coastal areas in the vicinity of cit-
ies (Halpern et al., 2015). This assumption is similar in essence to 
using distance to roads (Phillips et al., 2009) or distance to the 
coastline (Fithian, Elith, Hastie, & Keith, 2015) as a proxy for land-
based observation density. Indeed, the issue of accessibility of 



study sites to volunteers has been addressed in land-based data-
sets (e.g., Tulloch, Mustin, Possingham, Szabo, & Wilson, 2013) 
but less so in marine studies (Robinson et al., 2011). A variety of 
other methods have been developed to account for spatial bias 
in presence-only SDMs. For instance, spatial filtering has been 
shown to improve predictive performance in several land-based 
study cases (resampling presence points Boria, Olson, Goodman, 
& Anderson, 2014; Fourcade et al., 2014; Kramer-Schadt et al., 
2013) but was not tested here because it was not considered 
adapted to the generally small sample sizes recorded in cetacean 
citizen science programmes. We found that using the TARGET 
(based on Phillips et al., 2009) and POP sampling methods pro-
vided simple and adaptable solutions to account for sampling bias 
in a cetacean citizen science context.

5  | CONCLUSION

This study provides an in-depth investigation of statistical ap-
proaches to highlight the technical challenges associated with 
cetacean habitat modelling. All algorithms suggested that the 
endangered New Caledonian population of humpback whales dis-
plays a preference for relatively cool and shallow waters regard-
less of distance to reefs or coasts. Algorithms displayed a range 
of predictive and descriptive capacity that depended on param-
eter tuning. BRTs generally characterized ecologically meaningful 
species–environment relationships, but predictions were fraught 
with overfitting. SVMs fitted the data closely when using radial 
kernels, but lacked interpretability and transferability. GAMs 
stood out as an interesting trade-off with ecologically interpret-
able results that maintained complexity at a reasonable level to 
allow good predictive performance over unsampled areas, which 
is a crucial characteristic in a conservation planning perspective. 
Considering the wide breadth of migratory cetacean fundamental 
niches, we conclude that cetacean SDMs produced for conser-
vation purposes should specifically prevent overfitting in order 
to conserve some transferability to novel geographical areas. 
Overfitting may be prevented using stratified cross-validation, 
evaluation with an independent dataset, and an appropriate sta-
tistical algorithm and parameter tuning. At last, this study also 
emphasized the role of citizen science to study wide-ranging spe-
cies such as cetaceans over large spatial scales. Habitat prefer-
ence models based on citizen science observations converged 
with models based on research survey when spatial sampling bias 
was accounted for in the models. The development of citizen sci-
ence programmes in marine environments and their application to 
species distribution models therefore appear like a low-cost and 
socially valuable research tool and contributor to marine policy.
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