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Abstract
Aim:	Accurate	predictions	of	cetacean	distributions	are	essential	to	their	conserva-
tion	but	are	limited	by	statistical	challenges	and	a	paucity	of	data.	This	study	aimed	at	
comparing	the	capacity	of	various	statistical	algorithms	to	deal	with	biases	commonly	
found	 in	nonsystematic	cetacean	surveys	and	 to	evaluate	 the	potential	 for	citizen	
science	data	to	improve	habitat	modelling	and	predictions.	An	endangered	popula-
tion	of	humpback	whales	(Megaptera novaeangliae)	in	their	breeding	ground	was	used	
as	a	case	study.
Location:	New	Caledonia,	Oceania.
Methods:	Five	statistical	algorithms	were	used	to	model	the	habitat	preferences	of	
humpback	whales	from	1,360	sightings	collected	over	14	years	of	nonsystematic	re-
search	surveys.	Three	different	background	sampling	approaches	were	tested	when	
developing	models	from	625	crowdsourced	sightings	to	assess	methods	accounting	
for	citizen	science	spatial	sampling	bias.	Model	evaluation	was	conducted	through	
cross-	validation	and	prediction	to	an	independent	satellite	tracking	dataset.
Results:	Algorithms	differed	in	complexity	of	the	environmental	relationships	mod-
elled,	 ecological	 interpretability	 and	 transferability.	While	 parameter	 tuning	 had	 a	
great	 effect	 on	 model	 performances,	 GLMs	 generally	 had	 low	 predictive	 perfor-
mance,	 SVMs	 were	 particularly	 hard	 to	 interpret,	 and	 BRTs	 had	 high	 descriptive	
power	but	showed	signs	of	overfitting.	MAXENT	and	especially	GAMs	provided	a	
valuable	complexity	trade-	off,	accurate	predictions	and	were	ecologically	intelligible.	
Models	showed	that	humpback	whales	favoured	cool	(22–23°C)	and	shallow	waters	
(0–100	m	deep)	in	coastal	as	well	as	offshore	areas.	Citizen	science	models	converged	
with	research	survey	models,	specifically	when	accounting	for	spatial	sampling	bias.
Main conclusions:	Marine	megafauna	distribution	models	present	specific	challenges	
that	may	be	addressed	through	integrative	evaluation,	independent	testing	and	ap-
propriately	tuned	statistical	algorithms.	Specifically,	controlling	overfitting	is	a	prior-
ity	when	predicting	cetacean	distributions	for	large-	scale	conservation	perspectives.	
Citizen	science	data	appear	to	be	a	powerful	tool	to	describe	cetacean	habitat.
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1  | INTRODUC TION

Species	distribution	models	 (SDMs)	have	become	an	 indispensable	
tool	 for	 ecologists	 and	 conservationists	 to	 describe	 the	 complex	
ecological	 relationships	 between	 species	 and	 their	 environment,	
and	 to	 predict	 distributions	 over	 multiple	 spatial	 (e.g.,	 Mannocci,	
Monestiez,	Spitz,	&	Ridoux,	2015)	and	temporal	scales	(e.g.,	Legrand	
et	al.,	2016;	Morán-	Ordóñez,	Lahoz-	Monfort,	Elith,	&	Wintle,	2017).	
Correlative	SDMs	rely	on	statistical	algorithms	to	fit	empirical	obser-
vations	of	species	occurrence	to	environmental	conditions	(Austin,	
2007;	 Elith	 &	 Leathwick,	 2009;	 Guisan	 &	 Zimmermann,	 2000;	
Guisan	 et	al.,	 2013).	 Considering	 the	 great	 potential	 for	 SDMs	 to	
inform	conservation,	a	growing	field	of	research	has	emerged	to	de-
velop	applicable	models	and	improve	their	predictive	performance.	
A	multitude	of	statistical	algorithms	are	now	available	to	build	SDMs:	
profile	models	 (e.g.,	ecological	niche	factor	analysis	 (ENFA),	Hirzel,	
Hausser,	 Chessel,	 &	 Perrin,	 2002),	 regression	models	 (e.g.,	 gener-
alized	 linear	 models	 (GLMs),	 generalized	 additive	 models	 (GAMs),	
Hastie	&	Tibshirani,	1990;	multivariate	adaptive	 regression	splines	
(MARS),	Friedman,	1991),	machine	learning	(e.g.,	maximum	entropy	
(MAXENT),	Phillips,	Anderson,	&	Schapire,	2006;	boosted	regression	
trees	(BRTs),	Friedman,	2001;	random	forests	(RFs),	Breiman,	2001;	
support	vector	machines	(SVMs),	Boser,	Guyon,	&	Vapnik,	1992)	and	
Bayesian	approaches	(occupancy	models,	MacKenzie,	2006),	among	
others.	 These	methods	 have	 been	 compared	 empirically	 (Aguirre-	
Gutiérrez	et	al.,	2013;	Elith	et	al.,	2006;	Oppel	et	al.,	2012;	Phillips	
et	al.,	2009)	and	with	simulated	data	(Elith	&	Graham,	2009;	García-	
Callejas	&	Araújo,	2016;	Qiao,	Soberón,	&	Peterson,	2015)	in	various	
contexts.	Most	studies	have	stressed	the	existing	trade-	off	between	
the	descriptive	and	predictive	performance	of	all	models,	hence	em-
phasizing	the	fact	that	model	evaluation	and	transferability	are	data-		
and	study-	specific	(Qiao	et	al.,	2015).

The	descriptive	and	predictive	power	of	SDMs	has	proved	par-
ticularly	 useful	 to	 understanding	 the	 spatial	 patterns	 of	 rare	 spe-
cies	or	species	 living	 in	ecosystems	that	are	technically	challenging	
to	 survey	 (Dunn,	 Buchanan,	 Cuthbert,	Whittingham,	 &	McGowan,	
2015;	Engler,	Guisan,	&	Rechsteiner,	2004;	Stirling,	Boulcott,	Scott,	
&	 Wright,	 2016).	 Given	 their	 wide-	ranging	 behaviour,	 their	 rarity	
and	the	remote	habitats	they	 live	 in,	cetaceans	fall	 in	this	category	
(Redfern	et	al.,	2006),	with	added	observational	challenges	due	to	the	
high	proportion	of	time	they	spend	below	the	surface.	Also,	as	many	
cetacean	species	are	in	need	of	protection	from	emerging	anthropo-
genic	threats	(Avila,	Kaschner,	&	Dormann,	2018),	SDMs	are	greatly	
valued	for	their	ability	to	predict	probabilities	of	presence	in	unsur-
veyed	locations	where	spatial	management	is	needed	(Breen,	Brown,	
Reid,	&	Rogan,	2017;	Gomez	et	al.,	2017;	Mannocci,	Roberts,	Miller,	
&	Halpin,	2017;	Redfern	et	al.,	2017).	However,	cetacean	distribution	
models	have	unique	statistical	challenges	that	warrant	specific	meth-
odological	exploration.	Robust	predictions	have	been	derived	 from	
density	surface	models	(Miller,	Burt,	Rexstad,	&	Thomas,	2013),	but	
a	large	proportion	of	cetacean	research	efforts	worldwide	is	not	de-
signed	 to	collect	data	compatible	with	 this	approach	 (e.g.,	distance	
measurements,	 systematic	 effort).	 Indeed,	 nonsystematic	 cetacean	

surveys	 conducted	 at-	sea	 are	 often	 characterized	 by	 a	 heteroge-
neous	spatiotemporal	distribution	of	effort,	which	can	be	biased	to-
wards	easily	accessible	habitats,	areas	and	times	with	better	weather,	
or	known	areas	of	use	(Corkeron	et	al.,	2011).	As	a	result,	cetacean	
habitat	 datasets	 tend	 to	 display	 patterns	 of	 spatial	 autocorrelation	
(Dormann	et	al.,	2007),	hierarchical	structures	(Roberts	et	al.,	2017)	
and	 unmeasured	 confounding	 effects	 (e.g.,	 detection	 distance	 de-
pending	on	vessel	type,	weather,	etc.)	that	can	affect	SDMs.

MAXENT	 is	 among	 the	 most	 popular	 approach	 to	 SDMs	
(Radosavljevic	&	Anderson,	2014)	and	has	been	applied	on	numer-
ous	 occasions	 for	 cetacean	 habitat	 modelling	 (e.g.,	 Lindsay	 et	al.,	
2016;	 Smith	 et	al.,	 2012).	 GLMs	 and,	 more	 recently,	 GAMs	 have	
been	 applied	 successfully	 to	 many	 cetacean	 species	 (e.g.,	 right	
whales,	 Rayment,	 Dawson,	 &	 Webster,	 2015;	 harbour	 porpoise,	
Gilles	et	al.,	2016;	blue	whales,	Redfern	et	al.,	2017).	BRTs	have	been	
less	 frequently	 applied	 to	 cetacean	 studies	 (Derville,	 Constantine,	
Baker,	Oremus,	&	Torres,	2016;	Torres	et	al.,	2013).	At	 last,	 SVMs	
have	received	less	attention	in	the	SDM	community	(Drake,	Randin,	
&	Guisan,	2006)	and	have	never	been	applied	 to	cetacean	habitat	
modelling.	 A	 few	 comparative	 analyses	 of	 SDMs	 algorithms	 have	
been	conducted	using	cetacean	survey	data	(Macleod,	Mandleberg,	
Schweder,	 Bannon,	&	 Pierce,	 2008;	 Praca,	Gannier,	Das,	 &	 Laran,	
2009;	 Zanardo,	 Parra,	 Passadore,	 &	 Möller,	 2017),	 but	 no	 recent	
attempt	has	explored	 the	ability	of	 increasingly	popular	modelling	
methods,	such	as	machine	learning,	to	deal	with	the	biases	inherent	
in	the	data	used	for	modelling	cetacean	habitats	at	large	scales.

Many	 of	 the	 technical	 challenges	 of	 data	 collection	 in	 marine	
ecosystems	 can	 be	 overcome	 by	 combining	 data	 from	 multiple	
sources	(Pacifici	et	al.,	2016).	To	this	extent,	citizen	science	may	be	a	
promising	opportunity	to	increase	the	quantity	and	spatial	extent	of	
cetacean	observations	for	habitat	modelling	efforts	(Tiago,	Pereira,	
&	Capinha,	2017).	Citizen	science,	as	a	form	of	crowdsourcing,	can	
be	broadly	defined	as	“the	engagement	of	nonprofessionals	 in	sci-
entific	 research”	 (Miller-	Rushing,	 Primack,	 &	 Bonney,	 2012),	 and	
the	method	may	 vary	 from	 fully	 trained	 and	 equipped	 volunteers	
operating	 in	well-	defined	study	areas,	 to	anecdotal	 reports	of	ob-
servations	by	members	of	the	general	public.	In	cetacean	research,	
sighting	data	may	be	gained	 from	the	general	public,	 fishing	oper-
ators,	ferries,	oil	and	gas	platforms,	cargo	ships	or	whale-	watching	
operators.	 Citizen	 science	 geographical	 data	 have	 been	 used	 suc-
cessfully	to	study	cetacean	behaviour	and	ecology	on	several	occa-
sions	(Bruce,	Albright,	Sheehan,	&	Blewitt,	2014;	Thorne	et	al.,	2012;	
Tobeña,	Prieto,	Machete,	&	Silva,	2016;	Torres	et	al.,	2013),	but	their	
application	to	SDMs	is	fraught	with	an	array	of	statistical	challenges	
(Bird	et	al.,	2014).	Indeed,	the	probability	of	recording	a	species	at	a	
given	site	is	always	based	on	both	the	probability	of	species	occur-
rence	and	of	an	observer	recording	the	data.	In	citizen	science,	the	
sampling	effort	is	rarely	recorded,	and	as	a	result,	it	is	often	hard	to	
determine	whether	a	higher	encounter	rate	at	a	site	 is	due	to	high	
habitat	suitability	or	simply	to	a	higher	observer	effort	 (Bird	et	al.,	
2014).	The	correct	 implementation	of	methods	 to	account	 for	un-
even	 survey	 effort,	 particularly	when	 it	was	 not	 explicitly	 quanti-
fied,	is	crucial	for	cetacean	SDMs	because	highly	mobile	species	are	



thought	to	be	especially	sensitive	to	background	sampling	(Brotons,	
Thuiller,	Araújo,	&	Hirzel,	2004).

This	study	investigates	the	distribution	of	an	emblematic	species,	
the	 humpback	 whale	Megaptera novaeangliae,	 in	 New	 Caledonia,	
south-	western	 Pacific	 Ocean.	 Humpback	 whales	 that	 spend	 the	
austral	winter	 in	New	Caledonian	waters	are	part	of	the	Oceanian	
breeding	population	and	are	classified	as	endangered	by	the	IUCN	
(Childerhouse	 et	al.,	 2009).	 Furthermore,	 the	 recently	 created	
Natural	Park	of	the	Coral	Sea	(Decree	GNC:2014-	1063)	requires	in-	
depth	knowledge	of	 the	spatial	distribution	and	habitats	of	migra-
tory	megafauna	 to	 support	 large-	scale	management	 in	 the	 region.	
Fourteen	years	of	whale	observations	recorded	through	boat-	based	
nonsystematic	 research	 surveys	 and	 crowdsourcing	 are	 used	 to	
model	 the	 habitat	 preferences	 of	 humpback	 whales	 in	 the	 New	
Caledonian	 Economic	 Exclusive	 Zone	 (EEZ)	 through	 a	 presence-	
background	SDM	approach.	The	aim	of	 this	study	was	 to	 (a)	com-
pare	the	performance	of	different	SDMs	statistical	algorithms	using	
a	typical	cetacean	survey	dataset	and	(b)	evaluate	the	potential	for	
crowdsourced	cetacean	observations	to	describe	and	predict	habi-
tat	preferences	using	various	background	sampling	techniques	that	
account	for	sampling	bias.	An	independent	humpback	whale	satel-
lite	tracking	dataset	is	tested	for	robust	validation	of	the	modelling	
approaches.

2  | METHODS

2.1 | Study area

Located	 in	 south-	western	 Pacific	 Ocean	 (Figure	1)	 the	 New	
Caledonian	EEZ	spans	more	than	1.3	million	km2	and	is	characterized	

by	a	complex	seabed	topography.	The	area	 includes	a	main	 island,	
“Grande	 Terre,”	 as	 well	 as	 remote	 reef	 complexes	 such	 as	 the	
Chesterfield-	Bellona	 plateaus	 (60	m	 deep	 on	 average),	 seamounts	
such	 as	 Antigonia	 seamount	 (60	m	 deep),	 and	 shallow	 banks	 such	
as	 the	 Fairway-	Landsdowne	 banks	 (200–0	m	 deep).	 The	 main-
land	 is	 surrounded	by	 a	 barrier	 reef	 that	 delineates	 large	 lagoons.	
Shallow	waters	 are	 therefore	 found	 both	 nearshore	 and	 offshore	
(defined	here	as	waters	at	least	10	km	away	from	any	reef	or	land).	
New	Caledonia	is	visited	every	austral	winter	by	a	humpback	whale	
breeding	substock	that	is	part	of	the	endangered	Oceanian	popula-
tion	(Childerhouse	et	al.,	2009).

2.2 | Data collection

Data	 processing	 and	 statistical	 analysis	 were	 performed	 with	 r 
(version	 3.3.2,	 R	 Core	 Team,	 2016),	 qgis	 (version	 2.18.3,	 QGIS	
Development	Team,	2016)	and	arcmap	(version	10.3,	ESRI,	2016).

2.2.1 | Research surveys dataset

At-	sea	 humpback	 whale	 surveys	 were	 conducted	 from	 June	 to	
October,	 over	 14	years	 between	 2003	 and	 2016.	 The	 survey	 ef-
fort	 was	 nonsystematic	 as	 it	 did	 not	 follow	 transect	 lines	 (see	
“haphazard”	 surveys	 in	Corkeron	et	al.,	 2011)	 and	was	 conducted	
in	closing	mode	(cetaceans	were	approached	after	detection).	The	
location	of	 survey	effort	was	determined	 to	maximize	chances	of	
whale	 encounter	 while	 accounting	 for	 common	 cetacean	 survey	
limitations:	weather	 conditions,	 harbour	 proximity	 and	 vessel	 ca-
pacity	 (e.g.,	Derville	et	al.,	2016).	As	a	 result,	 effort	 and	observa-
tions	were	spatially	biased	 towards	coastal	and	 reef	areas,	a	data	

F IGURE  1 Research	surveys	and	
humpback	whale	observations	(2003–
2016)	in	New	Caledonian	waters	(a).	
Shallow	reefs	are	shown	in	grey	over	a	
depth	raster.	GPS	tracklines	of	the	boat	
are	shown	in	black,	with	most	of	the	
survey	effort	concentrated	in	the	South	
lagoon	(b).	Humpback	whale	observations	
are	represented	with	red	points	
(n	=	1,360)



clustering	pattern	commonly	found	in	cetacean	sea	survey	datasets	
(Kaschner,	Quick,	Jewell,	Williams,	&	Harris,	2012).	Most	of	the	sur-
veys	 (65%)	were	 conducted	 in	 the	South	Lagoon	 (Figure	1).	 Small	
semirigid	 hulled	 inflatable	 boats	were	 typically	 used	 (76%	 survey	
days),	 with	 three	 to	 five	 trained	 observers	 aboard	 (see	 Garrigue,	
Greaves,	 &	 Chambellant,	 2001).	 To	 a	 lesser	 extent	 (24%	 survey	
days),	 larger	 vessels	 such	 as	 catamarans	 and	 oceanographic	 ves-
sels	were	used	to	survey	other	areas	of	 the	New	Caledonian	EEZ	
(Figure	1).	Cetaceans	were	searched	for	by	naked	eye	 in	Beaufort	
sea	states	≤3.	All	GPS	boat	tracklines	were	standardized	to	display	
one	 position	 per	 minute	 (initial	 resolution	 ranging	 from	 1	 posi-
tion/30	s	to	1/min).	Presence	locations	were	recorded	as	the	posi-
tion	of	the	vessel	for	each	whale	group	encounter.	Encounters	are	
considered	 independent	 events,	 as	 repeated	 observations	 of	 the	
same	individual	whale	within	a	survey	day	rarely	occurred	(Derville,	
Torres,	&	Garrigue,	2018).

2.2.2 | Citizen science dataset

Crowdsourced	sightings	of	marine	mammals	included	in	this	analy-
sis	were	recorded	from	June	to	October	2003–2016	through	a	ma-
rine	mammal	observation	network	coordinated	by	NGO	Opération	
Cétacés	since	1991	www.operationcetaces.nc.	Sightings	were	con-
served	when:	 (a)	 the	volunteer	provided	a	picture	allowing	an	ac-
curate	identification	of	the	species,	(b)	the	volunteer	had	advanced	
cetacean	species	identification	skills	or	(c)	enough	description	was	
provided	 to	 perform	 species	 identification	with	 little	 doubt	 (e.g.,	
shape	of	the	fluke/dorsal,	specific	surface	activities).	Precise	GPS	
positions	 were	 recorded	 in	 50%	 of	 cases.	 Other	 sightings	 were	
positioned	within	2	km	confidence	in	82%	cases	(up	to	5	km	max)	
using	 the	 description	 of	 the	 locations	 (usually	 referencing	 small	

reefs/bays)	 projected	 in	 a	GIS	website	 (https://explorateur-carto.
georep.nc/).

2.2.3 | ARGOS tracking dataset

Adult	humpback	whales	were	tagged	in	coastal	and	offshore	waters	
around	New	Caledonia	from	2007	to	2016,	in	August	and	September	
(n	=	43,	for	more	details	see	Garrigue,	Clapham,	Geyer,	Kennedy,	&	
Zerbini,	 2015)	 with	 implantable	 transmitters	 (SPOT5,	 SPLASH-	10	
©Wildlife	Computers).	Whales	of	both	sexes	were	equally	sampled	
(21	females,	21	males	and	one	unknown),	 including	females	with	a	
calf	(n	=	14).	ARGOS	locations	of	lowest	quality	(classes	“B”	and	“Z”;	
Nicholls,	Robertson,	&	Murray,	2007),	overlapping	with	land	or	im-
plying	unrealistic	speeds	(>12	km/h),	were	removed.

2.2.4 | Environmental data

Dynamic	environmental	conditions	averaged	at	a	monthly	temporal	
scale	were	 included	 in	 this	 analysis	based	on	hypothesized	hump-
back	 whale	 preferences.	 A	 monthly	 scale	 was	 considered	 a	 good	
temporal	 trade-	off	 to	 capture	 coarse	 scale	 intra	 and	 interannual	
oceanographic	processes	(e.g.,	El	Niño	Southern	Oscillation	phenom-
enon)	 that	 could	 affect	whales	 in	 their	 tropical	 breeding	 latitudes	
(Fernandez,	 Yesson,	 Gannier,	 Miller,	 &	 Azevedo,	 2017;	 Mannocci,	
Boustany,	et	al),	while	allowing	for	almost	gap-	free	remotely	sensed	
maps.	 Sea	 surface	 temperature	 (SST)	 and	 diffuse	 attenuation	 at	
490	nm	(K490)	were	extracted	from	remotely	sensed	data	sources	
at	weekly	resolutions	and	averaged	per	month	from	June	to	October	
of	each	year	(Table	1).	SST	has	frequently	been	correlated	with	many	
top	predator	distributions	(Scales	et	al.,	2014)	and	specifically	breed-
ing	humpback	whales	 (Bortolotto,	Danilewicz,	Hammond,	Thomas,	

TABLE  1 Predictor	variables	implemented	in	the	habitat	preference	models	for	humpback	whales	in	New	Caledonian	waters

Predictor Description Unit Resolution Source

SST Sea	surface	temperature °C 0.04°	monthly NOAAa	SWFSC	ERD	(MODIS)b 
https://oceancolor.gsfc.nasa.gov/

K490 Diffuse	attenuation	at	490	nm – 0.04°	monthly NASAc/GSFC	(MODIS)d	https://
oceancolor.gsfc.nasa.gov/

DEPTH Depth m 500	m DTSIe	+	NOAA	ETOPO	Composit 
www.ngdc.noaa.gov/

DISSURF Distance	to	closest	land/reef km 500	m Millennium	Coral	Reef	Mapping	
www.imars.marine.usf.edu/MC/

S.AVG Mean	slope rad 5	km	mw

S.COV Coefficient	of	variation	of	the	slope – 5	km	mw

A.AVG Mean	aspect	(slope	orientation) rad 5	km	mw

CPRO Profile	curvaturef – 5	km	mw

Notes.	mw,	moving	window.
aNational	Oceanographic	and	Atmospheric	Agency.
bModerate	Resolution	Imaging	Spectroradiometer,	dataset	reference:	erdMH1sstd8day.
cNational	Aeronautics	and	Space	Administration.
dDataset	reference:	erdMH1kd4908day.
eDirection	des	Technologies	et	des	Services	de	l’Information.
fFor	more	details	on	curvature,	see:	https://desktop.arcgis.com/en/arcmap/10.3/manage-data/raster-and-images/curvature-function.htm
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&	Zerbini,	2017;	Rasmussen	et	al.,	2007;	Smith	et	al.,	2012).	K490,	
which	 is	 a	 measure	 of	 turbidity,	 has	 also	 been	 linked	 with	 ceta-
cean	 distribution	 (Mendez,	 Rosenbaum,	 Subramaniam,	 Yackulic,	 &	
Bordino,	 2010).	K490	 tends	 to	be	 systematically	 higher	 inside	 the	
tropical	lagoon	environment	(see	Supporting	Information	Appendix	
S1)	 and	 was	 therefore	 included	 as	 a	 proxy	 of	 suitable	 humpback	
whale	habitat	in	shallow	lagoons	(Lindsay	et	al.,	2016).

Depth	(DEPTH)	was	primarily	extracted	from	a	500-	m	resolution	
bathymetric	chart,	and	small	gaps	were	filled	with	the	ETOPO	1	maps	
(Table	1).	Several	topographic	variables	were	derived	from	bathym-
etry	 to	best	 capture	 the	 seabed	 topographic	 complexity	 (Bouchet,	
Meeuwig,	 Salgado	 Kent,	 Letessier,	 &	 Jenner,	 2015)	 of	 the	 unique	
New	Caledonian	region.	Mean	slope	(S.AVG),	coefficient	of	variation	
of	 the	 slope	 (S.COV)	 and	mean	 aspect	 (A.AVG,	 orientation	 of	 the	
slope)	were	calculated	using	a	5	×	5	km	moving	window.	Euclidean	
distance	 to	 the	 closest	 land	 or	 shallow	 reef	 (DISSURF)	was	 calcu-
lated	 from	 coastline	 and	 reef	 shapefiles	 (Andréfouët,	 Chagnaud,	
Chauvin,	&	Kranenburg,	2008).	At	last,	profile	curvature	(C.PRO)	was	
calculated	using	the	arcmap	 “3D	Analyst	Tool”	and	averaged	over	a	
5	×	5	km	moving	window	to	estimate	the	convexity	of	the	slope	and	
reveal	terracing	of	seabed	structures	such	as	seamounts	(Table	1).

To	 ensure	 consistency	 across	 statistical	 algorithms,	 all	 envi-
ronmental	 variables	 were	 scaled	 and	 centred,	 by	 subtracting	 the	
mean	 and	 dividing	 by	 the	 standard	 deviation	 calculated	 over	 the	
full	 presence-	background	 dataset.	 At	 last,	 Pearson’s	 coefficients	
were	calculated	between	environmental	variables	in	the	presence-	
background	dataset	 to	prevent	collinearity	 (control	 that	 r	<	0.5	 for	
all	variables).

2.3 | Modelling habitat preferences

2.3.1 | Using research survey data

Humpback	 whale	 occurrence	 data	 collected	 during	 research	 sur-
veys	were	modelled	relative	to	environmental	conditions	with	five	
algorithms:	GLM,	GAM,	BRT,	MAXENT	and	SVM.	While	nonsystem-
atic	cetacean	surveys	are	generally	not	designed	to	record	data	as	
presence–absence,	they	often	include	some	sort	of	sampling	effort	
estimation,	through	the	recording	of	times	on	effort	and	boat	GPS	
tracklines.	Here,	the	areas	surrounding	boat	tracklines	were	used	to	
characterize	 available	 environmental	 conditions	 between	 sighting	
locations	 (presence)	 and	 area	 surveyed	 (background,	 e.g.,	Derville	
et	al.,	 2015;	 Torres,	 Read,	 &	 Halpen,	 2008).	 Tracklines	 were	 seg-
mented	 into	 on-		 and	 off-	effort	 sections.	 A	 set	 of	 points,	 denoted	
background	 points	 (a.k.a	 “pseudo-	absences”),	 was	 sampled	 within	
the	on-	effort	survey	track	strip-	width,	spanning	4	km	to	each	side	
of	 the	 tracklines	 to	 reflect	 the	 average	 detection	 distance	 of	 the	
semi-	inflatable	 boat	 used	 in	most	 surveys	 (pers.	 comm.	Garrigue),	
although	detection	distance	might	have	been	larger	with	the	bigger	
research	vessels.	Daily	 samples	of	background	points	were	gener-
ated	with	a	minimum	distance	of	1	km	 from	each	other,	but	 inde-
pendent	of	presence	 locations.	The	number	of	background	points	
was	proportional	to	the	time	on	effort	per	survey	day	(on	average	35	

points	per	5-	hr	survey).	Combined	background	and	presence	points	
constituted	a	binomial	dataset	of	18,046	data	points.

Cross-	validation	is	a	common	model	evaluation	procedure	and	a	
powerful	tool	to	account	for	hierarchical	structures	within	the	data-
set,	such	as	spatial	autocorrelation	(Roberts	et	al.,	2017).	Here,	Monte	
Carlo	cross-	validation	accounted	for	dependencies	in	the	observation	
data,	namely	the	daily	autocorrelation	resulting	from	daily	clusters	in	
the	extent	and	intensity	of	the	survey	effort.	The	dataset	was	divided	
into	638	blocks	containing	presence	and	background	points	for	each	
day	of	survey.	Fifty	training	datasets	containing	90%	of	randomly	se-
lected	days	of	survey	were	sampled	without	replacement.	As	a	result,	
each	training	dataset	of	the	cross-	validation	contained	many	blocks	
(each	block	is	a	survey	day)	and	was	paired	with	an	evaluation	data-
set	containing	the	remaining	blocks.	Presence	and	background	points	
were	weighted	to	control	for	prevalence,	so	that	the	sum	of	weights	
on	presences	was	equal	to	the	sum	of	weights	on	background	points	
in	each	training	dataset	(Elith,	Kearney,	&	Phillips,	2010).

Boosted	 regression	 trees,	 SVMs	 and	 MAXENT	 models	 were	
subject	to	a	preliminary	tuning	stage	ensuring	optimal	performance	
within	the	scope	of	our	training	datasets.	In	the	GLMs,	each	predic-
tor	was	included	as	a	cubic	orthogonal	polynomial	(see	Supporting	
Information	Appendix	S2).	In	the	GAMs,	restricted	maximum	likeli-
hood	was	used	 to	optimize	parameter	estimates	 for	 the	 thin-	plate	
regression	 splines	 (see	 Supporting	 Information	 Appendix	 S2).	 All	
models	were	first	tested	using	a	set	of	nine	predictors,	including	eight	
environmental	variables	plus	Julian	day,	then	run	using	a	smaller	set	
of	predictors	after	removing	the	ones	that	contributed	the	least	(See	
Supporting	Information	Appendix	S3).	Julian	day	was	added	to	the	
set	of	predictors	 to	account	 for	 the	 seasonal	phenology	of	hump-
back	whales	in	breeding	areas	that	results	in	a	peak	of	prevalence	in	
August.	The	contribution	of	each	predictor	was	directly	provided	in	
the	r	summaries	for	BRTs	and	MAXENT	models,	but	assessed	using	
the	“caret” r	package	(version	6.0)	for	GLMs/GAMs.	For	SVMs,	the	
recursive	feature	elimination	algorithm	(Guyon,	Weston,	Barnhill,	&	
Vapnik,	2002)	was	applied	for	linear	kernels	only	(as	this	method	is	
not	available	for	radial	kernel	SVMs),	and	the	resulting	ranking	crite-
ria	were	rescaled	to	sum	to	100.	For	GLMs,	the	contribution	of	the	
three	orthogonal	polynomial	 terms	was	summed	per	predictor.	All	
contributions	were	averaged	over	the	50	cross-	validation	runs.

Partial	dependence	plots	were	produced	for	each	predictor	vari-
able	and	averaged	over	the	50	cross-	validation	runs	of	each	statis-
tical	algorithm.	These	plots	allow	the	graphical	visualization	of	the	
marginal	effect	of	a	given	variable	on	the	response	while	all	other	
predictors	are	held	constant	at	their	mean	sampled	value	(Friedman,	
2001).	 They	 provide	 a	 useful	 ecological	 interpretation	 of	 SDMs,	
though	should	be	 regarded	with	caution	when	strong	 interactions	
exist	between	the	predictors	(Goldstein,	Kapelner,	Bleich,	&	Pitkin,	
2015).

2.3.2 | Using citizen data

Three	different	sampling	approaches	were	tested	to	generate	back-
ground	 points,	 hereon	 referred	 to	 as	 “UNIFORM”,	 “TARGET”	 and	



“POP.”	The	number	of	background	points	was	set	separately	for	each	
approach	to	generate	the	same	background	density	as	in	the	research	
survey	models	 (estimated	 to	a	minimum	of	0.02	point/km2).	 In	 the	
UNIFORM	 sampling	 approach,	 36,300	 background	 points	 (equiva-
lent	to	605	per	month)	were	randomly	sampled	over	the	entire	New	
Caledonian	EEZ	(covering	1.6	M	km2,	Figure	2b).	The	TARGET	sam-
pling	is	based	on	a	popular	method	developed	by	Phillips	et	al.	(2009)	
in	which	 the	 spatial	 bias	 in	 the	 sightings	data	 is	 transferred	 to	 the	
background	data	by	approximating	areas	where	the	probability	of	de-
tection	is	nonzero.	In	practice,	the	areas	of	background	sampling	may	
be	limited	to	those	where	sightings	of	species	within	the	same	taxo-
nomic	 group	have	been	 reported	 by	 the	 public.	Here,	 2,340	back-
ground	points	(equivalent	to	39	per	month)	were	sampled	in	25	km	
buffers	 surrounding	 all	marine	mammal	 observations	 in	 the	 citizen	
science	New	Caledonian	dataset	(n	=	818	sightings	across	15	marine	
mammal	species,	including	humpback	whales,	background	area	cov-
ering	0.1	M	km2,	Figure	2c).	At	last,	the	POP	sampling	approach	was	
designed	to	correct	the	spatial	bias	in	crowdsourced	sightings	by	in-
cluding	a	proxy	of	human	densities	in	the	background	data	(Figure	2d).	
This	 approach	 relies	on	 the	assumption	 that	 sampling	 is	biased	 to-
wards	waters	that	are	more	accessible/closer	to	human	settlements	
or	that	are	more	attractive	to	people.	In	New	Caledonia,	most	of	the	
population	concentrates	in	the	mainland	“Grande	Terre,”	specifically	
in	the	capital	Noumea	(Figure	2a).	Also,	lagoons	and	waters	surround-
ing	the	reef’s	outer	edge	are	popular	sites	for	recreational	activities.	
The	POP	background	sampling	was	designed	to	sample	36,300	back-
ground	 points	 over	 the	 EEZ	 proportionally	 to	 local	 human	 density	
(see	Supporting	Information	Appendix	S4).

The	relationship	between	the	observations	of	humpback	whale	
groups	by	citizens	and	environmental	conditions	was	modelled	using	
GAMs	with	the	same	settings	as	the	research	survey	GAMs.	Monte	
Carlo	cross-	validation	was	applied	over	50	randomly	sampled	train-
ing	and	evaluation	datasets	representing	respectively	90%	and	10%	
of	the	total	datasets	stratified	by	months.	Weights	for	presence	and	
background	 points	 were	 applied	 similarly	 to	 the	 research	 survey	
models.	GAMs	were	applied	to	seven	predictors:	DEPTH,	DISSURF,	
S.AVG,	S.COV,	K490,	SST	and	month	to	account	for	humpback	whale	
migratory	phenology.

2.4 | Validation and prediction

The	descriptive	power	of	 each	model	was	 assessed	by	 calculating	
the	area	under	the	ROC	curve	(AUC)	of	the	training	datasets	 (“int.
AUC”).	 AUC	measures	 the	 capacity	 of	 the	 models	 to	 classify	 be-
tween	presence	and	background	points	and	ranges	between	0	and	
1	(Swets,	1988).	This	metric	allows	a	“threshold-	independent”	evalu-
ation	of	model	performance,	a	useful	characteristic	for	model	com-
parison.	 Predictive	 performance	was	 assessed	 by	 calculating	AUC	
over	the	evaluation	datasets	(“ext.AUC”),	which	is	the	withheld	data	
portion	in	each	cross-	validation	iteration.	The	absolute	value	of	the	
difference	between	ext.AUC	and	int.AUC	was	also	calculated	to	as-
sess	 the	degree	of	 overfitting	 in	 the	model	 (“diff.AUC”,	Warren	&	
Seifert,	 2010).	A	 threshold	 to	 convert	 continuous	predicted	prob-
abilities	 into	a	binomial	output	was	estimated	 for	each	model	 run,	
using	the	threshold	value	that	maximized	specificity	(true	negative	
rate)	and	sensitivity	(true	positive	rate)	over	the	evaluation	dataset	
predictions	(Liu,	Newell,	&	White,	2016).	Using	this	threshold,	two	
metrics	of	predictive	performance	were	derived:	 the	sensitivity	of	
models	 when	 predicting	 ARGOS	 tracking	 locations	 (“sensitivity.
ARGOS”,	in	%	correctly	classified	as	presences),	and	the	true	statistic	
skill	when	predicting	the	evaluation	datasets	(“TSS”;	Allouche,	Tsoar,	
&	Kadmon,	2006).	Following	the	tuning	of	BRTs,	SVMs	and	MAXENT	
models,	two	different	settings	were	selected	for	each	approach:	the	
model	 with	 highest	 ext.AUC	 was	 considered	 the	 best	 predictive	
model	(annotated	“.pred”),	while	the	model	with	the	lowest	diff.AUC	
was	considered	the	most	stable	model	(annotated	“.stable”).	At	last,	
the	predictive	performance	of	the	citizen	science	models	was	tested	
relative	to	the	50	research	survey	evaluation	datasets,	hence	allow-
ing	the	estimation	of	AUC	values	 (“comp.AUC”)	comparable	to	the	
research	survey	ext.AUC.

Humpback	 whale	 habitat	 suitability	 was	 predicted	 on	 a	 grid	
with	 500	×	500	m	 cells	 covering	 the	 EEZ.	 For	 this	 purpose,	 SST	
and	K490	were	averaged	beforehand	over	June	to	October,	from	
2003	to	2016.	Julian	day	and	month	were	fixed	to	the	date	of	the	
peak	of	humpback	whale	presence	for	the	research	survey	and	citi-
zen	science	models,	respectively,	on	28th	August.	Predicted	layers	
for	each	model	were	averaged	over	 the	50	cross-	validation	 runs	

F IGURE  2 Citizen	science	
observations	of	humpback	whale	groups	
(2003–2016)	in	New	Caledonian	waters	
(a).	Observations	are	represented	with	
red	points	(n	=	625).	Schematics	of	the	
three	background	sampling	methods	
are	provided:	the	UNIFORM	sampling	
(b),	the	TARGET	sampling	restricted	to	
areas	surrounding	sightings	(c)	and	the	
POP	sampling	weighted	in	proportion	to	
human	densities	(d).	In	the	last	approach,	
darker	shades	of	grey	represent	a	higher	
probability	of	sampling



(Roberts	et	al.,	2017),	and	the	standard	deviations	of	predictions	
were	mapped	 to	 report	uncertainty	 (see	Supporting	 Information	
Appendix	S3).	The	similarity	between	average	predicted	maps	was	
assessed	 using	 Pearson’s	 coefficients.	 Environmental	 extrapola-
tion	was	not	limited	in	the	predictions	per	se,	but	the	areas	where	
environmental	 conditions	 strayed	 outside	 their	 training	 ranges	
were	highlighted	in	the	final	maps	of	habitat	suitability	to	be	inter-
preted	with	caution	(e.g.,	Mannocci,	Roberts	et	al.,	2017).

3  | RESULTS

Dedicated	research	surveys	covered	49,843	km	across	14	years	and	
638	days	of	effort	(see	Supporting	Information	Appendix	S3,	Table	1).	
Survey	effort	covered	21%	of	the	EEZ	waters	and	encountered	a	total	
of	1,360	humpback	whale	groups	(annual	mean	=	97	±	SD	40	groups).	
A	 total	 of	 625	 humpback	 whale	 group	 encounters	 were	 recorded	
opportunistically	 by	 citizen	 scientists	 (annual	 mean	=	45	±	SD	 28).	
Sightings	were	 recorded	 predominantly	 by	 park	 rangers	 (29%)	 and	
whale-	watching	operators	 (22%).	After	filtering	the	43	raw	ARGOS	
tracks,	1,539	locations	of	4,180	were	conserved.

3.1 | Modelling habitat preferences from research 
survey data

All	models	were	first	applied	to	the	set	of	nine	predictors;	then,	the	
predictors	 that	 contributed	 the	 least,	 CPRO	 and	A.AVG,	were	 re-
moved	for	further	analysis	(Supporting	Information	Appendix	S3).

The	 comparison	 of	 parameter	 tunings	 for	 BRTs,	 SVMs	 and	
MAXENT	 models	 showed	 a	 trade-	off	 between	 diff.AUC	 and	 ext.
AUC/TSS	(Table	2).	For	a	given	algorithm,	the	impact	of	tuning	on	all	
evaluation	metrics	was	large;	for	instance,	MAXENT	models	showed	
a	9%	increase	in	ext.AUC	when	applied	with	hinge	features	in	com-
parison	with	linear	features	only.	Models,	selected	for	their	“predic-
tive	performance”	 (high	ext.AUC	and	TSS),	were	 less	“stable”	from	
training	to	evaluation	(larger	diff.AUC).

The	same	trade-	off	was	present	in	the	broad	comparison	of	the	
five	statistical	algorithms.	Diff.AUC	was	highest	 for	BRTs,	and	 the	
SVM.pred	 model,	 reflecting	 increased	 overfitting	 of	 the	 relation-
ships.	 Statistical	 algorithms	 can	 be	 ranked	 in	 increasing	 diff.AUC:	
SVM.stable—MAXENT.stable,	 GAM,	 GLM—MAXENT.pred,	 SVM.
pred,	 BRT.stable,	 BRT.pred;	 and	 in	 decreasing	 ext.AUC:	BRT.pred,	
SVM.pred,	 BRT.stable,	 MAXENT.pred,	 GAM,	 GLM,	 MAXENT.sta-
ble,	 SVM.stable.	 TSS	 was	 correlated	 to	 ext.AUC	 (n	=	8,	 Pearson’s	
r	=	0.98)	and	was	surprisingly	high	for	GAMs	considering	its	medium	
ext.AUC.	Sensitivity	calculated	over	the	ARGOS	data	tended	to	be	
lower	in	more	complex	models	that	had	high	ext.AUC	(BRTs,	SVM.
pred,	GAMs).

The	five	statistical	algorithms	mostly	agreed	on	the	relative	con-
tribution	of	the	main	variables.	DEPTH,	DISSURF,	and	SST	were	the	
major	 contributors,	 together	 accounting	 for	54%–96%	of	 the	 con-
tributions	 (Table	3).	 Yet,	 both	 algorithm	 type	 and	 tuning	 impacted	
the	predictor’s	contributions.	Contrary	 to	GLMs	and	GAMs	where	
DISSURF	was	preponderant,	BRTs	found	that	DEPTH	was	the	most	
important	predictor,	with	very	little	effect	of	DISSURF.	In	an	inter-
esting	manner,	K490	had	a	relatively	high	contribution	in	BRTs	and	

TABLE  2 Parameters	and	validation	metrics	of	habitat	preference	models	for	humpback	whales	in	New	Caledonian	waters.	The	mean	and	
(±)	standard	deviation	of	each	metric	is	calculated	over	50	runs	of	the	cross-	validation.	For	SVMs,	BRTs	and	MAXENT	models,	metrics	for	
the	parameterization	that	led	to	the	best	diff.AUC	(“stable	model”)	and	ext.AUC	(“predictive	model”)	are	reported

Tuning int.AUC ext.AUC diff.AUC TSS sensitivity.argos %

Research	survey	model

GLM 0.724	±	0.003 0.714	±	0.032 0.011	±	0.035 0.349	±	0.053 61.8	±	6.3

GAM 0.736	±	0.003 0.727	±	0.031 0.009	±	0.034 0.373	±	0.05 42.7	±	4.9

MAXENT.stable linear,	beta	1a 0.675	±	0.005 0.675	±	0.041 0	±	0.046 0.274	±	0.063 53.3	±	9.8

MAXENT.pred hinge,	beta	1a 0.747	±	0.004 0.736	±	0.031 0.011	±	0.034 0.364	±	0.055 46.1	±	6.2

SVM.stable linear,	cost	
0.01b

0.669	±	0.005 0.669	±	0.041 0	±	0.046 0.27	±	0.062 70.9	±	14.5

SVM.pred radial,	cost	
10b

0.772	±	0.003 0.744	±	0.029 0.028	±	0.032 0.39	±	0.047 42.8	±	7.0

BRT.stable lr	0.005,	tc	1c 0.767	±	0.004 0.738	±	0.033 0.029	±	0.036 0.364	±	0.056 43.9	±	7.8

BRT.pred lr	0.005,	tc	3c 0.843	±	0.004 0.775	±	0.027 0.069	±	0.029 0.425	±	0.045 40.8	±	5.9

Citizen	science	models

UNIFORM 0.990	±	0.001 0.990	±	0.005 0.001	±	0.006 0.936	±	0.021 47.0	±	6.8

POP 0.947	±	0.003 0.937	±	0.017 0.010	±	0.02 0.754	±	0.041 46.0	±	10.1

TARGET 0.927	±	0.004 0.919	±	0.027 0.009	±	0.031 0.733	±	0.075	 43.9	±	12.3

Notes. aMAXENT	models	were	applied	with	a	linear	or	hinge	feature	and	beta	parameter	equal	to	1.
bSVMs	were	applied	with	linear	or	radial	kernel	type	and	cost	of	constraint	violation	equal	to	0.01	or	10.
cBRTs	were	applied	with	a	learning	rate	of	0.005	and	a	tree	complexity	of	1	or	3.



GLMs.	Tuning	affected	contributions:	MAXENT.stable	favoured	SST,	
while	MAXENT.pred	favoured	DEPTH.

Ecological	 relationships	 between	 humpback	 whale	 occurrence	
and	 environmental	 conditions	 (Figure	3)	 showed	 different	 trends	
across	the	five	statistical	algorithms	and	varying	complexity.	In	rela-
tion	to	overfitting	trends	revealed	by	high	diff.AUC	and	ext.AUC	in	
Table	2,	BRTs	showed	noisy	response	curves.	On	the	contrary,	GLMs,	
SVMs	and	MAXENT	models	captured	the	general	trends	in	the	re-
lationships	but	missed	some	specific	features.	For	instance,	habitat	
suitability	globally	increased	with	increasing	DISSURF	in	BRTs,	GLMs	
and	MAXENT	models,	whereas	SVMs	predicted	high	suitability	only	
for	small	DISSURF	values	(around	20	km).	GAMs	predicted	a	bimodal	
relationship	to	DISSURF,	with	a	high	suitability	around	35	km,	then	
between	130	and	200	km,	and	a	decrease	for	larger	distances.

Overall,	 humpback	 whales	 favoured	 shallow	 waters	 about	
0–100	m	 deep,	 and	 relatively	 cold-	water	 temperatures,	 between	
22°C	and	23°C.	Models	demonstrated	that	whales	had	a	preference	
for	relatively	flat	seabeds	(low	S.AVG),	of	medium	to	relatively	high	
topographic	 complexity	 (S.COV	 1	 –	 2%	 and	 above),	 which	 could	
represent	the	top	of	banks,	seamounts	or	reef	lagoons.	At	last,	the	
probability	of	occurrence	increased	with	lower	values	of	K490,	but	
most	models	demonstrated	a	peak	between	0.1	and	0.2,	denoting	a	
preference	for	medium	turbidity.

The	 algorithms	 differed	 in	 their	 predictions	 over	 certain	 zones	
(Figure	4	 and	 Supporting	 Information	 Appendix	 S3),	 such	 as	 the	
Loyalty	 Islands,	which	were	suitable	 in	GAMs	and	SVMs	but	not	 in	
the	other	approaches.	GAMs,	BRTs	and	MAXENT	models	predicted	
smoother	gradients	over	the	study	area,	while	GLMs	predicted	low	
suitability	in	most	lagoons	and	SVMs	had	strong	cut-	offs	in	the	pre-
dicted	values.	The	algorithms	also	differed	 in	 their	predictions	 into	
unsampled	environmental	 space	 (dashed	areas,	Figure	4):	BRTs	and	

MAXENT	models	predicted	a	high	suitability	for	the	whole	southern	
part	of	the	study	area,	while	GLMs	predicted	high	suitability	every-
where	in	the	extrapolation	zone.	The	extrapolations	from	GAMs	ap-
peared	 to	be	mostly	driven	by	 the	bathymetric	pattern.	 In	general,	
spatial	overlap	between	ARGOS	tracking	locations	and	areas	of	high	
habitat	suitability	was	high	for	all	models	(e.g.,	Figure	4e),	especially	
South	of	the	mainland.	Excluding	areas	of	extrapolation,	the	five	mod-
els	agreed	on	humpback	whale	preference	for	shallow	waters,	which	
resulted	 in	 high	 habitat	 suitability	 predictions	 for	 reef	 complexes	
(Chesterfield-	Bellona,	North	Lagoon,	South	Lagoon),	banks	(Fairway-	
Landsdowne,	Orne	bank),	coastal	waters	(Loyalty	Islands)	and	shallow	
seamounts	of	the	Lord	Howe	seamount	chain	and	Norfolk	Ridge.

3.2 | Modelling habitat preferences from citizen 
science data

The	three	citizen	science	models	had	high	AUC	(>	0.90,	Table	2).	The	
UNIFORM	model	had	the	best	predictive	performance	(highest	ext.
AUC	and	sensitivity.argos),	followed	by	the	POP	and	TARGET	mod-
els.	Most	important,	the	TARGET	model	and	to	a	lesser	extent	the	
POP	 model	 better	 predicted	 research	 survey	 occurrences	 (comp.
AUC	 =	 0.573	±	0.006	 and	 0.541	±	0.003,	 respectively)	 than	 the	
UNIFORM	models	(comp.AUC	=	0.538	±	0.004).

The	 three	 citizen	 science	 models	 differed	 in	 the	 relative	 con-
tribution	of	predictors	(Table	3).	The	TARGET	model	was	the	most	
similar	to	the	research	survey	models,	with	SST	and	DEPTH	having	a	
great	influence.	DISSURF	was	a	major	contributor	to	the	UNIFORM	
model	only.	At	last,	 in	all	three	models,	K490	was	among	the	most	
influential	predictors.

Predicted	 maps	 of	 habitat	 suitability	 (Figure	5)	 were	 very	
similar	 between	 the	 UNIFORM	 and	 POP	 models	 (Figure	5a,c,	

TABLE  3 Mean	contribution	of	environmental	variables	to	habitat	preference	models	for	humpback	whales	in	New	Caledonian	waters.	
Values	are	ranked	and	scaled	to	100	separately	for	each	algorithm	(greatest	influence	in	bold).	Coefficients	of	variation	(%)	of	the	mean	
contribution	calculated	over	50	cross-	validation	runs	are	indicated	by	±.	For	SVMs,	BRTs	and	MAXENT	models,	contributions	for	the	
parameterization	that	led	to	the	best	diff.AUC	(“stable	model”)	and	ext.AUC	(“predictive	model”)	are	reported

a S.AVG S.COV JULIAN/MONTH K490 SST DISSURF DEPTH

Research	survey	model

GLM 5.5	±	17.7% 11.0	±	8.8% 9.9	±	11.1% 19.4 ± 9.7% 19.0 ± 8.8% 21.6 ± 13.5% 13.6	±	13.0%

GAM 2.2	±	27.3% 2.3	±	21.7% 9.8	±	11.2% 10.7	±	23.4% 22.9 ± 8.7% 28.4 ± 10.2% 23.7 ± 9.7%

MAXENT.stable 7.7	±	34.7% 0.4	±	54.6% 0.2	±	127.2% 0.9	±	28.6% 40.8 ± 7.4% 28.9 ± 10.0% 21.2 ± 13.6%

MAXENT.pred 1.2	±	30.0% 1.4	±	60.9% 4.1	±	17.4% 2.4	±	20.5% 23.8 ± 9.6% 20.4 ± 6.6% 46.6 ± 4.4%

SVM.stable 2.5	±	32.4% 0.4	±	38.4 0.3	±	89.5% 0.6	±	36.8% 75.1 ± 1.7% 12.9 ± 6.4% 8.2 ± 22.3%

BRT.stable 6.1	±	8.6% 5.6	±	13.6% 2.4	±	13.4% 20.9 ± 5.5% 27.0 ± 6.8% 2.6	±	12.8% 35.5 ± 4.3%

BRT.pred 6.9	±	6.5% 17.4 ± 5.1% 4.6	±	7.0% 16.5	±	5.5% 23.9 ± 6.5% 5.2	±	6.3% 25.6 ± 4.5%

Citizen	science	models

UNIFORM 0.6	±	66.7% 1.9	±	21.1% 1.3	±	46.2% 13.8 ± 12.3% 9.4	±	17.0% 37.2 ± 7.8% 35.7 ± 12.6%

POP 1.7	±	35.3% 1	±	30.0% 11.1 ± 17.1% 55 ± 5.5% 6.2	±	14.5% 7.7	±	15.6% 17.4 ± 16.1%

TARGET 1.6	±	37.5% 2.1	±	33.3% 4.4	±	38.6% 39.9 ± 7.8% 20.7 ± 16.9% 1.7	±	88.2% 29.5 ± 20.7%

Notes. aAverage	slope	(S.AVG),	Julian	date	(JULIAN)	for	research	survey	models	or	month	of	year	(MONTH)	for	citizen	science	models,	coefficient	of	
variation	of	the	slope	(S.COV),	diffuse	attenuation	as	turbidity	index	(K490),	sea	surface	temperature	(SST),	distance	to	closest	reef	or	land	(DISSURF)	
and	depth	(DEPTH).



Pearson’s	r	=	0.98).	Despite	being	affected	by	environmental	ex-
trapolation	over	part	of	 the	 study	area	 (Figure	5b),	 the	TARGET	
models	 prediction	 maps	 fitted	 more	 closely	 with	 the	 research	
survey	maps	(Figures	4e,	5b,	Pearson’s	coefficient:	r	=	0.74),	with	

offshore	 shallow	waters	 such	 as	 the	 Fairway-	Landsdowne	 bank	
showing	 particularly	 high	 suitability.	 The	 three	 citizen	 science	
models	predicted	all	waters	located	in	reef	or	coastal	habitats	to	
be	suitable.

F IGURE  3 Mean	partial	dependence	plots	obtained	by	five	statistical	algorithms	to	model	humpback	whale	occurrence	from	research	
survey	data	with	respect	to	environmental	variables:	DEPTH:	depth;	DISSURF:	distance	to	closest	reef	or	land;	S.AVG:	mean	slope;	S.COV:	
coefficient	of	variation	of	the	slope;	SST:	sea	surface	temperature	and	K490	=	diffuse	attenuation	at	490	nm	(turbidity).	Solid	lines	represent	
the	mean	marginal	effect	of	each	variable	relative	to	the	probability	of	presence,	over	50	cross-	validation	runs.	Probabilities	on	the	y-	
axis	originally	ranging	from	0	to	1	were	normalized	per	model	to	be	centred	on	zero.	Rug	plots	show	the	distribution	of	values	in	the	full	
presence-	background	research	survey	dataset,	in	percentiles,	and	provide	a	measure	of	confidence	on	the	fitted	responses.	For	SVMs,	BRTs	
and	MAXENT	models,	only	the	plots	obtained	with	the	“predictive”	tuning	(highest	ext.AUC)	are	reported



4  | DISCUSSION

The	multisource	New	Caledonian	humpback	whale	dataset	allowed	
an	in-	depth	methodological	investigation	of	practices	(background	
sampling,	 statistical	 algorithms,	 model	 tuning,	 evaluation	 and	
predictions)	 to	 generate	 informative	 SDMs	 using	 nonsystematic	
and	citizen	science	data	for	cetacean	species.	Derived	results	are	
broadly	applicable	to	other	marine	megafauna	modelling	efforts	as	
observations	collected	during	nonsystematic	surveys	and	through	
citizen	 science	 are	 representative	 of	 worldwide	 research	 efforts	
to	 study	marine	mammals.	 Statistical	 algorithm	 comparisons	 per-
formed	on	the	research	survey	dataset	revealed	differences	in	the	
complexity	of	the	environmental	relationships	modelled,	the	eco-
logical	interpretability	of	outputs	and	model	transferability	across	
large	geographical	scales.	Although	citizen	science	models	did	not	
perform	 as	 well	 as	 the	 research	 survey	 models,	 they	 predicted	

similar	humpback	whale	suitable	habitats	and	benefited	from	spe-
cifically	 tuned	background	 sampling	 approaches	 that	 account	 for	
spatial	bias	of	effort.

In	nonsystematic	closing	mode	surveys,	covariates	affecting	de-
tection	may	not	be	precisely	recorded	(e.g.,	sea	state,	vessel	type/
height,	 number	 of	 observers)	 and	may	 vary	within	 and	 between	
surveys	days.	While	presence-	background	approaches	should	not	
be	considered	a	solution	to	imperfect	detection	(Monk,	2014),	they	
can	be	applied	safely	as	long	as	detection	probability	is	not	directly	
correlated	 to	 the	 habitat	 variables	 of	 interest.	 Such	 correlation	
may	exist	 if	 a	 cetacean	 species	 spends	more	 time	at	 the	 surface	
when	 resting/feeding	 in	 specific	 habitats	 for	 instance.	A	general	
balance	between	model	complexity	and	generality	was	observed,	
in	concordance	with	the	conceptual	framework	detailed	by	Guisan	
and	Zimmermann	(2000).	Models	that	more	closely	fit	the	relation-
ships	in	the	training	data	were	less	efficient	at	model	extrapolation	

F IGURE  4 Maps	of	mean	predicted	
humpback	whale	habitat	suitability	from	
research	survey	models.	Habitat	suitability	
was	averaged	over	50	cross-	validation	
runs	for	each	statistical	algorithm,	and	
a	coloured	log-	scale	was	applied	to	
values	ranging	from	0	to	1.	Colours	
represent	fixed	percentages	of	probability	
distributions	of	the	suitability	predicted	
values	(e.g.,	the	highest	10%	corresponds	
to	the	decile	with	highest	values	over	
each	map).	Areas	of	extrapolation	where	
at	least	one	environmental	variable	
expanded	outside	the	range	observed	in	
the	training	dataset	are	dashed.	Filtered	
positions	from	satellite	tags	deployed	in	
the	region	are	shown	with	black	squares	
in	panel	(e).	For	SVMs,	BRTs	and	MAXENT	
models,	only	the	plots	obtained	with	the	
“predictive”	tuning	(highest	ext.AUC)	are	
reported



to	new	data,	a	relationship	found	both	when	comparing	different	
statistical	 algorithms	 and	 different	 tunings	 of	 a	 given	 statistical	
algorithm.	 Whatever	 the	 parameterization,	 BRTs	 systematically	
suffered	 from	 overfitting	 and	 as	 a	 result	 displayed	 noisy	 partial	

dependence	 plots	 and	 predicted	maps.	 The	 complexity	 of	 SVMs	
and	MAXENT	models	strongly	depended	on	tuning;	 for	 instance,	
radial	kernel	SVMs	were	overfitted,	whereas	the	linear	kernel	ver-
sion	ranked	the	lowest	in	explanatory	power,	along	with	GLMs,	and	
MAXENT	models	applied	with	 linear	 features.	The	performances	
of	MAXENT	models	applied	with	hinge	features	and	of	GAMs	were	
intermediate	 in	 terms	of	predictive	performance	and	 stability,	 as	
measured	by	ext.AUC	and	diff.AUC.	While	GLMs	and	GAMs	were	
not	tested	with	different	parameterizations	in	this	study,	it	must	be	
noted	that	tuning	may	also	affect	regression-	based	methods	(e.g.,	
through	polynomial	degree	or	smoothing	basis	size).

Considering	 that	 many	 marine	 SDMs	 are	 applied	 in	 a	 spatial	
conservation	planning	context	(Cleguer,	Grech,	Garrigue,	&	Marsh,	
2015;	 Gomez	 et	al.,	 2017;	 La	 Manna,	 Ronchetti,	 &	 Sarà,	 2016;	
Pérez-	Jorge	 et	al.,	 2015;	 Robinson	 et	al.,	 2011),	 it	 appears	 that	
statistical	 algorithms	 that	 intrinsically	 limit	 overfitting	 should	 be	
prioritized.	 Indeed,	 managers	 are	 confronted	 with	 extrapolation	
needs,	and	SDMs	are	often	implemented	to	predict	the	presence	of	
a	species	in	a	place/time	in	which	data	are	not	available	(Mannocci	
et	al.,	 2015;	 Redfern	 et	al.,	 2017).	 For	 instance,	with	 proper	 tun-
ing,	all	algorithms	predicted	the	Fairway-	Landsdowne	banks	to	be	
a	favourable	area	for	humpback	whales.	The	discovery	of	this	new	
potential	area	of	humpback	whale	use	is	supported	by	the	satellite	
tracking	of	two	humpback	whales	 (Garrigue	et	al.,	2015),	and	will	
help	 target	 future	 research	 efforts	 and	 inform	 conservation	 pol-
icy.	Furthermore,	given	their	wide	ranges	and	mobility,	migratory	
cetacean	species	are	 likely	 to	have	broad	 fundamental	ecological	
niches	 (Guisan	&	Zimmermann,	2000).	Yet,	broad	niches	are	gen-
erally	more	difficult	 to	model	 than	narrow	ones	 (Morán-	Ordóñez	
et	al.,	2017),	specifically	with	MAXENT	(Qiao	et	al.,	2015).	 In	 this	
context,	 overfitting	 the	 species–environment	 relationships	 in	 a	
given	 study	 area	 is	 likely	 to	 strongly	 affect	 the	 transferability	 of	
the	models	(Torres	et	al.,	2015)	and	underestimate	the	breadth	of	
the	species’	niches.	On	the	contrary,	approaches	such	as	GAMs	and	
MAXENT	with	hinge	features	were	capable	of	modelling	humpback	
whale	habitats	with	a	relatively	high	level	of	complexity,	while	con-
serving	 a	 good	 transferability	 to	novel	 geographical	 areas.	While	
using	 the	 restricted	maximum-	likelihood	method	successfully	pe-
nalized	overfitting	in	this	case	study,	the	complexity	of	the	GAM-	
fitted	responses	may	be	further	controlled	by	tuning	the	basis	size	
for	smoothing	(e.g.,	Mannocci,	Roberts	et	al.,	2017),	hence	also	pro-
viding	the	opportunity	to	include	explicit	knowledge	regarding	the	
species’	response	to	environmental	gradients	(Austin,	2007).

At	last,	our	statistical	comparison	underlines	that	there	is	no	such	
thing	as	a	universally	“best”	SDM	approach	(Qiao	et	al.,	2015).	The	
study	goal	should	be	clearly	identified	upfront,	whether	it	is	to	pro-
duce	accurate	and/or	precise	spatial	predictions	or	description	of	local	
species–environment	relationships.	Then,	model	selection	depends	
on	two	main	issues:	the	use	of	evaluation	metrics	and	critical	ecolog-
ical	thinking.	This	study	confirms	that	model	evaluation	should	rely	
on	metrics	that	promote	the	best	predictive	performance	while	min-
imizing	overfitting.	AUC	is	advantageous	because	of	 its	threshold-	
independent	nature,	but	its	interpretation	in	a	presence-	background	

F IGURE  5 Maps	of	mean	predicted	humpback	whale	habitat	
suitability	from	citizen	science	models.	Habitat	suitability	was	
averaged	over	50	cross-	validation	runs	for	each	statistical	
algorithm,	and	a	coloured	log-	scale	was	applied	to	values	ranging	
from	0	to	1.	Colours	represent	fixed	percentages	of	probability	
distributions	of	the	suitability	values	(e.g.,	the	highest	5%	
corresponds	to	the	half-	of-	decile	with	highest	values	over	each	
map).	Areas	of	extrapolation	where	at	least	one	environmental	
variable	expanded	outside	the	range	observed	in	the	training	
dataset	are	dashed



context	 is	 not	 straightforward	 (Jiménez-	Valverde,	 2012;	 Phillips	
et	al.,	2006).	Diff.AUC	cannot	be	interpreted	as	easily	as	in	Warren	
and	Seifert	(2010)	when	prevalence	and	presence-	background	over-
lap	vary	between	the	training	and	the	evaluation	dataset.	However,	
diff.AUC	may	be	used	to	relatively	compare	transferability	between	
models	as	long	as	it	is	averaged	over	consistent	cross-	validation	runs.	
At	last,	the	combination	of	diff.AUC	with	TSS	and	ext.AUC	appeared	
like	a	good	trade-	off	to	reveal	both	stability	and	predictive	perfor-
mance	of	 the	models.	Moreover,	using	a	 truly	 independent	valida-
tion	dataset	can	be	challenging	(Roberts	et	al.,	2017)	but	ensures	the	
robust	estimation	of	predictive	error.	Tracking	data	may	constitute	
such	 independent	 data	 to	 evaluate	 or	 supplement	 habitat	models	
(e.g.,	Louzao	et	al.,	2009;	Pinto	et	al.,	2016)	although	it	is	inherently	
limited	 to	measuring	model	 sensitivity	 (i.e.,	 capacity	 of	 the	model	
to	predict	tracking	locations	as	presences),	unless	other	metrics	are	
derived	from	tracking	locations	(Pinto	et	al.,	2016).	The	tracking	data	
have	to	be	contemporaneous	with	the	model	calibration	dataset	and	
unbiased	by	sex,	social	class	or	tagging	location.	In	this	study,	most	
tags	were	deployed	in	the	South	Lagoon	(n	=	34,	76%);	hence,	30%	
of	the	track	positions	were	 located	 in	this	area.	As	a	result,	model	
predictive	performance	was	relatively	high	for	any	model	that	pre-
dicted	high	suitability	in	the	South	Lagoon.	At	last,	ARGOS	location	
error	 tends	to	be	relatively	high	when	tracking	 large	whales	 (most	
locations	 are	 of	 quality	 “B”	 with	 precision	 >50	km;	 Nicholls	 et	al.,	
2007).	Hence,	prior	to	using	these	locations	for	validation	of	a	habi-
tat	model,	variables	could	be	averaged	in	the	vicinity	of	the	location,	
or	imprecise	positions	could	be	filtered	out	(as	was	the	case	in	this	
study).	At	 last,	 the	visual	 inspection	of	predicted	maps	overlapped	
with	the	tracks	actually	proved	more	useful	than	the	quantification	
of	predictions	to	this	dataset.

Also	model	 evaluation	must	 include	 the	 close	 examination	 of	
the	variables’	relative	contributions,	partial	dependence	plots	and	
spatially	 projected	 predictions.	 Indeed,	 models	 with	 similar	 per-
formances	 have	 been	 found	 to	 predict	 distributions	 differently	
because	 of	 different	 functional	 relationships	 (Elith	 &	 Graham,	
2009)	 and/or	 because	 the	 relative	 contribution	 of	 variables	 dif-
fered	 (Zanardo	 et	al.,	 2017).	 Here,	 SVMs	 seem	 to	 have	 deserved	
their	“black-	box”	reputation	(Goldstein	et	al.,	2015)	as	their	ecolog-
ical	 interpretation	was	arduous.	For	instance,	contributions	of	the	
predictor	variables	 could	only	be	assessed	when	using	 linear	ker-
nels,	whereas	 the	 radial	kernels	 that	provided	the	best	predictive	
performance	 could	 not	 be	 interpreted	 as	 easily.	On	 the	 contrary,	
although	showing	signs	of	overfitting,	BRTs	are	more	interpretable	
machine-	learning	approaches	that	were	the	only	models	to	identify	
DEPTH	 as	 the	 dominant	 variable	 over	DISSURF.	 In	 line	with	 this	
trend,	although	they	relied	more	on	DISSURF	than	DEPTH,	GAMs	
captured	a	multimodal	 relationship	 relative	 to	DISSURF,	 revealing	
preferences	for	coastal	as	well	as	remote	waters	more	than	100	km	
from	shore.	While	this	relationship	should	be	regarded	with	caution	
considering	 the	 spatially	 skewed	 survey	 effort	 (favouring	 specific	
study	areas,	such	as	Antigonia	or	the	South	Lagoon),	it	also	shows	
that	 complex	 environmental	 relationships	might	 be	 revealed	with	
increased	 effort	 in	 offshore	 waters.	 The	 preference	 for	 coastal	

waters	 has	 been	 extensively	 documented	 in	 humpback	 whale	
breeding	grounds	 (Bortolotto	et	al.,	2017;	Cartwright	et	al.,	2012;	
Guidino,	Llapapasca,	Silva,	Alcorta,	&	Pacheco,	2014;	Smith	et	al.,	
2012;	Trudelle	et	al.,	2016)	but	only	recently	has	satellite	 teleme-
try	 revealed	 the	 use	 of	waters	 far	 from	 any	 coast	 or	 reef	 (Dulau	
et	al.,	 2017;	 Garrigue	 et	al.,	 2015;	 Trudelle	 et	al.,	 2016).	 Through	
robust	and	 independent	niche	modelling,	 this	study	confirms	that	
humpback	 whales	 are	 not	 constrained	 by	 proximity	 to	 sheltered	
shorelines,	but	rather	by	depth,	as	whales	appear	to	be	preferen-
tially	found	in	shallow	waters,	both	in	coastal	and	offshore	areas—a	
pattern	clearly	captured	by	BRTs	and	GAMs.

Citizen	science	models	aligned	with	the	main	ecological	relation-
ships	highlighted	 in	 the	 research	 survey	models.	K490	was	partic-
ularly	 influential	 compared	 to	 the	 research	 survey	 models,	 which	
could	be	explained	by	the	high	proportion	of	whales	observed	by	the	
general	public	in	the	lagoons	surrounding	the	mainland	that	are	char-
acterized	by	relatively	high	turbidity	compared	to	the	open	ocean.	
When	sampling	bias	was	corrected	in	the	TARGET	method,	ecologi-
cal	relationships	converged	with	the	research	survey	model	and	SST	
was	also	found	to	be	particularly	influent.	The	preferred	SST	range	
in	research	survey	models	(22°C–23°C)	was	similar	to	ranges	found	
in	neighbouring	breeding	grounds	(GBR,	Smith	et	al.,	2012)	but	rela-
tively	low	compared	to	worldwide	breeding	temperatures	reported	
by	Rasmussen	et	al.	 (2007).	However,	as	 recurrently	highlighted	 in	
cetacean	SDMs	(Becker	et	al.,	2017;	Redfern	et	al.,	2006)	it	is	hard	to	
differentiate	the	direct	effect	of	a	variable	such	as	SST,	from	indirect	
effects	due	to	a	correlation	with	other	unmeasured	variables,	includ-
ing	competition,	prey	distribution	and	social	interaction.

At	 last,	 citizen	 science	 models	 of	 humpback	 whale	 habitat	
preferences	 showed	 promising	 predictive	 capacities	 compared	
to	the	research	survey	models,	yet	were	contingent	upon	back-
ground	 sampling.	 Given	 the	 wider	 distribution	 of	 background	
points	 compared	 to	 the	 research	 survey	 dataset,	 int.AUC	 and	
ext.AUC	metrics	appeared	to	be	inflated	(Barve	et	al.,	2011),	and	
the	use	of	comp.AUC	was	crucial	 to	a	 robust	model	evaluation.	
The	TARGET	model,	which	accounted	for	spatial	bias,	performed	
better	than	the	simple	UNIFORM	model	to	predict	new	indepen-
dent	data	(comp.AUC)	and	showed	the	best	ecological	match	to	
research	 survey	 predictions.	 However,	 it	 is	 also	 detrimentally	
restricted	 by	 environmental	 extrapolation	 and	 the	 background	
sampling	 buffer	 size	 is	 likely	 to	 have	 an	 impact	 on	 predictive	
performance	 (Barve	 et	al.,	 2011;	 Fourcade,	 Engler,	 Rödder,	 &	
Secondi,	 2014).	 With	 smaller	 sample	 sizes,	 the	 predictive	 ca-
pacity	of	the	TARGET	model	to	large	areas	is	likely	to	decrease.	
The	 POP	model	 appears	 like	 an	 interesting	 alternative	 in	 such	
cases,	 as	 it	 does	 not	 restrict	 the	 environmental	 space	 in	which	
background	is	sampled,	but	still	accounts	for	sampling	bias.	In	a	
conceptual	manner,	the	POP	model	reflects	the	assumption	that	
human	activity	concentrates	in	coastal	areas	in	the	vicinity	of	cit-
ies	(Halpern	et	al.,	2015).	This	assumption	is	similar	in	essence	to	
using	distance	 to	 roads	 (Phillips	 et	al.,	 2009)	or	 distance	 to	 the	
coastline	(Fithian,	Elith,	Hastie,	&	Keith,	2015)	as	a	proxy	for	land-	
based	 observation	 density.	 Indeed,	 the	 issue	 of	 accessibility	 of	



study	sites	to	volunteers	has	been	addressed	in	land-	based	data-
sets	 (e.g.,	 Tulloch,	Mustin,	 Possingham,	 Szabo,	&	Wilson,	 2013)	
but	less	so	in	marine	studies	(Robinson	et	al.,	2011).	A	variety	of	
other	methods	have	been	developed	to	account	 for	spatial	bias	
in	 presence-	only	 SDMs.	 For	 instance,	 spatial	 filtering	 has	 been	
shown	to	improve	predictive	performance	in	several	 land-	based	
study	cases	(resampling	presence	points	Boria,	Olson,	Goodman,	
&	 Anderson,	 2014;	 Fourcade	 et	al.,	 2014;	 Kramer-	Schadt	 et	al.,	
2013)	 but	 was	 not	 tested	 here	 because	 it	 was	 not	 considered	
adapted	to	the	generally	small	sample	sizes	recorded	in	cetacean	
citizen	 science	 programmes.	We	 found	 that	 using	 the	 TARGET	
(based	on	Phillips	et	al.,	2009)	and	POP	sampling	methods	pro-
vided	simple	and	adaptable	solutions	to	account	for	sampling	bias	
in	a	cetacean	citizen	science	context.

5  | CONCLUSION

This	 study	 provides	 an	 in-	depth	 investigation	 of	 statistical	 ap-
proaches	 to	 highlight	 the	 technical	 challenges	 associated	 with	
cetacean	 habitat	 modelling.	 All	 algorithms	 suggested	 that	 the	
endangered	New	Caledonian	population	of	humpback	whales	dis-
plays	a	preference	for	relatively	cool	and	shallow	waters	regard-
less	of	distance	to	reefs	or	coasts.	Algorithms	displayed	a	range	
of	predictive	and	descriptive	capacity	that	depended	on	param-
eter	tuning.	BRTs	generally	characterized	ecologically	meaningful	
species–environment	relationships,	but	predictions	were	fraught	
with	overfitting.	SVMs	fitted	the	data	closely	when	using	radial	
kernels,	 but	 lacked	 interpretability	 and	 transferability.	 GAMs	
stood	out	as	an	interesting	trade-	off	with	ecologically	interpret-
able	 results	 that	maintained	complexity	at	a	 reasonable	 level	 to	
allow	good	predictive	performance	over	unsampled	areas,	which	
is	a	crucial	characteristic	in	a	conservation	planning	perspective.	
Considering	the	wide	breadth	of	migratory	cetacean	fundamental	
niches,	 we	 conclude	 that	 cetacean	 SDMs	 produced	 for	 conser-
vation	 purposes	 should	 specifically	 prevent	 overfitting	 in	 order	
to	 conserve	 some	 transferability	 to	 novel	 geographical	 areas.	
Overfitting	 may	 be	 prevented	 using	 stratified	 cross-	validation,	
evaluation	with	an	independent	dataset,	and	an	appropriate	sta-
tistical	 algorithm	 and	 parameter	 tuning.	 At	 last,	 this	 study	 also	
emphasized	the	role	of	citizen	science	to	study	wide-	ranging	spe-
cies	 such	 as	 cetaceans	over	 large	 spatial	 scales.	Habitat	 prefer-
ence	 models	 based	 on	 citizen	 science	 observations	 converged	
with	models	based	on	research	survey	when	spatial	sampling	bias	
was	accounted	for	in	the	models.	The	development	of	citizen	sci-
ence	programmes	in	marine	environments	and	their	application	to	
species	distribution	models	therefore	appear	like	a	low-	cost	and	
socially	valuable	research	tool	and	contributor	to	marine	policy.
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