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We introduce and study in two dimensions a new class of dry, aligning active matter that exhibits a direct
transition to orientational order, without the phase-separation phenomenology usually observed in this
context. Characterized by self-propelled particles with velocity reversals and a ferromagnetic alignment of
polarities, systems in this class display quasi-long-range polar order with continuously varying scaling
exponents, yet a numerical study of the transition leads to conclude that it does not belong to the
Berezinskii-Kosterlitz-Thouless universality class but is best described as a standard critical point with an
algebraic divergence of correlations. We rationalize these findings by showing that the interplay between
order and density changes the role of defects.

DOI: 10.1103/PhysRevLett.120.258002

Dry active matter refers to systems of mobile agents
for which the surrounding fluid can be neglected [1,2].
A wealth of spectacular phenomena has been uncovered,
particularly in situations where some local alignment of
velocities arises, such as animal groups [3,4], bacteria and
cells crawling on a substrate [5–7], motility assays [8], and
vertically shaken granular particles [9–12].
We now have a satisfactory theoretical understanding of

dry, aligning active matter in the dilute limit, thanks to a
series of works on particle, hydrodynamic, and kinetic
levels [13–42]. In these systems, the dominating interac-
tion, local alignment, is in competition with noise, and it
can lead to orientationally ordered phases that are endowed
with generic long-range correlations and anomalous fluc-
tuations [14–16,20,22,25,26,36]. The emergence of order is
not a direct, continuous phase transition but occurs via
phase separation between a disordered gas and an ordered
liquid separated by a coexistence phase [34,38,40].
Genuine nontrivial critical behavior has only been found
when long-range interactions are present, brought by
nonmetric, “topological” neighbors [43,44] or by imposing
some incompressibility condition [45,46].

Vicsek-style models, which consist of constant-speed
point particles that locally align their velocities in com-
petition with some noise, have been instrumental in this
success. Their simplicity allows for both in-depth numeri-
cal study and the controlled derivation of hydrodynamic
theories [19,21,23,27–31,37]. Each of the three main
classes of dry, aligning active matter studied thus far
possesses a Vicsek-style representative. Polar particles with
ferromagnetic alignment—the case of the original Vicsek
model [13]—give rise to true long-range polar order
[14,15,32] and a coexistence phase made of quantized
traveling bands [17,22,35,39,40,47]. Nematic alignment
leads to global nematic order and a chaotic coexistence
phase mediated by unstable nematic bands [20,33,36,41].
This case is customarily divided into two classes [1,2]
since, for polar particles, nematic order seems to be long-
range [7,25,42], whereas for a finite velocity-reversal rate it
is only quasi-long-range [20,36].
In this Letter we show that self-propelled particles with

velocity reversals and local ferromagnetic alignment
exhibit novel collective properties and, in particular, a
continuous transition to order. It is rather obvious that this
case cannot lead to even local orientational order if one
considers only the restricted Vicsek setting where a
particle’s polarity is simply given by its velocity [48].
Here, we relax this “Vicsek constraint” by conferring
particles a polarity that they align with that of their
neighbors while they move either along or against it
[49]. Using kinetic and hydrodynamic-level descriptions
derived from the microscopic model, we show that the
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analytic structure of this problem is qualitatively different
from that of the three other classes. In particular, it is
deprived from the generic linear instability at the root of the
liquid-gas phase separation scenario. Particle-level simu-
lations confirm this: the emerging polar order is only quasi-
long-range with continuously varying scaling exponents,
while showing giant number fluctuations. Thus, this case
possesses many of the properties of the (equilibrium) XY
model. Yet, surprisingly, a numerical study of the continu-
ous ordering transition leads us to conclude that it does not
belong to the Berezinskii-Kosterlitz-Thouless universality
class [50–52] characteristic of the XY model, but that it is
best described as a standard critical point with an algebraic
divergence of correlations. We rationalize these findings by
showing that the coupling between order and density
deprives defects from their usual role.
We first define our “Vicsek-shake” model. We restrict

ourselves to two space dimensions and the square domains
of linear size L with periodic boundary conditions. The
velocity vi of particle i is given by vi ¼ �v0pi, where the
unit vector pi is the particle’s intrinsic polarity, and the sign
is changed with probability α at each unit time step.
Positions and polarities are governed by

riðtþ 1Þ ¼ riðtÞ þ viðtþ 1Þ; ð1Þ

piðtþ 1Þ ¼ ðRη∘ΠÞhpjðtÞij∈∂i ; ð2Þ

where Π normalizes vectors to unit length, Rη rotates
vectors by a random angle distributed uniformly in a range
ð−πη; πη�, and the average is over the particles j present in
∂i, the disk of radius r0 ¼ 1 centered on ri. We checked
that the results presented in the following are not sensitive
to the value of α, provided that 0 < α < 1. Therefore, in the
following, we use only the numerically convenient value
α ¼ 1

2
. With α fixed, the main parameters remain those of

classic Vicsek-style models, the mean density of particles
ρ0, and the noise amplitude η.
We numerically determined the phase diagram of our

model in the ðρ0; ηÞ plane [Fig. 1(a)]. We find a single
transition line from the disordered gas observed at strong
noise and/or low density to a phase with global ordering of
polarities, characterized, at finite system size, by a finite
average value of the magnetization MðtÞ ¼ jhpiðtÞiij.
Contrary to the other known classes mentioned in the
introduction, we do not see any sign of phase separation.
The transition seems continuous, with only quasi-long-
range order: the magnetization decreases algebraically with
system size, hMit ∼ L−κðηÞ, with κ increasing continuously
with η [Fig. 1(c)]. At strong-enough noise, a crossover to a
fully disordered phase characterized by hMit ∼ 1=L is
observed at large-enough sizes [Fig. 1(d)]. Like in all
known orientationally ordered dry active matter phases,
giant number fluctuations are present [Fig. 1(b)]: the
variance hΔN2i of the number of particles in a subsystem

containing, on average, hNi particles scales faster than hNi.
We find that hΔN2i ∼ hNiζ, with ζ ¼ 1.73ð3Þ, a value
similar to those reported for the other classes [22,25,36].
We now derive hydrodynamic equations for the Vicsek-

shake class from our microscopic model. Encouraged
by its overall success in the other cases, we adopt the
Boltzmann-Ginzburg-Landau approach [19,23,37]. We
write two coupled Boltzmann equations for the single-body
distributions f�ðx; θ; tÞ of þ and − particles, i.e., those
which, respectively, currently move along or against their
polarity:

∂tf��eðθÞ ·∇f�¼aðf∓−f�Þþ Idif ½f��þIcol½f�;f∓�;
ð3Þ

where eðθÞ in thematerial derivatives of f� is the unit vector
along θ [53], a is the exchange rate between the two
subpopulations (akin to the microscopic reversal probability
α), and the self-diffusion and collisional integrals read

FIG. 1. (a) Phase diagram in the (ρ0, η) plane. The asymptotic
order-disorder transition line is shown in black. The red curve
reports the location of the susceptibility peak ηχ measured for
L ¼ 256 (the error bars are smaller than the symbols). (Inset) The
same data in logarithmic scales, with the dashed line marking
slope 0.66. (b) Variance hΔN2i over mean hNi of the number of
particles present in subsystems in the quasiordered (the circles,
η ¼ 0.2) and disordered (the squares, η ¼ 0.5) phases for various
system sizes L (ρ0 ¼ 2). The dashed line corresponds to
ζ ¼ 1.73. (c),(d) Averaged magnetization as a function of system
size for several noise values in the quasiordered and disordered
phases (ρ0 ¼ 1). In the quasiordered state, hMi decays algebrai-
cally, with an η-dependent exponent κðηÞ. The curves in (c)
correspond to, from top to bottom, η ¼ 0.05, 0.1, 0.15, 0.2, 0.24,
0.25, 0.255, and 0.26. In (c) [(d)] the dashed black line marks the
slope − 1

8
(−1).
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Idif ½f��¼−f�þ
Z

2π

0

dθ0
Z

∞

−∞
dσf�ðθ0ÞPηðσÞδ2πðθ−θ0−σÞ;

ð4Þ

Icol½fþ;f−�¼
Z

2π

0

dθ1

Z
2π

0

dθ2

Z
∞

−∞
dσPηðσÞfþðθ1Þ

× ½fþðθ2ÞKþðθ1−θ2Þþf−ðθ2ÞK−ðθ1−θ2Þ�
×fδ2π½θ−Ψðθ1;θ2Þ−σ�−δ2πðθ−θ1Þg; ð5Þ

wherePηðσÞ is the noise distribution of variance η2, δ2π is the
Dirac comb distribution of period 2π, and Ψðθ1; θ2Þ ¼
arg½eðθ1Þ þ eðθ2Þ� is the ferromagnetic alignment rule of
polarities. The kernels K�ðθ1 − θ2Þ ¼ jeðθ1Þ ∓ eðθ2Þj are
different and are used depending on whether or not the two
colliding particles belong to the same population.
Hydrodynamic equations are derived from Eq. (3) by

expanding the distributions in angular Fourier modes:
f� ¼ P

f�k expð−ikθÞ=ð2πÞ, and truncating and closing
the resulting hierarchies in a controlled way. In the
classic Vicsek model, the remaining hydrodynamic (or
slow) fields correspond to the first two angular modes,
i.e., density and polarity (or velocity). Here, these fields
are the zeroth and first modes of the sum f ¼ fþ þ f−,
i.e., the density and polarity of the total population,
while the velocity field, now distinct from polarity, is the
first mode of the difference g ¼ fþ − f−. Rewriting the
Boltzmann equations in terms of the f and g modes, we
obtain

∂tfk þ
1

2
ð∇�gkþ1 þ∇gk−1Þ

¼ ðPk − 1Þfk þ
Xþ∞

q¼−∞
Ak;qfqfk−q þ Bk;qgqgk−q; ð6Þ

∂tgk þ
1

2
ð∇�fkþ1 þ∇fk−1Þ

¼ ðPk − 1 − 2aÞgk þ
Xþ∞

q¼−∞
Ck;qfqgk−q; ð7Þ

where the complex gradient ∇ ¼ ∂x þ i∂y, Pk ¼R
dσPηðσÞ expðikσÞ, and all other coefficients are listed

in the Supplemental Material [54]. Setting f1 ∼ ε near the
onset of polar order, Eqs. (6) and (7) impose the
following scaling ansatz [37]:

δρ ¼ ρ − ρ0 ∼ g0 ∼ ε; jfkj ∼ jgkj ∼ εk ∀ k > 0; ð8Þ

∂t ∼∇ ∼ ε: ð9Þ

At the first nontrivial order, ε3, we get equations for ρ,
g0, f1, g1, f2, and g2. The last two fields can then be
enslaved to the four remaining ones, yielding

∂tρ ¼ −Reð∇�g1Þ; ð10Þ

∂tg0 ¼ −2ag0 − Reð∇�f1Þ; ð11Þ

∂tf1 ¼ ðμ1½ρ� − ξjf1j2 − δjg1j2Þf1 þ ΓΔf1

þ ðγ½g0� − βf�1g1Þg1 −
1

2
∇g0 þ η1f�1∇g1

þ η2g�1∇f1 þ η3∇�ðf1g1Þ; ð12Þ

∂tg1 ¼ ðν1½ρ� − τjg1j2 − ωjf1j2Þg1 þ λΔg1

þ ðκ½g0� − χg�1f1Þf1 −
1

2
∇ρþ σ1g�1∇g1

þ σ2f�1∇f1 þ σ3∇�f21 þ σ4∇�g21; ð13Þ

whereΔ ¼ ∇∇� and all coefficients, expressed as functions
of the microscopic parameters ρ0, η, and a, are listed in the
SupplementalMaterial [54],while their dependence on local
density and g0 has been made explicit. Equations (10)–(13)
can be seen as two coupled Toner-Tu equations [14,55].
Note that density is advected not by the order field f1 but by
g1, in strong contrast to the classic polar case. Since ν1½ρ�<0
and μ1½ρ� can change sign, the transition, as expected, is
given by μ1½ρ0� ¼ 0, defining a line in the ðρ0; ηÞ plane that
goes to the origin as

ffiffiffiffiffi
ρ0

p
. Furthermore, since μ1½ρ� does not

depend on a, this line is insensitive to the reversal rate, in
agreement with the microscopic model. When μ1½ρ0� < 0
the homogeneous disordered solution ρ ¼ ρ0, f1 ¼ g0 ¼
g1 ¼ 0 is linearly stable, and it becomes unstable when
μ1½ρ0� > 0. It is then replaced by the homogeneous ordered
solution ρ ¼ ρ0, g0 ¼ g1 ¼ 0, f1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ1½ρ0�=ξ

p
. We studied

its linear stability seminumerically (see the Supplemental
Material [54] for details) and analytically in the long
wavelength limit (not shown). Apart from a pocket of weak,
spurious instability at smalla and low noises, it is essentially
stable as soon as μ1½ρ0� > 0 [56].
The analysis above confirms, at the mean-field level, the

absence of the generic instability leading to the phase
separation scenario in other classes of dry, aligning active
matter. Here, we have a single transition line separating
polar order from the disordered phase. Order (field f1) and
density are advected by the auxiliary field g1, and thus the
mechanism proven by Toner and Tu to be responsible for
the possibility of true long-range order is absent [14,15].
With fluctuations, polar order is only quasi-long-range, as
in equilibrium. Our problem thus possesses many of the
hallmarks of the XY model. We now investigate whether
this extends to the nature of the transition, i.e., whether it is
in the well-known Berezinskii-Kosterlitz-Thouless (BKT)
universality class. The BKT transition is characterized
by an essential divergence of the correlation length ξ
when approaching the critical point ηc from the disorder
side, together with the scaling of the susceptibility χ
with ξ [51,52,57],
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log ξ ∼ ðη − ηcÞ−ν;
χ ∼ ξγ̃; with χ ¼ L2ðhM2i − hMi2Þ; ð14Þ

with ν ¼ 1
2
and γ̃ ¼ γ=ν ¼ 7

4
. At finite size L, χ exhibits a

maximum χmaxðLÞ located at ηχðLÞ. Increasing L, χmax

diverges, and ηχ converges to ηc like

χmaxðLÞ ∼ Lγ̃; ηχðLÞ − ηc ∼ ½logðLÞ − a�−1=ν: ð15Þ

We have measured the dependence of hMi and χ on η for
various system sizes, all at various global density values,
but focusing most of our numerical effort on ρ0 ¼ 1. As
shown in Fig. 2(a), the susceptibility peak χmax does
diverge algebraically with an exponent γ̃ ¼ 1.755ð6Þ, in
full agreement with the BKT-Ising value of 7

4
. The peak

location ηχ is reasonably well fitted by Eq. (15) with
ν ¼ 1

2
, yielding an estimate of the asymptotic threshold

ηc ¼ 0.247ð2Þ [Fig. 2(b)].
We defined the correlation length ξ as the crossover scale

marking the beginning of the 1=L decay in hMiðLÞ curves
at a fixed η (see the Supplemental Material [54] for details).
The divergence of ξ with decreasing values of η is well
fitted by Eq. (14) with ν ¼ 1

2
[Fig. 2(c)]. This fit yields an

estimate ηc ¼ 0.244ð2Þ that is (barely) compatible with

that obtained from the susceptibility. However, for
0.244 < η < 0.247, hMi decreases with an exponent
κðηÞ ≃ 0.100ð5Þ that is incompatible with the BKT value
1
8
[see Fig. 1(c)]. Repeating the procedure for ρ0 ¼ 1

2
and 2,

we reach the same conclusion and find different values of
κðηcÞ, respectively, 0.089(6) and 0.117(2).
Allowing now ν to vary in a range [0.1, 2], we find fits of

the variations of ηχ and ξ as convincing as for the BKT
value ν ¼ 1

2
. Interestingly, the two independent estimates of

ηc then become closer to each other as ν → 0 [Fig. 2(d)].
This suggests an algebraic divergence for ξ at threshold.
We therefore redefine the ν exponent as that of a standard
second-order phase transition:

ξ ∼ ðη − ηcÞ−ν; ηχðLÞ − ηc ∼ L−1=ν: ð16Þ

Fitting our data accordingly, we obtain better fits for both ξ
and ηχ and, importantly, fully compatible threshold values
at which, moreover, κðηcÞ ≃ 1

8
. Imposing a common value

for the asymptotic threshold, both data sets give the same
estimate of ν, and we finally conclude that ηc ¼ 0.257ð1Þ
with ν ¼ 2.4ð1Þ. From these values, we compute β=ν using
a collapse of the magnetization curves (shown in the
Supplemental Material [54]) and find a value fully com-
patible with β=ν ¼ 1

8
, which satisfies the hyperscaling

relation 2β=νþ γ=ν ¼ d, with d ¼ 2. Using data obtained
at various global densities, we find the same estimates of
γ=ν and β=ν, although our estimate of ν shows some
variation due to its sensitivity to the estimated value of ηc.
The asymptotic threshold values thus obtained behave as
ηc ∼ ρh0 , with h ∼ 0.66, a clear departure from the mean-
field value 1

2
[Fig. 1(a)].

Our numerical analysis leads us to conclude that the
transition to polar order exhibited by our system is not of the
BKT type. In the XY model, this transition is closely related
to the (effective) Coulomb interaction between topological
singularities that unbind and proliferate above the critical
temperature [51,52]. Detecting these defects in simulations
of our model is made very difficult, if not impossible, by the
presence of strong density fluctuations. Indeed, the very
existence of topologically constrained defects requires that
order can be defined everywhere. Here, the local order is
hard to measure in sparse regions, and even impossible to
define if the local density is below the ordering threshold
ρc0ðηÞ, the transitional density found by varying ρ0 while
keeping η fixed. One can nevertheless study the fate of
defects from carefully prepared initial configurations con-
taining a �1 pair. Running the model deep in the ordered
phase, we observe that the positive defect expels particles
from its core and is quickly transformed into a sparse, almost
void region whose diameter grows like

ffiffi
t

p
[Fig. 3(c)]. After

some time, this region has become sufficiently large so that it
reaches the negative defect and the system eventually repairs
itself [see Fig. 3(a) and the movie in the Supplemental

FIG. 2. (a) Susceptibility peak maximum χmax vs system size L.
The dashed line has the slope 1.75. (Inset) The same data scaled
with L−γ̃ , with γ̃ ¼ 1.75. Here and in (b) and (c), the vertical
dashed line delimits system sizes below which the scaling regime
is not reached [these points are not used for the fits in (b), (c), and
(d)]. (b) Position of χmax vs L−1. The different lines are fits using
Eq. (15) (BKT-like scaling) for several values of ν and Eq. (16)
(algebraic scaling). (c) The same as (b) but for divergence of the
correlation length with noise. (d) Asymptotic threshold ηc
obtained from fits of ξ and ηχ with BKT-like scaling (14) and
(15) varying the exponent ν. The dashed lines represent the
confidence intervals on ηc given by the fits.
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Material [54]]. This mean-field behavior is also observed in
simulations of the (deterministic) hydrodynamic equations
[see Fig. 3(b) and the movie in the Supplemental Material
[54]]. It is intrinsically related to the coupling between
density and order and indicates that the very idea of
topologically bound point defects is not relevant in our
system. Closer to the transition, we, of course, expect
fluctuations to play a major role, but this conclusion should
still hold. This is the topic of ongoing work.
To summarize, we have shown that the collective

behavior of active particles with velocity reversals that
align ferromagnetically their polarities is different from that
of other classes of dry, dilute, aligning active matter. This
new class is characterized by the emergence of a phase with
quasi-long-range polar order and anomalous number fluc-
tuations. As in the XY model, scaling exponents vary
continuously in this phase, but the transition point to order
shows algebraic divergences governed by ν ¼ 2.4ð1Þ, not
the essential singularity of the BKT class. This value does
not seem to correspond to any known class. Nevertheless,
the exponent ratios β=ν and γ=ν take the BKT-Ising values 1

8

and 7
4
. These results constitute the first case where the phase

separation scenario at play in most dry, aligning active
matter systems is prevented “structurally”.
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