S. Ramaswamy, The Mechanics and Statistics of Active Matter, Annual Review of Condensed Matter Physics, vol.1, issue.1, p.323, 2010.
DOI : 10.1146/annurev-conmatphys-070909-104101

M. C. Marchetti, J. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost et al., Hydrodynamics of soft active matter, Reviews of Modern Physics, vol.109, issue.3, p.1143, 2013.
DOI : 10.1140/epje/i2005-10029-3

A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, and R. ,

F. Santagati, M. Stefanini, and . Viale, Scale-free correlations in starling flocks, Proc. Natl. Acad. Sci. U.S.A, vol.107, p.11865, 2010.

T. Vicsek and A. Zafeiris, Collective motion, Physics Reports, vol.517, issue.3-4, p.71, 2012.
DOI : 10.1016/j.physrep.2012.03.004

H. Zhang, A. Be-'er, E. Florin, and H. L. Swinney, Collective motion and density fluctuations in bacterial colonies, Proceedings of the National Academy of Sciences, vol.320, issue.8, p.13626, 2010.
DOI : 10.1073/pnas.96.8.4472

F. Peruani, J. Starruß, V. Jakovljevic, L. Søgaard-andersen, A. Deutsch et al., Collective Motion and Nonequilibrium Cluster Formation in Colonies of Gliding Bacteria, Physical Review Letters, vol.108, issue.9, p.98102, 2012.
DOI : 10.1103/PhysRevLett.78.5018

URL : https://hal.archives-ouvertes.fr/hal-00905217

D. Nishiguchi, K. H. Nagai, H. Chaté, and M. Sano, Long-range nematic order and anomalous fluctuations in suspensions of swimming filamentous bacteria, Physical Review E, vol.95, issue.2, p.20601, 2017.
DOI : 10.1088/1742-5468/2010/02/P02003

URL : https://hal.archives-ouvertes.fr/cea-01483961

Y. Sumino, K. H. Nagai, Y. Shitaka, D. Tanaka, K. Yoshikawa et al., Large-scale vortex lattice emerging from collectively moving microtubules, Nature, vol.16, issue.7390, p.448, 2012.
DOI : 10.1105/tpc.104.026930

URL : https://hal.archives-ouvertes.fr/cea-00881343

V. Narayan, S. Ramaswamy, and N. Menon, Long-Lived Giant Number Fluctuations in a Swarming Granular Nematic, Science, vol.74, issue.2, p.105, 2007.
DOI : 10.1103/PhysRevLett.96.028002

URL : http://arxiv.org/pdf/cond-mat/0612020

J. Deseigne, O. Dauchot, and H. Chaté, Collective Motion of Vibrated Polar Disks, Physical Review Letters, vol.105, issue.9, p.98001, 2010.
DOI : 10.1088/1751-8113/42/44/445001

URL : https://hal.archives-ouvertes.fr/hal-01422397

N. Kumar, H. Soni, S. Ramaswamy, and A. Sood, Flocking at a distance in active granular matter, Nature Communications, vol.74, issue.1, p.4688, 2014.
DOI : 10.1103/PhysRevE.74.022101

URL : http://www.nature.com/articles/ncomms5688.pdf

C. A. Weber, T. Hanke, J. Deseigne, S. Léonard, O. Dauchot et al., Long-Range Ordering of Vibrated Polar Disks, Physical Review Letters, vol.110, issue.20, p.208001, 2013.
DOI : 10.1103/PhysRevE.74.061908

URL : https://hal.archives-ouvertes.fr/hal-01422385

T. Vicsek, A. Czirók, E. Ben-jacob, I. Cohen, and O. Shochet, Novel Type of Phase Transition in a System of Self-Driven Particles, Physical Review Letters, vol.1, issue.6, p.1226, 1995.
DOI : 10.1142/S0218348X93000320

J. Toner and Y. Tu, Model: How Birds Fly Together, Physical Review Letters, vol.29, issue.23, p.4326, 1995.
DOI : 10.1103/PhysRevLett.29.1548

J. Toner and Y. Tu, Flocks, herds, and schools: A quantitative theory of flocking, Physical Review E, vol.47, issue.4, p.4828, 1998.
DOI : 10.1103/PhysRevE.47.2384

URL : http://arxiv.org/pdf/cond-mat/9804180

S. Ramaswamy, R. A. Simha, and J. Toner, Active nematics on a substrate: Giant number fluctuations and long-time tails, Europhysics Letters (EPL), vol.62, issue.2, p.196, 2003.
DOI : 10.1209/epl/i2003-00346-7

URL : http://arxiv.org/pdf/cond-mat/0208573

G. Grégoire and H. Chaté, Onset of Collective and Cohesive Motion, Physical Review Letters, vol.21, issue.2, p.25702, 2004.
DOI : 10.1145/37402.37406

J. Toner, Y. Tu, and S. Ramaswamy, Hydrodynamics and phases of flocks, Annals of Physics, vol.318, issue.1, 2005.
DOI : 10.1016/j.aop.2005.04.011

E. Bertin, M. Droz, and G. Grégoire, Boltzmann and hydrodynamic description for self-propelled particles, Physical Review E, vol.63, issue.2, p.22101, 2006.
DOI : 10.1088/0022-3719/6/7/010

URL : https://hal.archives-ouvertes.fr/hal-00910408

H. Chaté, F. Ginelli, and R. Montagne, Simple Model for Active Nematics: Quasi-Long-Range Order and Giant Fluctuations, Physical Review Letters, vol.318, issue.18, p.180602, 2006.
DOI : 10.1063/1.1705316

A. Baskaran and M. C. Marchetti, Enhanced Diffusion and Ordering of Self-Propelled Rods, Physical Review Letters, vol.101, issue.26, p.268101, 2008.
DOI : 10.1529/biophysj.105.061150

URL : http://arxiv.org/pdf/0806.4559

H. Chaté, F. Ginelli, G. Grégoire, and F. Raynaud, Collective motion of self-propelled particles interacting without cohesion, Physical Review E, vol.77, issue.4, p.46113, 2008.
DOI : 10.1103/PhysRevE.55.3898

E. Bertin, M. Droz, and G. Grégoire, Hydrodynamic equations for self-propelled particles: microscopic derivation and stability analysis, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.44, p.445001, 2009.
DOI : 10.1088/1751-8113/42/44/445001

URL : https://hal.archives-ouvertes.fr/ensl-00434536

A. Baskaran and M. C. Marchetti, Nonequilibrium statistical mechanics of self-propelled hard rods, Journal of Statistical Mechanics: Theory and Experiment, vol.2010, issue.04, p.4019, 2010.
DOI : 10.1088/1742-5468/2010/04/P04019

URL : http://arxiv.org/pdf/1002.3831

F. Ginelli, F. Peruani, M. Bär, and H. Chaté, Large-Scale Collective Properties of Self-Propelled Rods, Physical Review Letters, vol.104, issue.18, p.184502, 2010.
DOI : 10.1038/nrmicro1770

URL : https://hal.archives-ouvertes.fr/hal-00905223

S. Mishra, R. A. Simha, and S. Ramaswamy, A dynamic renormalization group study of active nematics, Journal of Statistical Mechanics: Theory and Experiment, vol.2010, issue.02, p.2003, 2010.
DOI : 10.1088/1742-5468/2010/02/P02003

URL : http://arxiv.org/pdf/0912.2283

T. Ihle, Kinetic theory of flocking: Derivation of hydrodynamic equations, Physical Review E, vol.221, issue.3, p.30901, 2011.
DOI : 10.2514/3.51188

URL : https://link.aps.org/accepted/10.1103/PhysRevE.83.030901

F. D. Farrell, M. C. Marchetti, D. Marenduzzo, and J. Tailleur, Pattern Formation in Self-Propelled Particles with Density-Dependent Motility, Physical Review Letters, vol.108, issue.24, p.248101, 2012.
DOI : 10.1103/PhysRevE.70.031905

URL : https://hal.archives-ouvertes.fr/hal-00749041

R. Grossmann, L. Schimansky-geier, and P. Romanczuk, Active Brownian particles with velocity-alignment and active fluctuations, New Journal of Physics, vol.14, issue.7, p.73033, 2012.
DOI : 10.1088/1367-2630/14/7/073033

A. Peshkov, I. S. Aranson, E. Bertin, H. Chaté, and F. Ginelli, Nonlinear Field Equations for Aligning Self-Propelled Rods, Physical Review Letters, vol.109, issue.26, p.268701, 2012.
DOI : 10.1103/PhysRevLett.109.098101

URL : https://hal.archives-ouvertes.fr/hal-00910349

P. Romanczuk and L. Schimansky-geier, Mean-field theory of collective motion due to velocity alignment, Ecological Complexity, vol.10, p.83, 2012.
DOI : 10.1016/j.ecocom.2011.07.008

URL : http://arxiv.org/pdf/1107.1623

J. Toner, Reanalysis of the hydrodynamic theory of fluid, polar-ordered flocks, Physical Review E, vol.86, issue.3, p.31918, 2012.
DOI : 10.1016/j.cell.2012.05.008

E. Bertin, H. Chaté, F. Ginelli, S. Mishra, A. Peshkov et al., Mesoscopic theory for fluctuating active nematics, New Journal of Physics, vol.15, issue.8, p.85032, 2013.
DOI : 10.1088/1367-2630/15/8/085032

URL : https://hal.archives-ouvertes.fr/cea-01478872

A. P. Solon and J. Tailleur, Revisiting the Flocking Transition Using Active Spins, Physical Review Letters, vol.111, issue.7, p.78101, 2013.
DOI : 10.1038/nphys2561

URL : https://hal.archives-ouvertes.fr/hal-00903641

J. Caussin, A. Solon, A. Peshkov, H. Chaté, T. Dauxois et al., Emergent Spatial Structures in Flocking Models: A Dynamical System Insight, Physical Review Letters, vol.41, issue.14, p.148102, 2014.
DOI : 10.1103/PhysRevLett.32.292

URL : https://hal.archives-ouvertes.fr/cea-01478849

S. Ngo, A. Peshkov, I. S. Aranson, E. Bertin, F. Ginelli et al., Large-Scale Chaos and Fluctuations in Active Nematics, Physical Review Letters, vol.34, issue.3, p.38302, 2014.
DOI : 10.1038/nature10874

URL : https://hal.archives-ouvertes.fr/cea-01384279

A. Peshkov, E. Bertin, F. Ginelli, and H. Chaté, Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models, The European Physical Journal Special Topics, vol.15, issue.7, p.1315, 2014.
DOI : 10.1088/1367-2630/15/8/085014

URL : https://hal.archives-ouvertes.fr/cea-01384282

E. Putzig and A. Baskaran, Phase separation and emergent structures in an active nematic fluid, Physical Review E, vol.4, issue.4, p.42304, 2014.
DOI : 10.1103/PhysRevLett.75.1226

URL : http://europepmc.org/articles/pmc4459651?pdf=render

F. Thüroff, C. A. Weber, and E. Frey, Numerical Treatment of the Boltzmann Equation for Self-Propelled Particle Systems, Physical Review X, vol.4, issue.4, p.41030, 2014.
DOI : 10.1103/PhysRevLett.111.145702

A. P. Solon, H. Chaté, and J. Tailleur, From Phase to Microphase Separation in Flocking Models: The Essential Role of Nonequilibrium Fluctuations, Physical Review Letters, vol.114, issue.6, p.68101, 2015.
DOI : 10.1103/PhysRevLett.108.248101

URL : https://hal.archives-ouvertes.fr/cea-01367258

R. Großmann, F. Peruani, and M. Bär, Mesoscale pattern formation of self-propelled rods with velocity reversal, Physical Review E, vol.152, issue.5, p.50602, 2016.
DOI : 10.1063/1.1744102

S. Shankar, S. Ramaswamy, and M. C. Marchetti, Low-noise phase of a two-dimensional active nematic system, Physical Review E, vol.32, issue.1, p.12707, 2018.
DOI : 10.1103/PhysRevE.76.011123

URL : http://arxiv.org/pdf/1710.05400

F. Ginelli and H. Chaté, Relevance of Metric-Free Interactions in Flocking Phenomena, Physical Review Letters, vol.105, issue.16, p.168103, 2010.
DOI : 10.1103/PhysRevLett.81.834

URL : http://arxiv.org/pdf/1007.1783

A. Peshkov, S. Ngo, E. Bertin, H. Chaté, and F. Ginelli, Continuous Theory of Active Matter Systems with Metric-Free Interactions, Continuous Theory of Active Matter Systems with Metric- Free Interactions, p.98101, 2012.
DOI : 10.1088/0034-4885/60/5/001

URL : https://hal.archives-ouvertes.fr/hal-00910347

L. Chen, J. Toner, and C. F. Lee, Critical phenomenon of the order???disorder transition in incompressible active fluids, New Journal of Physics, vol.17, issue.4, p.42002, 2015.
DOI : 10.1088/1367-2630/17/4/042002

J. Toner, . Birth, and F. Death, Birth, Death, and Flight: A Theory of Malthusian Flocks, but the critical behavior should then be trivial, pp.88102-135, 2003.
DOI : 10.1103/PhysRevA.16.732

URL : https://link.aps.org/accepted/10.1103/PhysRevLett.108.088102

A. P. Solon, J. Caussin, D. Bartolo, H. Chaté, and J. Tailleur, Pattern formation in flocking models: A hydrodynamic description, Physical Review E, vol.92, issue.6, p.62111, 2015.
DOI : 10.1103/PhysRevLett.113.038302

URL : https://hal.archives-ouvertes.fr/cea-01367197

, The ferromagnetic alignment is then destroyed by the stochastic reversals

, An experimental realization could consist of vertically shaken granular disks, such as in Ref. [10], but could be endowed with two identical legs and carrying magnets. The symmetric legs would induce apolar motion with reversals. The magnets could dominate the interactions and lead to ferromagnetic alignment

V. Berezinskii, Destruction of long-range order in onedimensional and two-dimensional systems having a continuous symmetry group I. Classical systems, Sov. Phys. JETP, vol.32, issue.493, 1971.

J. M. Kosterlitz and D. J. , Ordering, metastability and phase transitions in two-dimensional systems, Journal of Physics C: Solid State Physics, vol.6, issue.7, p.1181, 1973.
DOI : 10.1088/0022-3719/6/7/010

J. Kosterlitz, The critical properties of the two-dimensional xy model, Journal of Physics C: Solid State Physics, vol.7, issue.6, p.1046, 1974.
DOI : 10.1088/0022-3719/7/6/005

, The speed v 0 has been set to unity without loss of generality

, (i) Coefficients of the finite reversal rate kinetic and hydrodynamic PHYSICAL REVIEW LETTERS, pp.258002-258002, 2018.

, Derivation of hydrodynamic equations in the large reversal rate limit; (iii) Linear stability of the homogeneous ordered state; (iv) Numerical methods and details

, The g field equations both have a negative linear coefficient, regardless of density, noise, and reversal rate values In the fast reversal limit, these fields can therefore be enslaved to ? and f 1, the Supplemental Material [54], we derive equations directly in this limit and show that they behave similarly to the full equations

, A small region of weak instability is present deep in the ordered phase for a small reversal rate a. It quickly disappears upon increasing a. Furthermore, we found that no such residual instability exists at the kinetic level, i.e., when considering Eqs. (6) and (7) with a large number of modes. We conclude that it is spurious

R. Gupta, J. Delapp, G. G. Batrouni, G. C. Fox, C. F. Baillie et al., Phase Transition in the 2D XY Model, Phys. Rev. Lett, vol.61, 1988.

, PHYSICAL REVIEW LETTERS, vol.120, pp.258002-258002, 2018.