K. P. Benninger, Y. Koç, O. Hofmann, J. Requejo-isidro, M. A. Neil et al., Anal. Chem, pp.78-2272, 2006.

R. Shiraishi, X. Miyamoto, T. Zhang, and . Hirai, Rhodamine-Based Fluorescent Thermometer Exhibiting Selective Emission Enhancement at a Specific Temperature Range, Organic Letters, vol.9, issue.20, pp.3921-3924, 2007.
DOI : 10.1021/ol701542m

H. C. Wong and C. Fradin, Simultaneous pH and Temperature Measurements Using Pyranine as a Molecular Probe, Journal of Fluorescence, vol.5, issue.1, pp.299-312, 2011.
DOI : 10.1023/B:CATB.0000022284.53499.59

X. Guan, Z. Liu, P. Su, and . Liu, The preparation and photophysical behaviors of temperature/pH-sensitive polymer materials bearing fluorescein, Reactive and Functional Polymers, vol.66, issue.11, pp.1227-1239, 2006.
DOI : 10.1016/j.reactfunctpolym.2006.03.005

, Mater. Chem. C, vol.4, pp.5559-5563, 2016.

K. Sharma, E. Glais, M. Pellerin, C. Chaneac, and B. Viana, Proc. SPIE, pp.9749-974922, 2016.

A. Marciniak, J. Bednarkiewicz, K. Drabik, W. Trejgis, and . Strek, nanocrystal-based luminescent thermometer operating in an optical window of biological tissues, Physical Chemistry Chemical Physics, vol.36, issue.10, pp.7343-7351, 2017.
DOI : 10.1007/BF00704574

R. Vetrone, A. Naccache, A. Zamarrón, F. Juarranz-de-la-fuente, L. Sanz-rodríguez et al., Temperature Sensing Using Fluorescent Nanothermometers, ACS Nano, vol.4, issue.6, pp.3254-3258, 2010.
DOI : 10.1021/nn100244a

A. Wawrzynczyk, M. Bednarkiewicz, W. Nyk, M. Strek, and . Samoc, , 2012.

D. Drami´canindrami´canin, Methods Appl. Fluoresc. J. Lumin, vol.26, pp.53-66, 1981.

A. Mikenda and . Preisinger, N-lines in the luminescence spectra of Cr3+ -doped spinels (II) origins of N-lines, Journal of Luminescence, vol.26, issue.1-2, pp.67-83, 1981.
DOI : 10.1016/0022-2313(81)90170-8

B. Planelles-aragó, E. Julián-lópez, P. Cordoncillo, F. Escribano, B. Pellé et al., J. Mater. Chem, pp.18-5193, 2008.

C. Jaque, B. Richard, K. Viana, X. Soga, J. G. Liu et al., Inorganic nanoparticles for optical bioimaging, Advances in Optics and Photonics, vol.8, issue.1, pp.1-103, 2016.
DOI : 10.1364/AOP.8.000001

?. Far, S. R. Luki´cluki´c-petrovi´cpetrovi´c, V. ?orcevi´c?orcevi´c, K. Vukovi´cvukovi´c, E. Glais et al., Sens. Actuators, A, vol.270, pp.89-96, 2018.

C. Livage and . Sanchez, Sol-gel chemistry, Journal of Non-Crystalline Solids, vol.145, pp.11-19, 1992.
DOI : 10.1016/S0022-3093(05)80422-3

URL : https://hal.archives-ouvertes.fr/hal-00080383

V. Mili´cevi´cmili´cevi´mili´cevi´c, K. ?orcevi´c?orcevi´c, G. Vukovi´cvukovi´c, M. D. Dra?i´dra?i´c, and . Drami´canindrami´canin, Effects of Li + co-doping on properties of Eu 3+ activated TiO 2 anatase nanoparticles, Optical Materials, vol.72, pp.316-322, 2017.
DOI : 10.1016/j.optmat.2017.06.029

V. Gavrilovi´cgavrilovi´c, D. J. Jovanovi´cjovanovi´c, L. V. Tranda?lovi´ctranda?lovi´c, and M. D. Drami´canindrami´canin, Effects of Ho3+ and Yb3+ doping concentrations and Li+ co-doping on the luminescence of GdVO4 powders, Optical Materials, vol.45, pp.76-81, 2015.
DOI : 10.1016/j.optmat.2015.03.013

V. Gavrilovi´cgavrilovi´c, D. J. Jovanovi´cjovanovi´c, V. M. Lojpur, V. ?orcevi´c?orcevi´c, and M. D. Drami´canindrami´canin, Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping, Journal of Solid State Chemistry, vol.217, pp.92-98, 2014.
DOI : 10.1016/j.jssc.2014.05.009

M. G. ?orcevi´c?orcevi´c, A. M. Brik, M. Srivastava, P. Medi´cmedi´c, E. Vuli´cvuli´c et al., Opt. Mater, pp.74-120, 2017.

H. Li, Z. Du, G. Wang, and Y. Zhang, Low temperature molten salt synthesis of SrTiO3 submicron crystallites and nanocrystals in the eutectic NaCl???KCl, Materials Letters, vol.64, issue.3, pp.431-434, 2010.
DOI : 10.1016/j.matlet.2009.11.040

. Liu, . Mater, and . Lett, , pp.69-71, 2012.

L. Lou and . Wang, A novel method to synthesize well-dispersed MgTiO3 nanoplatelets, Materials Letters, vol.155, pp.91-93, 2015.
DOI : 10.1016/j.matlet.2015.04.106

X. Wang, S. Z. Liu, and J. Chen, Molten salt synthesis of SrTiO3 nanocrystals using nanocrystalline TiO2 as a precursor, Powder Technology, vol.205, issue.1-3, pp.289-291, 2011.
DOI : 10.1016/j.powtec.2010.08.068

F. Jaque and . Vetrone, , 2012.

A. Weinstein, Ruby thermometer for cryobaric diamond???anvil cell, Review of Scientific Instruments, vol.16, issue.5, pp.910-913, 1986.
DOI : 10.2307/20023541

T. V. Grattan, R. K. Selli, and A. W. Palmer, Ruby fluorescence wavelength division fiber???optic temperature sensor, Review of Scientific Instruments, vol.132, issue.7, pp.1231-1234, 1987.
DOI : 10.1063/1.1729335

P. Hehir, M. O. Henry, J. P. Larkin, and G. F. Imbusch, J. Phys. C: Solid State Phys, 1974.

Y. Zhang, K. T. Grattan, A. W. Palmer, V. Fernicola, and L. Crovini, Phys. Rev. B: Condens. Matter Mater. Phys. Appl. Opt, vol.43, pp.3523-3529, 1995.

M. Borisov, K. Gatterer, B. Bitschnau, and I. Klimant, Preparation and Characterization of Chromium(III)-Activated Yttrium Aluminum Borate: A New Thermographic Phosphor for Optical Sensing and Imaging at Ambient Temperatures, The Journal of Physical Chemistry C, vol.114, issue.19, pp.9118-9124, 2010.
DOI : 10.1021/jp1016467

E. Back, J. Trave, S. Ueda, and . Tanabe, -Doped Bismuth-Based Gallate Host, Chemistry of Materials, vol.28, issue.22, pp.8347-8356, 2016.
DOI : 10.1021/acs.chemmater.6b03625

R. Sholes and J. G. , Fluorescent decay thermometer with biological applications, Review of Scientific Instruments, vol.5, issue.7, pp.882-884, 1980.
DOI : 10.1103/PhysRev.137.A1117

N. Aizawa, S. Ohishi, T. Ogawa, S. Katsumata, T. Komuro et al., Rev. Sci. Instrum, pp.73-3656, 2002.

H. Fonger and C. W. Struck, Phys. Rev. B: Condens. Matter Mater. Phys, issue.11, p.3251, 1975.

K. T. Zhang, A. W. Grattan, and . Palmer, Fiber???optic high???temperature sensor based on the fluorescence lifetime of alexandrite, Review of Scientific Instruments, vol.63, issue.8, pp.3869-3873, 1992.
DOI : 10.1109/JQE.1980.1070430

Y. Zhang and K. T. Grattan, Temperature dependence of YAG:Cr3+ fluorescence lifetime up to 550 K, Journal of Luminescence, vol.62, issue.6, pp.263-269, 1994.
DOI : 10.1016/0022-2313(94)90046-9

W. Allison, D. L. Beshears, M. R. Cates, M. Paranthaman, and G. T. Gilles, International Society for Optics and Photonics Optical Diagnostics for Fluids, Solids, and Combustion, pp.28-36, 2001.

H. Uchiyama, T. Aizawa, S. Katsumata, T. Komuro, E. Morikawa et al., Rev. Sci. Instrum, pp.74-3883, 2003.

T. Fuhrmann, A. Kissel, J. Dreizler, and . Brübach, Meas. Sci. Technol, pp.22-045301, 2011.

N. Aizawa, S. Ohishi, E. Ogawa, T. Watanabe, S. Katsumata et al., Rev. Sci. Instrum, pp.73-3089, 2002.

R. Cates, D. L. Beshears, S. W. Allison, and C. M. Simmons, Phosphor thermometry at cryogenic temperatures, Review of Scientific Instruments, vol.2, issue.6, pp.2412-2417, 1997.
DOI : 10.1063/1.1139515

E. Fuhrmann, J. Baum, A. Brübach, and . Dreizler, Rev. Sci. Instrum, pp.82-104903, 2011.

T. Brübach, M. Kissel, M. Frotscher, B. Euler, A. Albert et al., A survey of phosphors novel for thermography, Journal of Luminescence, vol.131, issue.4, pp.559-564, 2011.
DOI : 10.1016/j.jlumin.2010.10.017

M. G. Nikoli´cnikoli´c, ?. Z. Anti´canti´c, S. Culubrk, J. M. Nedeljkovi´cnedeljkovi´c, and M. D. Drami´canindrami´canin, Temperature sensing with Eu3+ doped TiO2 nanoparticles, Sensors and Actuators B: Chemical, vol.201, pp.46-50, 2014.
DOI : 10.1016/j.snb.2014.04.108

A. Savchuk, J. J. Carvajal, C. Cascales, M. Aguiló, and F. Díaz, Up-Conversion Nanoparticles, ACS Applied Materials & Interfaces, vol.8, issue.11, pp.7266-7273, 2016.
DOI : 10.1021/acsami.6b01371

M. L. Balabhadra, C. D. Debasu, L. A. Brites, O. L. Nunes, J. Malta et al., Nanoscale, vol.7, pp.2015-17261

C. Cortelletti, I. X. Facciotti, P. Cantarelli, M. Canton, F. Quintanilla et al., Nd 3+ activated CaF 2 NPs as colloidal nanothermometers in the biological window, Optical Materials, vol.68, pp.29-34, 2017.
DOI : 10.1016/j.optmat.2016.11.019

D. S. Brites, A. Millán, and L. D. Carlos, Handbook on the Physics and Chemistry of Rare Earths, pp.339-427, 2016.