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We experimentally study the properties of nonlinear surface gravity waves in a large scale basin.
We consider two different configurations: a one-dimensional (1D) monochromatic wave forcing, and
a two-dimensional (2D) forcing with bichromatic waves satisfying resonant-wave interaction condi-
tions. For the 1D forcing, we find a discrete wave energy spectrum dominated at high frequencies
by bound waves whose amplitudes decrease as a power law of the frequency. Bound waves (e.g.
to the carrier) are harmonics superimposed on the carrier wave propagating with the same phase
velocity as the one of the carrier. When a narrow frequency random modulation is applied to this
carrier, the high-frequency part of the wave energy spectrum becomes continuous with the same
frequency-power law. Similar results are found for the 2D forcing when a random modulation is
also applied to both carrier waves. Our results thus show that all these nonlinear gravity wave
spectra are dominated at high frequencies by the presence of bound waves, even in the configuration
where resonant interactions occur. Moreover, in all these configurations, the power-law exponent of
the spectrum is found to depend on the forcing amplitude with the same trend as the one found
in previous gravity wave turbulence experiments. Such set of bound waves may thus explain this
dependence that was previously poorly understood.

PACS numbers: 47.35.Bb, 92.10.Hm, 05.45.-a

INTRODUCTION

In the linear regime, the dynamics of the surface waves on a fluid simply consists in a set of progressive harmonic
waves that verify the linear dispersion relation and do not interact with one another. To describe more complex wave
fields, as the ones commonly observed in the ocean, nonlinear effects have to be taken into account. They change
all of the properties mentioned above: wave trains become anharmonic, the dispersion relation now involves their
amplitudes, and they may exchange energy with other wave trains.
The first two features can be found in the periodic 1D deep-water gravity wave of finite amplitude, which is no

longer a sinusoidal function but is of the form

η(x, t) =
∑

n>1

ηn sin [n(ω1t− k1x)] , ω2
1 = gk1(1 + ǫ2 +O(ǫ4)), (1)

where x, t, ω1, k1, η1 are respectively the position, the time, the angular frequency, the wavevector and the amplitude
of the carrier, and ǫ = η1k1 is the wave steepness. In oceanography, the term sin (ω1t− k1x) of Eq. (1) is called
free wave, whereas harmonics (i.e. n > 2) are called bound waves. A free wave is a wave satisfying the dispersion
relation ω(k, ǫ). A bound wave (e.g. to the carrier) is a harmonic propagating with the phase velocity of the carrier,
(nω1)/(nk1) = ω1/k1, and consequently does not verify the dispersion relation. This expression has been obtained by
Stokes using an expansion in the parameter ǫ ≡ η1k1, and Eq. (1) is then known as a “Stokes wave” [1]. In that case,
the coefficients {ηn}n>2 of Eq. (1) and the dispersion relation have been determined analytically up to the fifth order
[2] and calculations at higher orders have been numerically performed. However, these calculations have not been
compared to experiments, since they characterize an unstable state: the solution (1) is subject to the modulational
instability, also known as the Benjamin-Feir instability [3]. This instability of a monochromatic wave corresponds, in
the spectral space, to the growth of side-bands around the carrier frequency. Similarly, the slow evolution of a wave
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train can be modeled by the nonlinear Schrödinger equation [4], some exact solutions of which have been derived [5, 6]
and observed in experiments (see, e.g., [7, 8]).
Generally speaking, every wave field can be decomposed as a sum of free waves and bound waves, whose amplitudes

and phases evolve in time. In the limit of small wave steepnesses, bound waves can be eliminated from the dynamics
of the wave field, leading to the so-called Zakharov equation on which are based wave forecasting models [9]. This
dynamical equation describes another feature of nonlinear surface waves: the resonant interactions between wave
trains. For gravity waves, they have been identified by Phillips [10] as four-wave interactions and the associated
rate of energy transfer has been computed by Hasselmann [11]. This mechanism has been experimentally studied
using two intersecting wave trains (see [12] and references therein), and has been found in excellent agreement with
predictions. It constitutes the building block of weak wave turbulence [13], which provides a statistical description
of many interacting surface waves in the slightly nonlinear limit. The phenomenology of wave turbulence is similar
to the one of hydrodynamic turbulence: energy injected at the forcing scale is transferred through local interactions
and eventually dissipated by viscosity at small scales. The mean energy of the waves can then be computed between
the forcing scale and the dissipative one, and wave turbulence predicts Ef ∝ f−4 [14], although Ef ∝ f−6 may also
result from finite size effects [15].
Even though this direct energy cascade is observed in gravity wave turbulence experiments (see, e.g., [16–22]), it

does not follow the theoretical scaling laws of weak turbulence. More precisely, the wave amplitude spectra are found
self-similar and described by frequency-power laws in fα, but the exponents α 6 −4 strongly depend on the forcing
parameters, in contrast to the predictions of weak turbulence. These differences have been ascribed to many causes, as
for instance the presence of coherent wave components [19–21], finite-size effects [23, 24] or non-local resonances [25],
but the main source of discrepancies has not yet been identified. It should be noted that these high-frequency gravity
spectra (i.e., at frequencies higher than the forcing one) have been studied experimentally mostly on setups close to
the assumptions of wave turbulence: waves are generated in a tank with high reflection coefficient at the walls [17–21].
However, contrary to the predictions of wave turbulence according to which bound waves should be negligible (the
associated correction being of the order of the wave steepness, a small parameter), the result is a mixture of free and
bound waves, as evidenced by the fact that energy does not gather on the free wave dispersion relation [19, 20]. This
suggests that bound waves associated to some strongly nonlinear structures could be the origin of this discrepancy.
In this article, we experimentally demonstrate that the anharmonicity of a few wave trains of large amplitude is

sufficient to reproduce these self-similar spectra whose exponent depends on the forcing amplitude. To do so, we
experimentally approach this problem differently: instead of considering a large number of free waves, each of them
leading to bound waves, we only focus on a few free waves and their bound waves. This is achieved by generating a
periodic or a slowly modulated wave field with almost no reflection at the end of the basin. The use of a beach as
an efficient damping mechanism limits the occurrence of resonant interactions potentially driven by reflected waves,
and allows us to focus on bound waves. We first consider the simplest forcing, i.e., a monochromatic and mostly 1D
forcing. We demonstrate that the resulting wave field consists in a few free waves and a large number of bound waves,
and we characterize the measured spectrum. We then study a wave train similar to the previous one, except that the
frequency is slowly modulated with time. This may model the slow evolution of the wind characteristics (amplitude
and direction). This is the simplest configuration in which a continuous spectrum is obtained, and where bound waves
play a key role. Then, we describe how these results are affected by the addition of another free wave satisfying the
resonant conditions (hereinafter referred 2D bichromatic forcing). This approach was partially initiated in [26], that
reports the observation of bound waves but does not discuss how their amplitudes scale. Finally, we discuss how our
results compare to a previous experiment [27], in which power-law spectra are observed for wave trains propagating
toward a beach.

I. EXPERIMENTAL SETUP

The experimental setup is similar to that described in [12] and takes place in a large-scale basin of dimension
50 m long × 30 m width × 5 m deep. One side is made of 48 independently controlled paddles and the opposite one
is a beach that limits wave reflection. The linear wavemaker theory is used to compute the wavemaker motion by
means of classical paddle transfer function applied to the target set of water wave frequency components. The surface
elevation is measured by 12 aligned resistive probes located from xmin = 3.3 m up to xmax = 29.9 m, with x the
distance from the wavemaker. The positions of these probes are such that they are aligned along the daughter wave
direction when resonant interactions are considered (see Sect. IV).
The prescribed wave field to the wavemaker is either 1D wave train, modulated or not (Fig. 1 left), or 2D bichromatic

waves in resonance conditions (Fig. 1 right). Note that 2D waves are also emitted by the small spacing between
paddles, whatever the forcing is. For the 2D forcing, the effect of the side-walls is taken into account by using the
Dalrymple method to determine the forcing of each paddle to generate a homogeneous wave field in the basin (see e.g.
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FIG. 1. Experimental setup for a 1D wave forcing (left, section II and III) and 2D bichromatic one (section IV).

[12]). The obtained wave field is quasi-uniform up to x = 25 m (see the gray zone of Fig. 1), and is the prescribed
one. The probe at xmax is only used to check that there is no significant reflection at the beach, and is not included
in the following analysis. We focus on a frequency range from 0.5 Hz to 10 Hz, where resistive probes have a flat
frequency response and water waves are in the deep-water gravity regime.

II. 1D NONLINEAR WAVE TRAIN EXPERIMENTS

We first generate a 1D plane wave along the x-direction, of frequency f1 = 0.715 Hz and steepness ǫ = k1η1 = 0.10,
η1 being here the prescribed value of the wave amplitude to the wavemaker. If we model the resulting wave field as a
sum of progressive waves of frequencies {nω1}n>1 and amplitudes {ηn}n>1, without prescribing the phase velocity of
any of these harmonics, the wave height at a distance x is of the form

η(x, t) =
∑

n>1

ηn sin [nω1t− k(n, ω1)x+ φn] , (2)

where φn is an arbitrary initial constant, and k(n, ω1) is a function of n and ω1 ≡ 2πf1. In practice, the coefficient
ηn may depend slowly on x as a result of, for instance, damping. Let us define ϕn(x, t) as the total phase in the sine
term of Eq. (2). To disentangle between free waves and bound waves, we have to compute the phase difference

Ψn(x, t) = ϕn(x, t)− nϕ1(x, t) . (3)
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spaced by 2π), and its probability density function (PDF) (right).
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FIG. 3. Left : Evolution of the phase difference Ψn with the distance x to the wavemaker for n = 3 and n = 8. The two fits
by constant functions are also reported (dashed lines). Right : coefficients χ2

r
computed for the constant fits on Ψn(x).

If the n-th harmonic is a bound wave of the carrier wave, one has k(n, ω1) = nk(ω1), and the quantity Ψn(x, t) = φn−φ1

will be a constant, independent of time and space. This independence with the distance expresses the progression
of a harmonic component of the wave train with the phase velocity of the carrier, nω1/nk(ω1) = ω1/k1 [as for the
n-th harmonic at nω1 in Eq. (1)]. However, if the n-th harmonic is a free wave, as well as the carrier wave, one has
k(n, ω1) = k(nω1), and Ψn(x, t) = [k(nω1)− nk(ω1)]x + φn − φ1 will be independent of time, but dependent on the
distance x. More precisely, removing initial conditions leads to Ψn(x) − Ψn(0) = ω2

1(n
2 − n)x/g. Consequently, to

discriminate between free waves and bound waves, we need to compute Ψn(x, t) and look at its spatial dependence.

Experimentally, both ηn and ϕn can be inferred at each probe as a function of time using a Hilbert transform of
the measured signal η(t). As an example, we first compute for n = 3, at a fixed distance x, the quantity Ψ3(t) which
is experimentally found to be locked, as expected, to a fixed value (mod 2π), as evidenced in Fig. 2 left. The jumps
observed in Ψ3 correspond to very low values of η3 as a result of an external perturbation, the phase no longer being
properly defined. The probability density function (PDF) of Ψ3(t) is shown in Fig. 2 right, giving its most probable
value (close to π) and the corresponding uncertainty (a measure of the width of the PDF, in this example close to
π/4). Let us now compute experimentally the spatial evolution of Ψn with distance x for two selected harmonics as
in Figure (3) left. It shows that the harmonics n = 8 is a bound wave (since Ψ8(x) is roughly constant) whereas the
third harmonics at 3f1 is a free wave (since Ψ3(x) depends on x). For each harmonics, a fit of Ψn[2π] by a constant
function is performed and we report in Fig.(3) right the result of the Pearson’s chi-squared test χ2

r used to measure
the goodness of this fit, of order unity if the fit is accurate [28]. Eventhough the forcing is the simplest possible one,
the resulting wave field is therefore a combination of free waves and bound waves: harmonics of frequencies 3f1, 4f1
and 5f1 are free waves, whereas high frequencies are dominated by bound waves.

We now focus on the amplitude of the different harmonics (n 6 13) measured by the same Hilbert transform as
above. We show in Fig. 4 that they are roughly described by a frequency-power law in the range [3 Hz, 10 Hz]. This is
different from the spectrum of the Stokes wave, where the peaks’ amplitudes are known to decay exponentially with
the order of the harmonic [2]. This confirms that the set of bound waves observed here is not the one associated with
a single free wave at f1, but a more complex one resulting from the several free waves of low frequencies evidenced
above. These free waves propagate during typically several hundred periods until they reach the beach, and may be
associated to nonlinear interactions that could be crucial to sustain the anharmonic wavetrain studied here. Note that
in the presence of several free waves, the bound waves do not simply consist in the superposition of each individual
set of bound waves, but also contain coupling terms.

Our discrete experimental spectra are found to scale as f−α, with −6 < α < −4, and are thus compatible with the
ones based on the propagation of a singular structure, f−4 corresponding to the propagation of a one-dimensional
slope break with a preserved shape [19, 29, 30]. However, there exist also structures, i.e., sets of bound waves, that
are non-singular and lead to a power-law spectrum, and we thus have no proof that such singularity is observed in
our experiment. The results reported in Fig. 6 (blue square) also show that the exponents α slightly evolve with
the distance to the wavemaker. Power laws similar to the one observed here can be found in the early literature on
nonlinear wave trains [31, 32], but have not been further discussed.
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III. EFFECT OF A NARROW FREQUENCY RANDOM MODULATION ON A 1D WAVE TRAIN

The previous spectra are discrete, and thus correspond neither to a realistic state of the ocean, nor to the ones
reported in experiments of wave turbulence. However, we will show below that continuous spectra can be obtained
from discrete ones by slowly modulating the forcing frequency f1. This will demonstrate that continuous power-law
spectra dominated by bound waves exist, that strongly contrast with the ones of wave turbulence, ascribed to free
waves. To illustrate the mechanism in play, we consider the following synthetic signal

s(t) =
∑

n>1

sn cos{2πn[f1 + δf(t)]t}, (4)

where sn are the harmonic amplitudes. δf(t) is a Gaussian noise of zero mean and standard deviation ∆f , and is low-
filtered in time (cut-off frequency fc). It models a free wave at f1 and its bound waves that are randomly modulated
in frequency. To be in line with our experimental setup, we compute s(t) over 500 seconds, with f1 = 0.715 Hz,
∆f = {0 Hz, 0.01 Hz, 0.10 Hz}, fc = f1/100 and we arbitrary choose power-law distributed harmonic amplitude of
the form sn = n−2. The associated energy spectrum s2n is reported in Fig. 5 left.
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1D quasi-monochromatic forcing at f1 = 0.715 Hz.

Since the harmonic component of frequency fn = nf1 is modulated by a noise of standard deviation n∆f , the
spectrum turns continuous when the peak corresponding to the n+ 1th harmonics overlaps the one of the nth, that
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is for a value of n such that 2n∆f ∼ (fn+1 − fn) ∼ f1 [33]. For our range of ∆f , the transition from a discrete to
a continuous spectrum corresponds to crossover frequencies of 2.5 Hz (∆f = 0.10 Hz) and 25 Hz (∆f = 0.01 Hz),
in agreement with the synthetic signal spectra of Fig. 5 left. Above this crossover, the continuous energy spectrum
follows the same power law as the peak amplitudes of the harmonics, chosen to be f−4 in this example.
The same peak broadening occurs in experiments when the harmonic forcing is replaced by random noise filtered

at f1 with a bandwidth ∆f . Four spectra obtained over 500 seconds, for f1 = 0.715 Hz, ǫ = 0.10 and ∆f =
{0 Hz, 0.01 Hz, 0.08 Hz, 0.10 Hz} are reported in Fig. 5 right. In the frequency range considered here (3 to 10 Hz), a
continuous frequency power law fα accurately describes the spectra for high-enough frequency modulation, similarly
to the synthetic signal discussed above. Once this continuous power law is developed, its value does not depend on
the value of the bandwidth ∆f up to the maximal value of 0.10 Hz considered here. Thus, the main effect of this
noise is to broaden the harmonics in the spectra up to a continuous one. The exponent α of this frequency-power
law is therefore a characteristic of the 1D nonlinear wave, and is measured as a function of the distance for several
steepnesses, when a power law fit is satisfactory. We show in Fig. 6 that the exponents resulting from a harmonic
forcing (Sect. II) or from a 1D slowly modulated one (Sect. III) are roughly similar. Some results will be found in
Sect. IV for a 2D resonant-wave interaction experiments (see below). This thus confirms the adequacy of the synthetic
signal to model these experiments. We also observe that, as for models based on singular structures, all these spectra
are steeper than Ef ∝ f−4.
We emphasize that the evolution of the spectra observed here and caused by a slow frequency modulation of the

forcing is related to an average process over several forcing frequencies, as captured by the synthetic signal (5), and does
not result from the modulation instability (or other similar processes described by the Nonlinear Schrödinger Equation,
see e.g. [4]). Indeed, given the growth rate of the most unstable mode computed by Benjamin and Feir [3], σmax =
πǫ2f1, and the group speed of deep-water gravity wave g/(4πf), the amplitude of the most unstable perturbation
during its propagation over a distance ∆x grows at most by a factor exp(σmaxτ), with σmaxτ = (2πf1ǫ)

2∆x/g. With
f1 = 0.715 Hz, ǫ = 0.1 and ∆x = 25 m (the distance between the wavemaker and the furthest probe we use for data
analysis), we obtain exp(σmaxτ) ≃ 2. To evidence the Benjamin-Feir instability, this quantity should be increased by
either tuning the characteristics of the wave field (increasing the frequency f1 or the steepness ǫ) or using a longer
basin. For instance, the experimental study of Melville [32] has a similar ∆x, but f1 and ǫ are approximately set
three times larger (f1 = 2 Hz, ǫ ≃ 0.25), increasing σmax by a factor ∼ 50.
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IV. 2D RESONANT-WAVE INTERACTION EXPERIMENTS

We now present experimental results for a 2D configuration in which an important four-wave resonant energy
transfer occurs at large scales. We will notably discuss the corresponding wave energy spectrum. To do so, the
wavemaker is set to generate two monochromatic wave trains of frequency f3 = 0.715 Hz and f1 = 0.9 Hz, called
mother waves, intersecting with an angle θ = 25◦, as shown in Fig. 1 (right). This configuration is choosen to
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correspond to a four-wave resonance condition. It leads to the growth of a free daughter wave of frequency f4, and
wave vector k4, such that

f4 = 2f1 − f3, k4 = 2k1 − k3. (5)

We recently investigated this resonance with a similar experimental configuration and set of parameters [12]. The
characteristics of this daughter wave for the first stages of interaction (short times) are [34]:

ǫ4 = Gǫ21ǫ3k4d, Φ = −
π

2
[2π] (6)

where d is the distance along with k4 (d = 0 at the wavemaker), ǫ{1,3,4} are the steepnesses of the waves, Φ(t) =
φ4(t) + φ3(t) − 2φ1(t) is a combination of their instantaneous phases that are phase locked, and G = 1.32 is the
prefactor for the chosen angle.
For the present 2D experiments, the mother waves are changed from monochromatic at f1 and f3 to two filtered

noises around f1 and f3 of similar bandwidth ∆f , i.e. of wave trains with amplitudes and phases slowly varying with
time compared to the growth rate of the daughter wave. Compared to the 1D slowly modulated wave train of Sect.
III, the only change is that we now introduce resonant interactions between the mother waves. For simplicity, we
choose mother waves of same mean steepness: 〈ǫ1〉 = 〈ǫ3〉 ≡ ǫ, where 〈·〉 stands for a time average. For the recorded
wave elevation at one probe, we infer the instantaneous amplitude and phase of the mother waves, and of the daughter
wave, using a Hilbert transform (see [12]). In Fig. 7 (left), we show that the daughter wave amplitude is in agreement
with Eq. (6) even if the mother waves are not purely monochromatic. The phase locking is also observed in Fig.
7 (right) when the amplitude of the daughter wave is large enough, so that Φ can be accurately measured. This
demonstrates that the free daughter wave is a quasi-static response to the slow forcing evolution.
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are for x = 19.8 m, ∆f = 0.02 Hz and ǫ = 0.05.

We now consider the high-frequency part of the energy-wave spectrum (from 3 Hz to 10 Hz), as reported in Fig. 8,
for different frequency bandwidths ∆f . For ∆f = 0 Hz, it reduces to a set of peaks of the form nf1+mf3, with n and
m integer. This corresponds to a mixture of free waves and bound waves, that can hardly be distinguished without
spatial measurement. Free waves result from resonances in cascade that come from four-wave interactions. At high
enough ǫ, cascade of resonances involves the interaction between primary daughter wave (f4) and a mother wave (f1
or f3), leading to the generation of a secondary daughter wave (saying f5) that may also interact with a mother wave,
and so on. This corresponds to the building of the direct energy cascade in the framework of wave turbulence. The
first steps of this cascade can be investigated with this setup and will not be described here [35]. Here, we focus on the
effect of a narrow frequency noise. Similar to Sect. III, the addition of a noise makes continuous the high-frequency
part of the spectrum. It is also well-described by a power law independent of ∆f in the range considered here, as
shown in Fig. 8. The minimal value of ∆f for which the spectrum is continuous is smaller than in the case of a 1D
wave train (see Fig. 5 right) because the interaction of two waves generates more peaks in the spectrum.
Finally, we report in Fig. 6 the exponent of the power law describing these high-frequencies. They are similar to

the ones describing the spectra of Sect. III corresponding to the 1D nonlinear wave. We therefore propose that, even
though four-wave resonant interactions occur and efficiently describe some part of the spectrum (as the amplitude
and phase at f4), the high-frequency part of the spectrum is still dominated by bound waves.
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data correspond to x = 10.85 m and ǫ = 0.10. For ∆f = 0, f4 corresponds to the primary daughter wave, and dashed lines to
the other free or bound waves, of frequencies of the form nf1 +mf3 with n and m integers (up to 3.415 Hz for clarity).
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FIG. 9. Exponent of the frequency-power law spectrum of the wave energy as a function of the wave steepness ǫ for the 1D
single noisy wave train experiment (1D NWT Sect. III), the 2D resonant wave train experiment (2D RWT Sect. IV), and
the experiments of Deike et al. [27] in the configuration with a beach. These data correspond to x = 7.05 m (1D NWT) and
x = 7.4 m (2D RWT and [27]).

V. COMPARISON WITH PREVIOUS EXPERIMENTS

The results of the present work can be compared to the previous experiments of Deike et al. [27], in which a
wavemaker generates a 1D random wave field in a smaller basin. Two boundary conditions are considered by the
authors, a beach and a reflecting vertical wall. This corresponds to two very different regimes: resonant interactions
are unlikely to be efficient if a beach limits reflection, and conversely resonances in cascade are expected in presence
of a wall. However, these two regimes share a similar frequency signature: both energy spectra are frequency-power
laws of exponents between -7 and -4, but the variations with the steepness are different [27]. We report in Fig. 9 the
exponents obtained in [27] with a beach and narrow bandwidth (Jonswap) forcing, together with the ones obtained
in this set of experiments at approximately the same distance. These exponents are similar, showing thus that the
spectra measured with a beach can then be ascribed to bound waves, as proposed by the authors.

Finally, note that the observation of the predictions of gravity wave turbulence requires strict experimental con-
ditions: the boundary conditions should be reflecting and the forcing should generate many waves with different
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frequencies, phases and directions instead of a single and high-amplitude wave train. This has for instance been
achieved for the observation of the inverse cascade [36] or in a large tank with reflecting vertical walls [27].

CONCLUSION

A typical state of the ocean consists of a large number of gravity waves interacting one with another. The statistics of
such a wave field can be derived in the framework of weak turbulence, in the limit of weak nonlinearity, no dissipation,
and infinite size system. Unless care is taken of to stay in this narrow range of parameters, in situ measurements as
well as laboratory experiments reveal deviations from these predictions, independently of the basin size (0.5 m to 50
m) [13, 16, 17, 21, 27, 37, 38]. In particular, the exponent of the frequency-power law energy spectrum depends on
the forcing amplitude, and bound waves are observed. Here, in contrast to typical experiments of wave turbulence in
which reflecting walls are used, and many waves of different frequencies and directions are generated, we report the
frequency-spectra associated to only a few strongly nonlinear wave trains propagating toward a beach.
We have characterized the harmonics of a 1D gravity wave forced at a single frequency, which are essentially bound

waves at high frequencies. The energy of these harmonics has a discrete spectrum that is described by a frequency-
power law. For a 1D quasi-monochromatic wave train, i.e., a slowly modulated wave, the energy spectrum becomes
continuous at high frequencies and is well fitted by a power law. The exponent of this power law is the same as the
one obtained for a monochromatic forcing, showing that this frequency-power law exponent is also likely to originate
from bound waves. To investigate whether the presence of resonant interactions and of several free waves affects
these statistics (i.e., if the high-frequency part of the spectra remains or not dominated by bound waves), we then
forced two resonant mother waves in a 2D configuration. We have shown that this regime involves both free waves
and bound waves: the daughter wave as well as some harmonics are free waves and their amplitudes can be predicted
from resonant interaction theory. We report continuous power law spectra of exponents close to the ones of the single
wave train experiment, indicating that high frequencies are still likely to be dominated by bound waves. Note that to
distinguish between free waves and bound waves, a spatial measurement should be performed by means for instance
of many probes or optical measurement of wave height on the whole surface.
The main breakthrough of our study is that we are able to reproduce the usual experimental deviations from

gravity wave turbulence predictions with a single 1D gravity wave train subjected to a narrow frequency random
modulation. More precisely, the high-frequency part of the spectrum is a power law whose exponent depends on the
forcing parameters, as observed in ocean [39] and in well-controlled laboratory experiments [16–21, 38]. The presence
of such anharmonic wave trains in these experiments would therefore explain both the observation of bound waves
and the high-frequency energy spectrum. One reason may be that in some laboratory experiments, the wave field
is dominated by the wave trains of large amplitude directly emitted by the wavemakers. However, this has been
proven not to be always the case: for instance, the experiments of Deike et al. with a fixed wall instead of a beach
describe a regime of wave turbulence in which the 1D nature of the forcing is lost, while spectra steeper than f−4

are observed [27]. Another possibility is that the anharmonic wave trains studied here are similar to some strongly
nonlinear coherent structures that would spontaneously rise in wave turbulent systems and dominate the background
turbulent free wave field. This would provide a complementary approach of turbulent states: while weak turbulence
theory is suited to describe the local energy cascade taking place in the presence of many different free waves, starting
from one or a couple of nonlinear wave trains could be relevant to take into account coherent structures.
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