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Hydrodynamics in a high-rate production reactor for
microalgae cultivation affects the light history perceived
by cells. The interplay between cell movement and medium
turbidity leads to a complex light pattern, whose forcing effects
on photosynthesis and photoacclimation dynamics are non-
trivial. Hydrodynamics of high density algal ponds mixed by
a paddle wheel has been studied recently, although the focus
has never been on describing its impact on photosynthetic
growth efficiency. In this multidisciplinary downscaling
study, we first reconstructed single cell trajectories in an open
raceway using an original hydrodynamical model offering
a powerful discretization of the Navier–Stokes equations
tailored to systems with free surfaces. The trajectory of a
particular cell was selected and the associated high-frequency
light pattern was computed. This light pattern was then
experimentally reproduced in an Arduino-driven computer
controlled cultivation system with a low density Dunaliella
salina culture. The effect on growth and pigment content
was recorded for various frequencies of the light pattern, by
setting different paddle wheel velocities. Results show that
the frequency of this realistic signal plays a decisive role in

2018 The Authors. Published by the Royal Society under the terms of the Creative Commons
Attribution License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted
use, provided the original author and source are credited.
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the dynamics of photosynthesis, thus revealing an unexpected photosynthetic response compared
to that recorded under the on/off signals usually used in the literature. Indeed, the light received
by a single cell contains signals from low to high frequencies that nonlinearly interact with
the photosynthesis process and differentially stimulate the various time scales associated with
photoacclimation and energy dissipation. This study highlights the need for experiments with more
realistic light stimuli to better understand microalgal growth at high cell densities. An experimental
protocol is also proposed, with simple, yet more realistic, step functions for light fluctuations.

1. Introduction
Over recent years, biotechnological applications of microalgae have increased, particularly in the fields
of cosmetics, pharmaceuticals and agrofood [1]. The main driver motivating these developments was
the potential of some microalgae species in green chemistry, and especially for supporting large scale
biofuel production [2]. This emerging approach is also characterized by reduced environmental impacts
and enhanced productivity compared to terrestrial plants [3]. Indeed, the ability of these microorganisms
to grow at high rates and to store large amounts of lipids has motivated substantial research activities
over the last decade [4].

The ratio between the energy produced and the total energy involved is a key criterion when
producing biofuel. The higher this ratio, the lower the costs and environmental footprint. As energy
consumption emits greenhouse gases, the reduction of the energy demand remains a crucial challenge for
sustainable microalgae cultivation [5]. Energy is required at different stages of the microalgal production
process (growth, harvesting, post-treatment), with a significant demand for mixing processes during
the microalgal growth phase, to ensure homogeneity and access to light. Two different kinds of devices
are used to grow microalgae at industrial scales: photobioreactors, which are closed systems with short
optical paths that support high cell densities (from 1 to 10 g l−1), and more basic raceway ponds, mixed
by a paddle wheel, with lower cell densities (from 0.1 to 1 g l−1). The latter are probably more economical
and are more widespread for large-scale algae production. In this paper, we focus on this less costly
system, which might be better adapted for biofuel and food production [6].

The benefit of mixing has been extensively discussed in the literature to: (i) prevent cell sedimentation,
(ii) ensure nutrient homogeneity, and (iii) facilitate CO2 transfer, while removing excess oxygen to limit
photorespiration and oxidative stress [7]. Moreover, stirring also directly impacts light reception at the
cell scale in a mixed turbid environment [8]. Focus on the cell scale shows that, due to water motion, cells
receive a rapid succession of light spikes, reflecting the displacement of individual cells in the variable
light field within the stirred culture system (figure 1).

The critical interplay of (i) light absorption and scattering at cell scale, (ii) cell density, and (iii) cell
advection complicates the dynamics of the light received by a single cell. Furthermore, the way photons
captured by the antennae are processed by the photosynthetic machinery is both nonlinear and dynamic
[9,10]. The reaction centres excited by photons present significant de-excitation dynamics. If they receive
additional photons while still being excited, they get damaged, leading to a decrease in efficiency
(photoinhibition). Cells moderate the damaging impacts of high light (photoacclimation) by modulating
their pigment content [11,12]. In particular, the synthesis of carotenoids involved in the xanthophyll
cycle enhances a thermal dissipation of excess energy [13]. These so-called non-photochemical quenching
(NPQ) mechanisms are dynamic and strongly influenced by the ratio of high to low light [14].

The impact of high frequency light fluctuations on both photosynthesis and photoacclimation is not
fully understood, but appears to play an important role and could be used to enhance productivity. It
has been studied by many authors [14–24] on the basis of a simple on/off experimental light signal.
These works describe how the signal frequency affects photosynthesis: faster dark/light cycles increase
photosynthetic efficiencies and enhance growth rates. Among these studies, Combe et al. [25] monitored
the response of Dunaliella salina to simple light/dark cycles of increasing frequency. They used the same
strain in the same experimental set-up (see §3), resulting in the typical response presented in electronic
supplementary material, figure SI.2.1. Improvement in photosynthetic energy conversion in response
to higher flash frequency is often called the ‘flashing light effect’ [15,26–28]. The work of Zarmi et al.
[29] highlighted the dynamic mechanisms involved in photon harvesting and use, represented with
mathematical models that consider the damaging and repair mechanisms of some key proteins in the
photosynthetic apparatus. Such models explain the yield increase at higher frequencies, especially at
high light.
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Figure 1. Schematic representation of an algal cell trajectory in an open pond raceway system.

Most of these works focused on photobioreactors with time scales much shorter than a second.
In a raceway, light variations are slower and the commensurate acclimation processes have not
been well studied [25]. There is, however, an underlying inconsistency in the literature dealing with
photobioreactors and raceways. While numerous studies provide converging evidence for an enhanced
photosynthetic efficiency under higher frequency of on/off signals [8,30], there is no clear experimental
evidence that more mixing actually enhances growth. Qiang & Richmond [31] and Sobczuk et al. [32]
studied different agitation velocities of a photobioreactor and identified an optimal agitation rate for
a maximum cell density, beyond which increased stirring negatively affected growth. To explain the
decrease in productivity at higher agitation, the authors mentioned shear stress and mortality due to
the bursting of small gas bubbles. Overall, studies demonstrating productivity enhancement through
increasing mixing are scarce compared to studies restricted to the flashing effect only, and they are
rarely supported by experimental evidences. To the best of our knowledge, no work in the literature
was unambiguously reported to support this dogma for raceway ponds.

This paper investigates the reasons for the surprising mismatch between a theory apparently
consistent with many laboratory-scale experiments and reality. To address this point, we first revisited the
typical approaches based on light signals that are far from actual patterns resulting from paddle wheel
velocity and light field. Overall, the correspondence between experimental light signals and light actually
received by a cell has not been considered. The originality of the present work lies in the consideration of
a more gradual light evolution congruent with the pond hydrodynamic properties. The objective of this
study is therefore to identify the effect of the mixing rate on photosynthesis under realistic light pattern
conditions.

Our multidisciplinary approach begins with a downscaling viewpoint. A realistic light signal was
reconstructed, using a hydrodynamic model that simulates Lagrangian cell trajectories. These dynamic
light patterns were then analysed. The so-called ‘paragon’ (a specific cell trajectory representative of an
ensemble of possible trajectories) was identified to represent a realistic light signal. A microcontroller-
platform-based experimental device was then developed to expose a low-density population of
microalgae to this light signal. By maintaining cultures at a low density, any self-shading was limited,
ensuring that all cells in the experimental vessel received similar light levels. The population behaviour
was thus homogeneous and reflected the state of a single cell. The experiments were carried out on
a sufficiently long timeframe so that photoacclimation could take place and its dynamics could be
studied. The observed response turned out to be more complex than what has so far been reported in the
literature. We then discuss the experimental strategies required to study photosynthesis in more realistic
conditions, including more realistic light stimuli with simple step functions.

2. Reconstruction of dynamic light patterns using hydrodynamic modelling
2.1. The hydrodynamic model
The flow of an incompressible water body in a raceway is accurately described by the Navier–
Stokes equations. However, for a raceway, the mathematical model should also include the air–water
interface. Such free-surface systems are more difficult to model and incur additional computational
costs. Hydrodynamics in a raceway pond have usually been investigated with the goal of predicting
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Figure 2. Numerical simulation of raceway hydrodynamics. Three-dimensional representation of thewater volume and the velocity field
(m s−1). Several particular trajectories are also shown.

dead zones or to improve pond designs especially for lowering agitation costs [33,34]. However its
impact on light access and biomass productivity still remains open to study. Often, models are built
using commercial software such as Fluent® which offers automated schemes for three-dimensional
resolution of the Navier–Stokes equations. Given the numerical difficulties and the computational cost
to approximate the Navier–Stokes solutions with standard finite volume approach, especially in the
presence of a free surface, we use a recent approach based on a more efficient discretization of the Navier–
Stokes equations [35,36]. This multilayer model applies Galerkin-type approximations along the vertical
axis of the Navier–Stokes system yielding a set of partial differential equations with hyperbolic features.
The system was numerically solved by considering a two-dimensional triangular mesh of the ground
surface, the layers along the water depth giving rise to the third spatial dimension, as illustrated in
electronic supplementary material, figure SI.4.1. This multilayer discretization of the Navier–Stokes
system with mass exchanges has demonstrated enhanced accuracy and stability [35,37].

Moreover, the multilayer model has been successfully verified against analytical solutions for
hydrostatic Euler and Navier–Stokes systems with a free surface [38]. We also added a specific forcing
term mimicking the effect of the paddle wheel [36]. The impact of the paddle wheel on the fluid was
represented as a normalized force applied by the wheel’s blades proportional to the square of the
velocity at each point. Here, we used a three-dimensional extension [39] to the model presented by
Bernard et al. [36].

A mesh was developed for the raceway pond in the Laboratory of Environmental Biotechnology
(LBE, INRA Narbonne [40]) (electronic supplementary material, figure SI.4.1). The water-column depth
(0.3 m) was divided into 20 horizontal layers. The simulation started with a static non-agitated medium,
and the paddle wheel was instantaneously turned on. In electronic supplementary material, figure SI.4.2,
we demonstrate that the computation has converged with this mesh (a more refined mesh has a marginal
effect on results). In electronic supplementary material, SI.5, a momentum study was carried out, with
computation of average depth and variance for 64 particles. It demonstrated ergodic properties for
sufficiently long periods of time and showed that the numerical scheme conserved some structural
properties of the trajectories. The raceway model was run for 4.2 h and the first hour of simulation was
discarded in order to reach a stabilized regime. The velocity field together with a single cell trajectory is
shown in figure 2.

2.2. Generation of Lagrangian trajectories and choice of a representative paragon
Lagrangian trajectories of 10 000 particles were reconstructed by integrating the velocity field for various
initial particle positions. In addition, a Brownian motion model was applied to represent local diffusion
effects [36].

 on July 4, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


5

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180523

................................................

0

100

200

300

400

500

600

700

800

900

lig
ht

 in
te

ns
ity

 (
mm

ol
 m

–2
 s

–1
)

0 0.5 1.0 1.5 2.0 2.5 3.0
time (h)

0 0.5 1.0 1.5 2.0 2.5 3.0
time (h)

0

0.05

0.10

0.15

0.20

0.25

0.30
de

pt
h 

(m
)

(a) (b)

Figure 3. Depth (a) and light (b) pattern of the paragon trajectory.

The model was discretized into 20 layers. For each trajectory (after discarding the first hour), knowing
its layer i at time t, a transition matrix was built by computing the probability for the particle to be
at layer j at time t + dt. A correspondence analysis was then carried out from this transition matrix.
Based on the correspondence analysis results, we differentiated four sets of trajectories by performing
a hierarchical ascendant clustering (Ward classification with Euclidian distances) to select the group
containing particles that explore the entire water column. The trajectory closest to the centroid of the
cluster was determined, i.e. the trajectory which minimized the following distance: yj = min [ (Aj − Ā)2]
where Ai is the probability matrix of trajectory j, and Ā is the average matrix probability of the particular
group. The corresponding trajectory was called the paragon trajectory (figure 3) and represented a typical
trajectory. The selected pattern was then cyclically repeated to obtain a periodic trajectory with a period
T of 3.2 h. The light signal associated to this periodized trajectory was then considered.

Finally, the light received by the particle over time was computed, accounting for Beer–Lambert
exponential attenuation:

I(t) = I0 exp(−kz), (2.1)

where I0 is the light at the surface (here I0 = 850 µmol m−2 s−1), k is the light extinction coefficient,
computed from IL, the light at the bottom of the raceway (assuming here IL = 0.01 I0): k = (1/L) ln (I0/IL)
and z is the depth of the particle at time t.

This light pattern shown in figure 3b was selected to be experimentally applied to the microalgal
culture in a photobioreactor. Different mixing rates could have been simulated with the hydrodynamic
model; however, comparing light patterns resulting from various hydrodynamic regimes is complex, and
the choice of a specific trajectory associated with a given mixing rate complicates results interpretation.
Instead, the effect of an increase or decrease in paddle wheel velocity was sketched by simply speeding
up or slowing down the initial trajectory, assuming that the hydrodynamic regime was not structurally
modified. This approach allowed us to focus on frequency effects. The initial periodized trajectory with
period T of 3.2 h was then accelerated (considering periods T/3 and T/2) or slowed down (considering
periods 2T and 3T). With this method, the daily light dose remained constant for all conditions.

This computational choice to reproduce several paddle wheel velocities facilitates comparison across
experiments. The downside of this is that nonlinear effects in hydrodynamics with increased mixing are
not represented, and would probably introduce biases in the light signal. Energy dissipation for various
mixing regimes (and then different average fluid velocities) is presented in electronic supplementary
material, figure SI.7.1.

3. Experimental set-up
The Chlorophyceae Dunaliella salina was grown axenically in f/2 medium within cylindrical double-
walled glass photobioreactors with an effective capacity of 500 ml. Temperature was regulated at 27°C in
the cultures. Magnetic stirrers homogenized the cultures. Bubbling was induced with air filtered through
a Whatman filter. Experiments were carried out with duplicate fed-batch cultures diluted with fresh
sterile medium every 8 days.

Photobioreactors were illuminated with arrays of six white light-emitting diodes (LEDs) installed
on a circular aluminium frame. The LED drivers were controlled by an open-source electronics
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Figure 4. AGR as a function of light pattern period T. The point at datum T = 0 represents continuous illumination.

prototyping platform Arduino Mega 2560 to generate light patterns. Photosynthetically active radiation
was monitored in each photobioreactor during the experiments using a 2π light sensor. Different light
patterns were applied to the cultures, and an additional control was carried out using a continuous light
of equal mean irradiance (82.2 µmol m−2 s−1).

The changes in algae population density and mean diameter were monitored twice-daily, in triplicate,
using a Beckman Coulter counter. Pigments were extracted from algae with acetone and measured with
a UV–visible spectrophotometer. Carbon and nitrogen cell quotas were determined with a CHN analyser
after filtration onto pre-combusted GF/C filters (Whatman). See electronic supplementary material, SI.1,
for details on the materials and methods.

4. Results
4.1. Growth rate
Average growth rates (AGR) for the various light patterns are represented in figure 4. In line with
the experiment carried out with simple light/dark cycles [25] (see electronic supplementary material,
figure SI.2), AGR obtained under continuous light is the highest. In particular, it is higher than that
measured with the T-paragon trajectory by 136%. A light/dark signal with shorter period is known
to stimulate photosynthesis and to induce higher growth rates [23,25]. A decrease in AGR with the
signal period was observed from continuous illumination to 2T, except for the fastest T/3-light signal
that surprisingly led to a very weak biomass growth. This experiment was repeated three times, but the
results were eventually replicable, as illustrated in electronic supplementary material, figure SI.8.1. There
was also an apparent paradoxical response for the signal with period 3T for which the growth rate was
55% higher than with the T-paragon, while, on the basis of the literature supported by simple light/dark
cycles [14,22–25], this slowest signal was expected to be the least favourable to growth.

In agreement with the results of Combe et al. [25], intracellular carbon and nitrogen content did not
significantly change across different conditions. Likewise, there was no significant difference in the C/N
composition (p = 0.22) between light treatments (data not shown).

4.2. Acclimation mechanisms
For realistic light signals, the levels of chlorophyll a (Chl:C) and carotenoids (Car:C) per carbon were
affected by the changes in light pattern (figure 5). This observation is contrary to previous results
obtained for higher (on/off) signal frequencies reported by Combe et al. [25]. Indeed, cells submitted
to continuous light contained 65% more chlorophyll a and 36% more chlorophyll b per biomass unit
compared to cells exposed to the paragon. Carotenoids followed a similar pattern: cells under continuous
illumination contained 92% more carotenoids than the paragon, suggesting a different physiological
reaction of cells depending on the light frequency. There was, however, no clear relationship between
pigment content and the period of the light signal; it seems that a minimal pigment content was achieved
for a light period in the range 3 to 6 h.

The pigment content turns out to be strongly correlated with the growth rate (figure 6) (R2 = 0.91,
n = 5). This relationship is classical for chlorophyll, due to its central role in photosynthesis (at high light
however, excess chlorophyll can trigger photoinhibition). Nevertheless, it was expected that an increase
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in photoprotectant pigments would decrease growth rate. Indeed, the role of carotenoids (mainly β-
carotene for D. salina) is to dissipate excess energy and protect cells from free radicals [41]. At low light,
while still dissipating light energy, carotenoids are expected to penalize growth. This drawback is only
an advantage at high light intensities, by protecting the photosynthetic apparatus. As the light pattern
was above 300 µmol m−2 s−1, for less than 10% of the time, it is expected that a high carotenoid content
is detrimental to growth. Cells have therefore developed a dual strategy: simultaneously increase the
chlorophyll content for enhancing photon capture (low-light acclimation) and increase NPQ for excess
energy to be rapidly dissipated during the highest illumination periods (high-light acclimation). This
analysis highlights a different type of acclimation strategy depending on the signal period. The most
efficient strategy was a tendency toward higher chlorophyll and carotenoids

A closer look at the Car:Chl a ratio elucidates the cell response (figure 7). This ratio significantly
changed (p < 0.05) with the light period, pointing out that each pigment class was regulated at a
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different rate. More precisely, figure 6 reveals that AGR increased faster with chlorophyll than with
carotenoids. An increase in chlorophyll content was associated with higher carotenoids, and thus higher
photoprotection, although growth rate was eventually enhanced. This consolidates the finding of Abu-
Ghosh et al. [14], who demonstrated, with simpler light signals, that photosynthesis was enhanced when
photochemistry and photoprotection were balanced. The xanthophyll cycles may perform differentially
for dissipating energy especially during high light exposure. We therefore conjecture that this unexpected
difference in cell photoacclimation partially explains the difference in growth rate and the apparent
inconsistency with the previous results for simple light signals for which no marked change in
photoacclimation was observed [25].

The Car:Chl ratio can be considered as a stress indicator [42]. Certain signal periods could probably
induce further cell stress, resulting in significantly different growth rates. These observations need to
be confirmed with additional experiments, but they highlight the role played by the photoacclimation
dynamics. The mechanisms regulating carotenoid and chlorophyll syntheses have not been totally
elucidated. The challenge now consists in discovering how the different light patterns trigger different
photoacclimation strategies.

5. Discussion
5.1. What drives photoacclimation?
These results, when considering a realistic signal, reveal a more complex response than what has
so far been reported under simple light patterns. The reconstructed trajectory is a complex dynamic
signal comprising several time scales that are all potentially relevant to the different time scales of
photosynthesis, photoprotection, and photoacclimation. The highest frequencies are associated to the
Brownian motion added to the Lagrangian signal. At longer time scales, two key periodic events generate
the observed dynamics. Firstly, each time a cell goes through the paddle wheel, it is rapidly advected to
a different depth. The paddle wheel therefore clearly acts as the main process periodically redistributing
the cell depth and thus actively contributing to distributing light access between the microalgae. When
going through the paddle wheel, cells experience an abrupt light change over up to 12 s. This rather
long period is due to a counter current beneath the paddle wheel that generates negative horizontal
velocities. Hence, a cell can be trapped under the wheel for a certain amount of time. Secondly, and
in addition to this phenomenon, cells travelling through the raceway bends also change depth, due to
helicoidal flow triggered by the horizontal velocity gradient between faster trajectories along the external
rim and slower, inner trajectories (see electronic supplementary material, SI.5). These two movements
have a period of 1.5 min (average time to accomplish a full revolution around the pond). Apart from the
period T, due to the cyclic repetition of the initial signal, the light signal contains a mix of subfrequencies,
all of which may impact photosystem and photoacclimation dynamics. It is possible that some of these
time scales influence the yield of photon harvesting and processing more intensively [43]. They also
induce different responses in energy dissipation mechanisms. In particular, at high light, the xanthophyll
cycle dissipates photons through non-photochemical quenching. For chlorophytes, the violaxanthin cycle
plays a key role in NPQ, exerting a photoprotective effect through accumulation of zeaxanthin, which
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facilitates a thermal dissipation of the excess light energy. As demonstrated for Dunaliella salina by Abu-
Ghosh et al. [14], this process is highly dynamic, and its efficiency is closely related to the light regime,
in particular to the time ratio between high and low light. However, these acclimation mechanisms have
generally been studied at short time scales (frequencies faster than 10 Hz) that occur in photobioreactors,
whereas we are considering here slower processes typical of raceways dynamics. Modification of the
xanthophyll pool is likely to be affected by light fluctuations at a scale of several hours as has been
observed for higher plants [44]. By speeding up or slowing down the signal, all frequencies shift and
some of them may eventually prove less (for the T/3 pattern) or more (the 3T pattern) efficient for
photosynthesis. Beyond the signal frequency, the shape of the signal itself impacts photosynthesis. For
a given frequency, schematic signals with different time ratios of high and low light affect growth rates
[25]. However these inherent signal properties are not affected when lengthening or shortening the light
signal, and more generally, neither the average light nor its standard deviation change.

A simple light/dark signal has not been shown to significantly affect photoacclimation [25], but the
response was different in our study. This unexpected behaviour when a complex realistic signal is applied
suggests nonlinear effects on photosynthesis efficiency. There is a need for more investigations to better
understand and separate these effects. To do so, experiments must be carried out using simple light
signals that inherently hold key structural properties. These features are driven by hydrodynamics, and
they are likely to trigger the mechanisms underlying the responses observed under realistic signals. In
the following section, we discuss how a simple light pattern can be designed for incorporating these
central physical properties.

5.2. Can the light pattern be more realistically sketched?

5.2.1. Light distribution in a perfectly mixed cultivation system

The primary difference between the light pattern tested here and those reported in the literature
is the correspondence of light distribution with hydrodynamics. Most of the mechanically agitated
systems yield a homogeneous cell distribution. Homogeneous particle distribution results from fluid
incompressibility while cells have the same density as water. However, in some cases, cells may not be
iso-distributed along the culturing device, where dead zones lead to local accumulation of sedimented
particles, locally increasing the particle density toward the bottom of the reactor. This behaviour has
been numerically simulated, and some authors [33,45,46] proposed advanced designs to generate fluid
circulation avoiding this source of productivity loss. Equidistribution is therefore targeted and reached
with an efficient mixing system.

Simulating Lagrangian cell trajectories that reflect this theoretical iso-distribution property is
numerically challenging. The numerical schemes used to compute Lagrangian trajectories from Eulerian
velocity fields do not maintain these theoretical properties. Especially, particles rebounding from the
domain boundaries (free surface or bottom) may generate an artificial local particle accumulation. This
often leads to non-homogeneous distributions that must be artificially corrected [8].

Assuming cell equidistribution yields a constant probability density function (PDF) associated with
particle depth:

fz = 1
L

. (5.1)

The PDF for light intensity, assuming a simple Beer–Lambert exponential decrease (equation (2.1))
can be analytically derived [47]:

fI(I) = − 1
ln(η)I

, (5.2)

where η denotes the remaining fraction of light at the bottom: η = IL/I0 where I0 is surface light intensity
and IL is the intensity at the bottom.

As a consequence, PDF is a hyperbolic function that depends on the fraction of light reaching the
raceway bottom. The average light in the system is

Ī =
∫ I0

IL

fI(I)IdI = I0
1 − η

−ln η
. (5.3)

The probability of a cell receiving a light intensity higher than Is is

P(I > Is) =
∫ I0

Is

fI(I)dI = ln Is/I0

ln η
. (5.4)

 on July 4, 2018http://rsos.royalsocietypublishing.org/Downloaded from 

http://rsos.royalsocietypublishing.org/


10

rsos.royalsocietypublishing.org
R.Soc.opensci.5:180523

................................................
As an illustration, if 1% of the light can still be detected at the reactor bottom (η = 0.01), 50% of the

reactor depth is illuminated with a light level larger than 10% of the surface light. More generally 50%
of the reactor is illuminated with a light intensity larger than

√
ηI0, and p% of the reactor is illuminated

with a light intensity greater than ηp/100I0 (for example, for η = 0.01, 15% of the reactor is illuminated
with more than 50% of the original flux).

5.2.2. Exact discretization into two layers does not exist

In most studies focusing on the flashing effect, light is represented with an oversimplified on/off signal.
We offer a better option to represent the light pattern, assuming that the light source switches between
two intensities. In this framework, each intensity represents the average light in a two-layer discretization
of the raceway. The challenge lies in the determination of the light intensities to be applied and of the
switching frequency for the light to represent key properties of the light signal at cell scale in a raceway.

Considering an upper euphotic layer of depth h with average light intensity ĪE, and a lower dark layer
with average light intensity ĪD, we seek for a realistic probability (or frequency, if a periodic light signal
is required) for the cell to switch between these layers. Both layers are characterized by their average
irradiance. A desirable property would be to reconstruct a light signal switching between ĪE and ĪD
(i) with time proportional to the probability of a particle to be in each layer, (ii) with an average light
intensity Ī for the overall light signal equal to the mean light intensity in the process, and (iii) with light
intensities ĪE and ĪD in agreement with the average light distribution in each layer. Such a light pattern
would ensure correspondence between the biological stimuli and the physics of the process.

We demonstrate (see the electronic supplementary material, SI.9) that such behaviour cannot be
achieved for a discretized water depth. Indeed, the average light when switching between ĪE and ĪD
at rate p (p = h/L is the probability to be in the euphotic layer) is not the expected average light, unless
the lower layer has a zero thickness.

5.2.3. Variance computation

Instead of searching for a framework representing the average light in each layer, we seek a criterion that
plays a key role in the photosynthetic dynamics: the variance of the light signal. Indeed, light variance is
also strongly constrained by medium homogeneity and by the light extinction coefficient. The theoretical
light variance based on the PDF of I is (see electronic supplementary material, SI.10)

ν =
∫ IL

I0

fI(I)(I − Ī)2dI = Ī
[

I0
1 + η

2
− Ī

]
. (5.5)

It is worth noting that light variance is independent of fluid velocity and depends only on the
light gradient through η. This non-intuitive result implies that the light variance is not related to the
hydrodynamic properties, which conveniently simplifies the design of a realistic signal.

Now, considering a simple on/off light pattern oscillating between I0 and 0 at frequency p = Ī/I0
(case A), a much larger variance (I(I0 − Ī)) is obtained than that given by equation (5.5). For example,
for η = 1%, the variance induced by a light commutation between I0 and 0 is 2.7 times greater than the
variance in the actual culture process.

We propose an alternative strategy to synthesize simple, yet realistic light signals for laboratory
experiments. We relax constraint (iii) on the realism of ĪE and ĪD, and, instead, impose a condition of
light variance: (iii.b) variance of light intensity according to (5.5). In this new framework, IE and ID are
no longer assumed to represent the average light intensity within each layer.

There are infinite combinations of IE and ID once p has been chosen (see electronic supplementary
material, SI.11); in the following we consider two options: cells oscillating between IE and darkness (case
B) or between I0 and ID (case C).

5.2.4. Alternative choice for simple light patterns

Case B. Switching between IE and 0
In this case, the upper light signal is IE, lower than the surface light I0. This approach is the simplest

because it corresponds to an on/off signal. Here

IE = I0
1 + η

2
and p = 2Ī

I0(1 + η)
. (5.6)
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Figure 8. Proportion of high light (euphotic layer depth) with respect toη = IL/I0, for three different strategies. (A) The simple strategy
for an on/off signal, with appropriate proportion of high-light I0, (B) light pattern with appropriate high-light fraction, average light,
and standard deviation, with 0 as the lower light intensity (given by equation (5.6)), and (C) light pattern with appropriate high-light
fraction, average light, and standard deviation, with I0 as the maximum light (given by equation (5.7)).

The resulting light period is presented in figure 8 (case B), and the typical light pattern appears in
figure 9b.

Case C. Switching between I0 and ID

Here, the upper light signal is I0. This approach is more relevant for experimental studies targeting
photoinhibition and stimulating the xanthophyll cycle because it exposes cells to the highest light level
they might encounter. In this option, ID is not zero and can be computed (see electronic supplementary
material, SI.11):

ID = − (1 − η)2

2(1 − η + ln(η))
I0 and p = Ī − ID

I0 − ID
. (5.7)

The resulting light periods are presented in figure 8 (case C), and the typical light pattern is illustrated
in figure 9c. It is noteworthy that this approach yields longer darker periods than what are generally
studied in classical light/dark experiments (case A). In addition, the use of low light (and not zero) is
more representative of real conditions. It is different from total darkness since it maintains a minimal
photosynthetic activity and ensures a minimal level of oxygen in the cell.

Finally, we compare these step signals with the realistic paragon signal computed in §2.2 and
experimentally applied to the culture. At first glance, the signal plotted in figure 3b is similar to the
recommended step signal computed for case C. The time spent at high light for the paragon—i.e. with
a light intensity higher than p.I0 (where p = 13.5%, as defined in case C)—is 15.8%, which is consistent
with 9.2% of time at low light recommended for case C.

5.3. Toward realistic experiments
Lagrangian simulation is an appropriate route to downscale experiments studying the effects of mixing
on the efficiency of photon use. Even though such a framework requires a complex experimental set-up
and renders experiments more difficult to run, combining fast light variations (at the scale of seconds)
with long-term experiments (at the scale of weeks) to account for cell photoacclimation remains of utmost
importance. Better numerical schemes are expected to more accurately reconstruct the Lagrangian
trajectory with higher Navier–Stokes fidelity. Also, advanced nonlinear optics describing light fields in
a multidiffusive environment may more accurately represent light distribution. The key challenge to
decipher the link between productivity and mixing energy is to reconstruct the light pattern for different
mixing intensities. In electronic supplementary material, SI.7, we show that the dissipated energy is
multiplied by 5.4 when the average fluid velocity is increased from 0.15 m s−1 to 0.3 m s−1. According
to our experimental study, it is clear that this large increase in energy demand is not compensated by a
larger productivity, and can even become counter-productive.
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Figure 9. Representative step functions for light patterns in agreement with actual light distribution for IL/I0= 0.01. Three possible
strategies are presented: (a) the simple on/off strategy, with an appropriate proportion of high light I0, (b) light pattern with an
appropriate high-light fraction, average light, and standard deviation, with 0 as lower light intensity (given by equation (5.6)), and (c)
light pattern with an appropriate high-light fraction, average light, and standard deviation, with I0 as the maximum light (given by
equation (5.7)) (appropriate for studying energy dissipation through the xanthophyll cycles).

As demonstrated in this work, the Lagrangian patterns should have inherent theoretical properties
(average light, standard deviation) independent of the hydrodynamic regime. To date, no numerical
model guarantees these properties when considering various mixing regimes. Using relevantly designed
light signals will thus contribute to better understand photosynthesis and NPQ in realistic conditions,
provided that the high to low light exposure ratio is appropriately tuned to optical depth. Finally, it must
be emphasized that simple step signals are generic and independent from the geometry of the process,
while a Lagrangian-derived light pattern is tailored to a specific process, and associated with a mixing
regime. Modifying the process geometry or the mixing intensity affects cell trajectories and eventually the
light pattern. The Lagrangian trajectories should thus be recomputed for any change in the geometry. The
cost for setting up the numerical simulation, and for adapting it to new conditions limits the approach.

6. Conclusion
Experiments usually performed with representative on/off light signals for studying the flashing effect in
a dense culture are generally not consistent with the real physics. It is impossible to select an appropriate
combination between two light intensities while respecting key physical principles. In this approach,
the frequency of alternation between high and low light is related to both an underlying discretization
into layers and the average fluid velocity. Reconstructing a realistic light pattern using a Lagrangian
approach is, therefore, of importance for downscaling real processes. Using this approach, microalgae in
laboratory environments experience similar conditions to those in industrial processes. Corresponding
experiments growing Dunaliella salina revealed complex behaviours, different from previous on/off
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experiments, which cannot be explained by classical models. The trade-off between photosynthesis and
photoprotection, through photoacclimation, seems to be triggered differently according to the light signal
period. Further studies are needed to understand the intracellular regulation mechanisms that appear
in these highly variable environments. The chlorophyll content proved to be highly dependent upon
the rate of light variation, and thus on fluid velocity. If such a result is confirmed, there is an optimal
agitation rate that can maximize growth. Experiments in high-density cultures could confirm these
findings. This study highlights the benefits of a multidisciplinary approach, where improvement of the
fluid dynamics modelling leads to a new generation of experiments emphasizing unexplored acclimation
mechanisms.
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