J. A. Greathouse, H. R. Stellalevinsohn, M. A. Denecke, A. Bauer, R. T. Pabalan et al., Uranyl surface complexes in a mixed-charge montmorillonite: Monte Carlo computer simulation and polarized XAFS results. Clays Clay Miner Hysteresis in clay swelling induced by hydrogen bonding: Accurate prediction of swelling states, Langmuir, vol.53, issue.22, pp.278-286, 1021.

B. Rotenberg, J. Morel, V. Marry, and P. Turq, On the driving force of cation exchange in clays: Insights from combined microcalorimetry experiments and molecular simulation, Geochimica et Cosmochimica Acta, vol.73, issue.14, pp.4034-4044, 2009.
DOI : 10.1016/j.gca.2009.04.012

URL : https://hal.archives-ouvertes.fr/hal-00391354

N. Malikova, E. Dubois, V. Marry, B. Rotenberg, and P. Turq, Dynamics in Clays - Combining Neutron Scattering and Microscopic Simulation, Zeitschrift f??r Physikalische Chemie, vol.7, issue.1-2, pp.153-181, 2010.
DOI : 10.1021/j100308a038

URL : https://hal.archives-ouvertes.fr/hal-00531710

R. L. Anderson, I. Ratcliffe, H. C. Greenwell, P. A. Williams, S. Cliffe et al., Clay swelling ??? A challenge in the oilfield, Earth-Science Reviews, vol.98, issue.3-4, pp.201-216, 2010.
DOI : 10.1016/j.earscirev.2009.11.003

B. Rotenberg, A. J. Patel, and D. Chandler, Molecular Explanation for Why Talc Surfaces Can Be Both Hydrophilic and Hydrophobic, Journal of the American Chemical Society, vol.133, issue.50, pp.20521-2052710, 2011.
DOI : 10.1021/ja208687a

URL : https://hal.archives-ouvertes.fr/hal-01897604

E. Ferrage, B. A. Sakharov, L. J. Michot, A. Delville, A. Bauer et al.,

M. Jiménez-ruiz and G. J. Cuello, Hydration properties and interlayer organization of water and ions in synthetic Na-smectite with tetrahedral layer charge. Part 2. Toward a precise coupling between molecular simulations and diffraction data, J. Phys. Chem. C, vol.115, pp.1867-188110, 1021.

L. J. Michot, E. Ferrage, M. Jiménez-ruiz, M. Boehm, and A. Delville, Anisotropic Features of Water and Ion Dynamics in Synthetic Na- and Ca-Smectites with Tetrahedral Layer Charge. A Combined Quasi-elastic Neutron-Scattering and Molecular Dynamics Simulations Study, The Journal of Physical Chemistry C, vol.116, issue.31, pp.16619-1663310, 2012.
DOI : 10.1021/jp304715m

URL : https://hal.archives-ouvertes.fr/hal-00819855

V. Marry, E. Dubois, N. Malikova, J. Breu, and W. Haussler, Anisotropy of Water Dynamics in Clays: Insights from Molecular Simulations for Experimental QENS Analysis, The Journal of Physical Chemistry C, vol.117, issue.29, pp.15106-1511510, 2013.
DOI : 10.1021/jp403501h

C. P. Morrow, A. Ö. Yazaydin, M. Krishnan, G. M. Bowers, A. G. Kalinichev et al., Structure, Energetics, and Dynamics of Smectite Clay Interlayer Hydration: Molecular Dynamics and Metadynamics Investigation of Na-Hectorite, The Journal of Physical Chemistry C, vol.117, issue.10, pp.5172-518710, 1021.
DOI : 10.1021/jp312286g

URL : https://hal.archives-ouvertes.fr/in2p3-00870391

S. V. Churakov, T. Gimmi, T. Unruh, L. R. Van-loon, and F. Juranyi, Resolving diffusion in clay minerals at different time scales: Combination of experimental and modeling approaches, Applied Clay Science, vol.96, issue.96, pp.36-44
DOI : 10.1016/j.clay.2014.04.030

P. Porion, F. Warmont, A. Faugère, A. Rollet, E. Dubois et al., Cs Nuclear Magnetic Resonance Relaxometry as a Probe of the Mobility of Cesium Cations Confined within Dense Clay Sediments, The Journal of Physical Chemistry C, vol.119, issue.27, pp.15360-15372, 2015.
DOI : 10.1021/acs.jpcc.5b03880

B. Rotenberg, V. Marry, J. Dufrêche, N. Malikova, E. Giffaut et al., Modelling water and ion diffusion in clays: A multiscale approach, Comptes Rendus Chimie, vol.10, issue.10-11, pp.1108-1116, 2007.
DOI : 10.1016/j.crci.2007.02.009

C. Tournassat, Y. Chapron, P. Leroy, M. Bizi, and F. Boulahya, Comparison of molecular dynamics simulations with triple layer and modified Gouy???Chapman models in a 0.1M NaCl???montmorillonite system, Journal of Colloid and Interface Science, vol.339, issue.2, pp.533-541, 2009.
DOI : 10.1016/j.jcis.2009.06.051

URL : https://hal.archives-ouvertes.fr/hal-00514041

M. Jardat, J. Dufrêche, B. Rotenberg, V. Marry, B. Rotenberg et al., Salt exclusion in charged porous media: a coarse-graining strategy in the case of montmorillonite clays, Physical Chemistry Chemical Physics, vol.7, issue.12, pp.2023-203310, 1039.
DOI : 10.1524/zpch.218.6.699.33458

URL : https://hal.archives-ouvertes.fr/hal-00369647

I. C. Bourg and G. Sposito, Connecting the Molecular Scale to the Continuum Scale for Diffusion Processes in Smectite-Rich Porous Media, Environmental Science & Technology, vol.44, issue.6, pp.2085-209110, 2010.
DOI : 10.1021/es903645a

M. Hedström and O. Karnland, Donnan equilibrium in Na-montmorillonite from a molecular dynamics perspective, Geochimica et Cosmochimica Acta, vol.77, pp.266-274, 2012.
DOI : 10.1016/j.gca.2011.11.007

A. Bo¸tanbo¸tan, V. Marry, B. Rotenberg, P. Turq, and B. Noetinger, How Electrostatics Influences Hydrodynamic Boundary Conditions: Poiseuille and Electro-osmostic Flows in Clay Nanopores., The Journal of Physical Chemistry C, vol.117, issue.2, pp.978-98510, 1021.
DOI : 10.1021/jp3092336

D. Ebrahimi, A. J. Whittle, and R. J. Pellenq, Mesoscale properties of clay aggregates from potential of mean force representation of interactions between nanoplatelets, The Journal of Chemical Physics, vol.83, issue.15
DOI : 10.1016/j.ijsolstr.2004.06.019

R. M. Tinnacher, M. Holmboe, C. Tournassat, I. C. Bourg, and J. A. Davis, Ion adsorption and diffusion in smectite: Molecular, pore, and continuum scale views, Geochimica et Cosmochimica Acta, vol.177, pp.130-149, 2016.
DOI : 10.1016/j.gca.2015.12.010

URL : https://hal.archives-ouvertes.fr/hal-01368176

P. Bacle, J. Dufrêche, B. Rotenberg, I. C. Bourg, and V. Marry, Modeling the transport of water and ionic tracers in a micrometric clay sample, Applied Clay Science, vol.123, issue.123, pp.18-28
DOI : 10.1016/j.clay.2015.12.014

URL : https://hal.archives-ouvertes.fr/hal-01484130

N. T. Skipper, K. Refson, and J. D. Mcconnell, Computer calculation of water-clay interactions using atomic pair potentials. Clay Miner, pp.411-425, 1989.
DOI : 10.1180/claymin.1989.024.2.16

URL : http://doi.org/10.1180/claymin.1989.024.2.16

A. Delville, Structure and properties of confined liquids: a molecular model of the clay-water interface, The Journal of Physical Chemistry, vol.97, issue.38, pp.9703-971210, 1993.
DOI : 10.1021/j100140a029

N. T. Skipper, F. C. Chang, and G. Sposito, Monte Carlo simulation of interlayer molecular structure in swelling clay minerals. I: Methodology. Clays Clay Miner, pp.285-29310, 1995.
DOI : 10.1346/ccmn.1995.0430303

URL : http://doi.org/10.1346/ccmn.1995.0430303

B. J. Teppen, K. Rasmussen, P. M. Bertsch, D. M. Miller, and L. Schäfer, Molecular Dynamics Modeling of Clay Minerals. 1. Gibbsite, Kaolinite, Pyrophyllite, and Beidellite, The Journal of Physical Chemistry B, vol.101, issue.9, pp.1579-158710, 1021.
DOI : 10.1021/jp961577z

C. I. Sainz-diaz, A. Hernández-laguna, and M. T. Dove, Modeling of dioctahedral 2:1 phyllosilicates by means of transferable empirical potentials, Physics and Chemistry of Minerals, vol.28, issue.2, pp.130-14110, 2001.
DOI : 10.1007/s002690000139

R. T. Cygan, J. Liang, and A. G. Kalinichev, Molecular Models of Hydroxide, Oxyhydroxide, and Clay Phases and the Development of a General Force Field, The Journal of Physical Chemistry B, vol.108, issue.4, pp.1255-126610, 2004.
DOI : 10.1021/jp0363287

U. V. Reddy, G. M. Bowers, N. Loganathan, and M. Bowden, H NMR Spectroscopy of Mg???, Ca???, Sr???, Na???, Cs???, and Pb???Hectorite, The Journal of Physical Chemistry C, vol.120, issue.16, pp.8863-8876, 2016.
DOI : 10.1021/acs.jpcc.6b03431

P. E. Lopes, B. Roux, and A. D. Mackerell, Molecular modeling and dynamics studies with explicit inclusion of electronic polarizability: theory and applications, Theoretical Chemistry Accounts, vol.85, issue.66, pp.11-28, 2009.
DOI : 10.1261/rna.5205404

URL : http://europepmc.org/articles/pmc2888514?pdf=render

P. Cieplak, F. Dupradeau, Y. Duan, and J. Wang, Polarization effects in molecular mechanical force fields, Journal of Physics: Condensed Matter, vol.21, issue.33, pp.10-1088, 2009.
DOI : 10.1088/0953-8984/21/33/333102

URL : http://europepmc.org/articles/pmc4020598?pdf=render

B. Dazas, B. Lanson, J. Breu, J. Robert, M. Pelletier et al., Smectite fluorination and its impact on interlayer water content and structure: A way to fine tune the hydrophilicity of clay surfaces? Microporous Mesoporous Mater, pp.233-247, 2013.

V. Marry, E. Dubois, N. Malikova, S. Durand-vidal, S. Longeville et al., Water Dynamics in Hectorite Clays: Infuence of Temperature Studied by Coupling Neutron Spin Echo and Molecular Dynamics, Environmental Science & Technology, vol.45, issue.7, pp.2850-285510, 1021.
DOI : 10.1021/es1031932

A. Aguado, L. Bernasconi, S. Jahn, and P. A. Madden, Multipoles and interaction potentials in ionic materials from planewave-DFT calculations. Faraday Discuss, pp.171-18410, 2003.
DOI : 10.1039/b300319c

S. Jahn and P. A. Madden, Modeling Earth materials from crustal to lower mantle conditions: A transferable set of interaction potentials for the CMAS system, Physics of the Earth and Planetary Interiors, vol.162, issue.1-2, pp.129-139, 2007.
DOI : 10.1016/j.pepi.2007.04.002

URL : https://hal.archives-ouvertes.fr/hal-00532104

S. Tesson, M. Salanne, B. Rotenberg, S. Tazi, and V. Marry, Classical Polarizable Force Field for Clays: Pyrophyllite and Talc, The Journal of Physical Chemistry C, vol.120, issue.7, pp.3749-3758, 2016.
DOI : 10.1021/acs.jpcc.5b10181

URL : https://hal.archives-ouvertes.fr/hal-01480737

S. Tesson, W. Louisfrema, M. Salanne, A. Boutin, B. Rotenberg et al., Classical Polarizable Force Field To Study Dry Charged Clays and Zeolites, The Journal of Physical Chemistry C, vol.121, issue.18, pp.9833-9846, 2017.
DOI : 10.1021/acs.jpcc.7b00270

URL : https://hal.archives-ouvertes.fr/hal-01515667

L. J. Michot, F. Villieras, M. François, F. Yvon, and R. Le-dred, The Structural Microscopic Hydrophilicity of Talc, Langmuir, vol.10, issue.10, pp.3765-3773, 1994.
DOI : 10.1021/la00022a061

M. F. Brigatti, E. Galan, and B. K. Theng, Handbook of clay science?Structures and Mineralogy of Clay Minerals, Dev. Clay Sci, vol.2, pp.19-86, 2006.

E. Ferrage, Investigation of the Interlayer Organization of Water and Ions In Smectite from the Combined Use of Diffraction Experiments And Molecular Simulations. a Review of Methodology, Applications, And Perspectives, Clays and Clay Minerals, vol.64, issue.4, pp.346-37110, 2016.
DOI : 10.1346/CCMN.2016.0640401

E. Ferrage, B. Lanson, N. Malikova, A. Plançon, B. Sakharov et al., Reflections, Chemistry of Materials, vol.17, issue.13, pp.3499-351210, 2005.
DOI : 10.1021/cm047995v

URL : https://hal.archives-ouvertes.fr/hal-00193951

B. Dazas, E. Ferrage, A. Delville, and B. Lanson, Interlayer structure model of tri-hydrated low-charge smectite by X-ray diffraction and Monte Carlo modeling in the Grand Canonical ensemble, American Mineralogist, vol.99, issue.8-9, pp.1724-1735, 2014.
DOI : 10.2138/am.2014.4846

URL : https://hal.archives-ouvertes.fr/hal-01171396

M. Szczerba and A. G. Kalinichev, Intercalation of Ethylene Glycol in Smectites: Several Molecular Simulation Models Verified by X-ray Diffraction Data, Clays and Clay Minerals, vol.64, issue.4, pp.488-50210
DOI : 10.1346/CCMN.2016.0640411

URL : https://hal.archives-ouvertes.fr/in2p3-01577620

M. Szczerba and K. Ufer, New model of ethylene glycol intercalate in smectites for XRD modelling, Applied Clay Science, vol.153, pp.113-123, 2018.
DOI : 10.1016/j.clay.2017.12.010

J. Greathouse and G. Sposito, ???Smectites, The Journal of Physical Chemistry B, vol.102, issue.13, pp.2406-2414, 1998.
DOI : 10.1021/jp980120h

R. Sutton and G. Sposito, Molecular Simulation of Interlayer Structure and Dynamics in 12.4 ?? Cs-Smectite Hydrates, Journal of Colloid and Interface Science, vol.237, issue.2, pp.174-184, 2001.
DOI : 10.1006/jcis.2000.7416

R. Sutton and G. Sposito, Animated molecular dynamics simulations of hydrated caesium-smectite interlayers, Geochemical Transactions, vol.27, issue.9, pp.73-8010, 2002.
DOI : 10.1346/CCMN.1979.0270307

J. A. Greathouse, D. B. Hart, G. M. Bowers, R. J. Kirkpatrick, and R. T. Cygan, Molecular Simulation of Structure and Diffusion at Smectite???Water Interfaces: Using Expanded Clay Interlayers as Model Nanopores, The Journal of Physical Chemistry C, vol.119, issue.30, pp.17126-17136, 2015.
DOI : 10.1021/acs.jpcc.5b03314

N. Loganathan, A. Ö. Yazaydin, G. M. Bowers, A. G. Kalinichev, and R. J. Kirkpatrick, Cation and Water Structure, Dynamics, and Energetics in Smectite Clays: A Molecular Dynamics Study of Ca???Hectorite, The Journal of Physical Chemistry C, vol.120, issue.23, pp.12429-12439, 2016.
DOI : 10.1021/acs.jpcc.6b00230

URL : https://hal.archives-ouvertes.fr/in2p3-01577617

N. Loganathan, A. Ö. Yazaydin, G. M. Bowers, A. G. Kalinichev, and R. J. Kirkpatrick, O in Hectorite: Molecular Dynamics Simulations with an Unconstrained Substrate Surface, The Journal of Physical Chemistry C, vol.120, issue.19, pp.10298-10310, 2016.
DOI : 10.1021/acs.jpcc.6b01016

URL : https://hal.archives-ouvertes.fr/in2p3-01577618

F. G. Fumi and M. P. Tosi, Ionic sizes and born repulsive parameters in the NaCl-type alkali halides???I, Journal of Physics and Chemistry of Solids, vol.25, issue.1, pp.31-43, 1964.
DOI : 10.1016/0022-3697(64)90159-3

M. P. Tosi and F. G. Fumi, Ionic sizes and born repulsive parameters in the NaCl-type alkali halides???II, Journal of Physics and Chemistry of Solids, vol.25, issue.1, pp.45-52, 1964.
DOI : 10.1016/0022-3697(64)90160-X

B. Wang and D. G. Truhlar, Including Charge Penetration Effects in Molecular Modeling, Journal of Chemical Theory and Computation, vol.6, issue.11, pp.3330-334210
DOI : 10.1021/ct1003862

K. T. Tang and J. P. Toennies, An improved simple model for the van der Waals potential based on universal damping functions for the dispersion coefficients, The Journal of Chemical Physics, vol.15, issue.8, pp.3726-3741, 1984.
DOI : 10.1063/1.444057

S. Tazi, J. J. Molina, B. Rotenberg, P. Turq, R. Vuilleumier et al., based force field for aqueous ions, The Journal of Chemical Physics, vol.77, issue.11
DOI : 10.1038/nmat2422

URL : http://arxiv.org/pdf/1204.2084

S. Tesson, W. Louisfrema, E. Ferrage, B. Rotenberg, M. Salanne et al., Marry, V. Classical polarizable force field to study hydrated charged clays and zeolites, 2018.

P. L. Silvestrelli and M. Parrinello, Water Molecule Dipole in the Gas and in the Liquid Phase, Physical Review Letters, vol.66, issue.16, pp.3308-3311, 1999.
DOI : 10.1039/dc9786600199

L. Bernasconi, M. Wilson, and P. A. Madden, Cation polarizability from first-principles: Sn2+, Computational Materials Science, vol.22, issue.1-2, pp.94-9810, 2001.
DOI : 10.1016/S0927-0256(01)00173-2

L. Bernasconi, P. A. Madden, and M. Wilson, Ionic to molecular transition in AlCl 3 : An examination of the electronic structure, pp.1-1110, 2002.

I. Souza, T. Wilkens, and R. Martin, Polarization and localization in insulators: Generating function approach, Physical Review B, vol.65, issue.232, pp.1666-1683, 2000.
DOI : 10.1103/PhysRevLett.65.1490

URL : http://arxiv.org/pdf/cond-mat/9911007

I. Bérend, J. M. Cases, M. François, J. P. Uriot, L. J. Michot et al., Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonites: 2. The Li+, Na+, K+, Rb+, and Cs+-Exchanged Forms, Clays and Clay Minerals, vol.43, issue.3, pp.324-336, 1995.
DOI : 10.1346/CCMN.1995.0430307

G. Besson, R. Glaeser, and C. Tchoubar, Le cesium, révélateur de structure des smectites. Clay Miner, pp.11-19, 1983.
DOI : 10.1180/claymin.1983.018.1.02

URL : http://doi.org/10.1180/claymin.1983.018.1.02

J. M. Cases, I. Berend, M. Francois, J. P. Uriot, L. J. Michot et al., Mechanism of Adsorption and Desorption of Water Vapor by Homoionic Montmorillonite: 3. the Mg2+, Ca2+, Sr2+ and Ba2+ Exchanged Forms, Clays and Clay Minerals, vol.45, issue.1, pp.8-22, 1997.
DOI : 10.1346/CCMN.1997.0450102

E. Ferrage, B. Lanson, B. Sakharov, and V. A. Drits, Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns: Part I. Montmorillonite hydration properties, American Mineralogist, vol.90, issue.8-9, pp.1358-1374, 2005.
DOI : 10.2138/am.2005.1776

URL : https://hal.archives-ouvertes.fr/hal-00105756

G. M. Bowers, J. W. Singer, D. L. Bish, and R. J. Kirkpatrick, O Dynamics at the Smectite/Water Interface, The Journal of Physical Chemistry C, vol.115, issue.47, pp.23395-2340710, 1021.
DOI : 10.1021/jp2072167

C. Developers and G. , Available online: http://cp2k.berlios.de (accessed on, 2016.

G. J. Martyna, M. L. Klein, and M. Tuckerman, Nos?????Hoover chains: The canonical ensemble via continuous dynamics, The Journal of Chemical Physics, vol.97, issue.4, pp.2635-2643, 1992.
DOI : 10.1063/1.442716

T. Laino and J. Hutter, Notes on Ewald summation of electrostatic multipole interactions up to quadrupolar level, J. Chem. Phys. J. Chem. Phys, vol.119, issue.129, pp.7471-07410210, 2003.

J. P. Perdew, K. Burke, and M. Ernzerhof, Generalized Gradient Approximation Made Simple, Physical Review Letters, vol.80, issue.18, pp.3865-3868, 1996.
DOI : 10.1063/1.446965

S. Goedecker, M. Teter, and J. Hutter, Separable dual-space Gaussian pseudopotentials, Physical Review B, vol.44, issue.3, pp.1703-1710, 1996.
DOI : 10.1103/PhysRevB.44.8503

URL : http://arxiv.org/pdf/mtrl-th/9512004

C. Hartwigsen, S. Goedecker, and J. Hutter, Relativistic separable dual-space Gaussian pseudopotentials from H to Rn, Physical Review B, vol.82, issue.7, pp.3641-3662, 1998.
DOI : 10.1063/1.448618

URL : http://arxiv.org/pdf/cond-mat/9803286

M. Krack, Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals, Theoretical Chemistry Accounts, vol.114, issue.1-3, pp.145-152, 2005.
DOI : 10.1007/s00214-005-0655-y

P. L. Silvestrelli, Maximally localized Wannier functions for simulations with supercells of general symmetry, Physical Review B, vol.37, issue.15, pp.9703-9706, 1999.
DOI : 10.1103/PhysRevB.37.785

N. Marzari, I. Souza, and D. Vanderbilt, An introduction to maximally-localized wannier functions. Psi-K Newsl, pp.129-166, 2003.

F. James and M. Roos, Minuit - a system for function minimization and analysis of the parameter errors and correlations, Computer Physics Communications, vol.10, issue.6, pp.343-36710, 1975.
DOI : 10.1016/0010-4655(75)90039-9

L. X. Dang and T. Chang, Molecular dynamics study of water clusters, liquid, and liquid???vapor interface of water with many-body potentials, The Journal of Chemical Physics, vol.106, issue.19, pp.8149-8159, 1997.
DOI : 10.1063/1.1680328

J. Ryckaert, G. Ciccotti, and H. J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes, Journal of Computational Physics, vol.23, issue.3, pp.327-33410, 1977.
DOI : 10.1016/0021-9991(77)90098-5

J. L. Abascal and C. Vega, A general purpose model for the condensed phases of water: TIP4P/2005, The Journal of Chemical Physics, vol.50, issue.23, pp.23450510-1063, 2005.
DOI : 10.1063/1.1814352

J. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics, vol.117, issue.1, pp.1-19, 1995.
DOI : 10.1006/jcph.1995.1039

URL : https://www.osti.gov/servlets/purl/10176421

W. Sinoda, M. Shiga, and M. Mikami, Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B, vol.69, 2004.

R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles, 1988.
DOI : 10.1201/9781439822050

J. Robert, J. Beny, G. Ventura, and M. Hardy, Fluorine in micas: crystal-chemical control of the OH-F distribution between trioctahedral and dioctahedral sites, European Journal of Mineralogy, vol.5, issue.1, pp.7-18, 1993.
DOI : 10.1127/ejm/5/1/0007

B. A. Sakharov, A. S. Naumov, and V. A. Drits, X-ray diffraction by mixed-layer structures with random distribution of stacking faults, Dokl. Akad. Nauk, vol.265, pp.339-343, 1982.

B. A. Sakharov, A. S. Naumov, and V. A. Drits, X-ray intensities scattered by layer structure with short range ordering parameters S>1 and G>1, Dokl. Akad. Nauk, vol.265, pp.871-874, 1982.

D. M. Moore, R. C. Reynolds, and . Jr, X-ray Diffraction and the Identification and Analysis of Clay Minerals, 1997.

V. A. Drits, J. Srodon, and D. D. Eberl, XRD Measurement of Mean Crystallite Thickness of Illite and Illite/Smectite: Reappraisal of the Kubler Index and the Scherrer Equation, Clays and Clay Minerals, vol.45, issue.3, pp.461-47510, 1997.
DOI : 10.1346/CCMN.1997.0450315

W. Seidl and J. Breu, Abstract, Zeitschrift f??r Kristallographie - Crystalline Materials, vol.58, issue.2/3, pp.169-176, 2005.
DOI : 10.1021/ic00121a032

URL : https://hal.archives-ouvertes.fr/hal-00778070

J. Rayner, The Crystal Structure of Talc, Clays and Clay Minerals, vol.21, issue.2, pp.103-114, 1973.
DOI : 10.1346/CCMN.1973.0210206

L. Dzene, H. Verron, A. Delville, L. J. Michot, J. L. Robert et al., Influence of Tetrahedral Layer Charge on the Fixation of Cesium in Synthetic Smectite, The Journal of Physical Chemistry C, vol.121, issue.42, pp.23422-23435, 2017.
DOI : 10.1021/acs.jpcc.7b06308

N. Malikova, A. Cadéne, V. Marry, E. Dubois, P. Turq et al., Diffusion of water in clays ??? microscopic simulation and neutron scattering, Chemical Physics, vol.317, issue.2-3, pp.226-235, 2005.
DOI : 10.1016/j.chemphys.2005.04.035

URL : https://hal.archives-ouvertes.fr/hal-00018889

N. Malikova, A. Cadéne, E. Dubois, V. Marry, S. Durand-vidal et al., Water Diffusion in a Synthetic Hectorite Clay Studied by Quasi-elastic Neutron Scattering, The Journal of Physical Chemistry C, vol.111, issue.47, pp.17603-1761110, 2007.
DOI : 10.1021/jp0748009

, This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http, Licensee MDPI