
HAL Id: hal-01830520
https://hal.sorbonne-universite.fr/hal-01830520

Submitted on 5 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Form factor of rounded objects: the sections method
Bernard Croset

To cite this version:
Bernard Croset. Form factor of rounded objects: the sections method. Journal of Applied Crystallog-
raphy, 2018, 51 (4), pp.51 - 51. �10.1107/S1600576718007239�. �hal-01830520�

https://hal.sorbonne-universite.fr/hal-01830520
https://hal.archives-ouvertes.fr


research papers

J. Appl. Cryst. (2018). 51 https://doi.org/10.1107/S1600576718007239 1 of 8

Received 5 March 2018

Accepted 14 May 2018

Edited by V. T. Forsyth, Institut Laue–Langevin,

France, and Keele University, UK

Keywords: form factors; analytical methods;

fourfold truncated sphere; surface singularities.

Form factor of rounded objects: the sections
method

Bernard Croset*

Institut des NanoSciences de Paris, CNRS-UMR 7588, Sorbonne Université, F-75005 Paris, France. *Correspondence
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An analytical method, the sections method, is developed to build a close link

between the singularities of the surface of a body and the asymptotic behaviour

of its amplitude form factor at large scattering vector, q. In contrast with a

sphere, for which the asymptotic behaviour is in q�2, surface singularities lead to

both narrow regions, for which the amplitude form factor exhibits trailing

behaviour, and extended regions, for which it exhibits a rapid decrease. A

numerical study of a simple example, the fourfold truncated sphere, illustrates

the usefulness of these analytical predictions.

1. Introduction

As pointed out previously, nanoparticles and their shapes play

an ever increasing role in condensed matter physics (Balmes et

al., 2016; Goubet et al., 2013; Gruner et al., 2008; Langille et al.,

2012; Murphy et al., 2005; Xia et al., 2009; Xie et al., 2012;

Yamada et al., 2011; Zhang et al., 2012). X-ray scattering

techniques are an important tool to study and follow the

fabrication of nanoparticles and their self-assembly (Cho et al.,

2005; Geuchies et al., 2016; Goubet et al., 2016; Jones et al.,

2010; Kalesaki et al., 2014; Lee et al., 2011; Renaud et al., 2009).

Owing to rapid progress in the brightness of X-ray sources and

in phase-retrieval algorithms, coherent small-angle X-ray

scattering or scattering around Bragg peaks are appropriate

tools for the determination of nanoparticle shapes (Diaz et al.,

2009; Favre-Nicolin et al., 2009; Labat et al., 2015; Miao et al.,

2015; Öztürk et al., 2017).

As pointed out by Senesi & Lee (2015), the calculation of

the form factor of the particles is of major importance in the

context of any scattering technique. The use of Green’s

theorem and surface triangulation approaches (Georg &

Tausch, 1994) leads to very efficient numerical methods for

particles having ‘smooth’ surfaces (Chourou et al., 2013).

Besides these numerical techniques and phase-retrieval algo-

rithms, the ability to predict analytically the main character-

istics of the amplitude form factor for a given shape of a

scattering body may be quite useful. In a previous paper

(Croset, 2017), we established a compact formula for the

amplitude form factor of any polyhedron whatever its

convexity, and we showed that it presents asymptotic beha-

viour in q�3 for a generic direction of the scattering vector q,

in q�2 for directions perpendicular to an edge and in q�1 for

directions normal to a face. Our purpose in this paper is to

address the generalization of such a result for more rounded

bodies. We will show that the dependence of the asymptotic

behaviour of the amplitude form factor on the scattering

vector orientation can be established analytically using an

expression for the amplitude form factor already proposed by
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Patterson (1939). Finally, a numerical application to a fourfold

truncated sphere demonstrates the physical usefulness of this

analytical approach.

2. The sections method

2.1. The Patterson result

We want to calculate the amplitude form factor of a given

body, B . We have

FðqÞ ¼
RRR

B
expð�iq � rÞ d3r: ð1Þ

Choosing as our Cartesian coordinate system, (x, y, z), a

system having its z axis parallel to q, F is written as

FðqÞ ¼
R RR

SðhÞ dx dy
� �

expð�iqhÞ dh ¼
R

AðhÞ expð�iqhÞ dh;

ð2Þ

where S ðhÞ is the section of the body by the plane P , normal

to q at z = h, and A(h) is its area. This result, first established

by A. L. Patterson in 1939, is well known in crystallography.

We will show in this paper that it is of major interest, since it

allows us to discuss the asymptotic behaviour of F(q) at large q

and its dependence on the orientation of the scattering vector.

Indeed, whereas the Fourier transform of A(h) cannot, in

general, be calculated analytically, the singularities of A(h) can

be identified and described analytically. The theory of distri-

butions shows that there is a direct link between the singula-

rities of a function and the asymptotic behaviour of its Fourier

transform (Guelfand & Chilov, 1962). Therefore, equation (2)

is a clue to discussing the asymptotic behaviour of F(q).

2.2. Classification of the singularities of A(h)

Since the scattering body has a finite support, A(h) always

exhibits two singularities at h = hi , the first contact of P with

the body, and h = ho, the last contact of P with the body. We

will call these two singularities ‘entry’ and ‘exit’, respectively.

When the external surface of the body exhibits singularities –

truncation, edges, apices etc. – the contact of P with these

singularities leads to singularities in A(h) in the interval hi �

h � ho. For each singularity of A(h) in hn , the main point is to

determine the characteristic exponent of the singularity, �n .

Defining " = (h � hn), �n corresponds to the power of the

leading term of the difference between the series develop-

ments of A(h) for positive, A+(|"|), and negative, A�(�|"|),

values of ", i.e.

Sðj"jÞ ¼ jAþðj"jÞ � A�ð�j"jÞj ¼ Dj"j�n þOðj"j�nþ1
Þ: ð3Þ

2.3. Asymptotic behaviour of the amplitude form factor

From the theory of distributions (see e.g. Guelfand &

Chilov, 1962), it is well known that a singularity for A(h) of

exponent � and amplitude D leads to an asymptotic term for

the Fourier transform of A which can be written

Dq�ð�þ1Þ þ O½q�ð�þ2Þ�. Using this result, to determine the

asymptotic behaviour of F(q) in a given direction we just have

to identify the different discontinuities of A(h) in this direc-

tion and determine their characteristic exponent, �n . Note that

the asymptotic behaviour will be determined by the smallest

value of �n. We will call this the ‘rule of dominant singula-

rities’. Therefore, to study the dependence of F(q) on the q

direction, we have to study the singularities of A(h) for every

direction and apply the rule of dominant singularities. This

constitutes the ‘sections method’. The next section will be

devoted to an illustrative example, the case of the tetrahedron

for which Croset (2017) provides an exact formula. In x4 we

will study the more common discontinuities and the associated

asymptotic terms. Finally, in x5 we will show that this study of

asymptotic behaviour can be used to predict the contrast in

the variation of the amplitude form factor with q direction at

rather small values of q.

3. Principle of the method: the tetrahedron example

Even though the compact formula established for the ampli-

tude form factor of a polyhedron gives an exact analytical

result for the tetrahedron amplitude form factor, we will study

this case by the sections method in order to demonstrate the

principles of the method and give illustrative details of its

application.

3.1. Generic direction

For a generic direction, entry and exit occur by contact with

an apex for h = hi and h = ho, and the other two apices are met

consecutively for h = h1 and h = h2 . In such a case, the section

is a triangle Ti for hi� h� h1 and a triangle To for h2� h� ho.

These sections vary homothetically with "i = hi � h and "o = h

� ho, leading to �i = �o = 2. For h1 � h � h2 , the section is a

quadrilateral, Q. The difference between Q and Ti (or To) is a

triangle T1 (or T2) varying homothetically with "1 = h1 � h (or

"2 = h � h2), leading to �1 = �2 = 2. Fig. 1 illustrates this point.

Therefore, for q in a generic direction, the asymptotic beha-

viour of F(q) is in q�3. We retrieve the result established

directly using the formula of Croset (2017). Note that we will
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Figure 1
Sections of the tetrahedron in a generic direction. (a) Perspective view
and (b) a view from the normal to P . The tetrahedron edges are drawn in
red. The different sections are drawn in blue, purple and green.



meet this behaviour several times in this article: a positive

contribution, here the triangles Ti and To, or a negative

contribution, here the triangles T1 and T2 , of a given shape to

the section singularity leading to the same � and the same

asymptotic behaviour.

3.2. q perpendicular to an edge

If q is perpendicular to an edge, we have hi = h1 or h1 = h2 or

h2 = ho. Let us study the case when hi = h1. For h1� h� h2 , the

section is a trapezoid of constant angles: its bases are parallel

to the edge and have a length equal to the edge length at first

order in ", while its height is proportional to ". Therefore, for

the singularity in h = h1, � = 1. For h2 � h � ho, we retrieve the

triangle To and the singularities in h = h2 and h = ho are

unchanged with � = 2. Thus, in this case, following the rule of

dominant singularities the asymptotic behaviour of F(q) is in

q�2. By symmetry, this asymptotic behaviour is the same for

the case h2 = ho. For the case when h1 = h2 , Ti and To are

similar triangles and we go directly from Ti to To in h = h1. The

curve A(h) therefore consists of two parabolic arcs of equation

ai(h � hi)
2 and ao(h � ho)2, and presents a slope discontinuity

in h = h1 = h2 leading to � = 1, while the two singularities in h =

hi and h = ho remain unchanged. Once again, following the

rule of dominant singularities the asymptotic behaviour of

F(q) is in q�2. Thus, in all three cases we retrieve an asymptotic

behaviour of F(q) in q�2, which corresponds to the result

established directly using the formula of Croset (2017).

3.3. q normal to a face

If q is normal to a face, we have hi = h1 = h2 or h1 = h2 = ho.

In both cases, we have a discontinuity of the section area when

touching the face leading to � = 0 and an asymptotic behaviour

of F(q) in q�1, which corresponds to the result established

directly using the formula of Croset (2017).

4. Usual discontinuities for rounded bodies

In order to find and classify the different singularities of A(h),

we first have to identify the singularities of the body surface

and then study the orientation of q with respect to these shape

singularities. We will not try to make an exhaustive study of

the singularities of surfaces but we will explore the ones which

seem to be more common in physical problems.

Let us first discuss the main singularities of the body

surface.

(i) The scattering body may be fully spheroidal. In this case

the surface does not present any singularity and two main radii

of curvature can be defined at each point.

(ii) The scattering body may be ruled, as are revolution

cylinders and revolution cones.

(iii) The scattering body may present truncations.

(a) In the case of a single truncation (i.e. a face), the peri-

meter of this truncation is generally an edge, i.e. a continuous

set of points on the surface where there are two tangent

planes.

(b) In the case of two secant truncations, there is a straight

edge. This straight edge has two extremities which are apices.

For a given surface, A(h) will present singularities not only

at the entry and exit points, but also each time the intersecting

plane P encounters a singularity of the surface. The char-

acteristic coefficient � depends on both the nature of the

singularity and the orientation of q with respect to this

singularity. The following subsections review the main possi-

bilities. Note that the singularities we will discuss appear in the

same form for convex and concave objects, since local

convexity controls only the sign of S(") for these singularities.

Nevertheless, concave objects may present points for which

the two main radii of curvature have different signs (saddle

points, for example). We will not discuss such cases in this

paper.

4.1. k = 0: surface contact with a truncation

If q is normal to a face, F , of area AF , there is a value of h

where F is in P and for which A(h) presents a discontinuity of

amplitude AF , leading to an asymptotic behaviour in AF q�1.

This behaviour corresponds to the well known truncation rods

which appear for surfaces of semi-infinite crystals in grazing-

incidence X-ray scattering (GIXS) (Robinson, 1986), for

faceted vicinal faces in GIXS (Coati et al., 2005) and for

faceted aggregates in grazing-incidence small-angle X-ray

scattering (Renaud et al., 2009).

4.2. k = 1/2: line contact with a generatrix

Let us begin with the simplest example, the right revolution

cylinder of radius R and height H (see Fig. 2). Direct calcu-

lation of the amplitude form factor gives

FðqÞ ¼ 2�R2H
J1ðqjjRÞ

qjjR

sinðqzH=2Þ

qzH=2
; ð4Þ

where q|| and qz are the components of q normal and parallel

to the cylinder axis, respectively, and J1 is the Bessel function

of the first kind of order 1 [Fournet, 1951; Guinier & Fournet,

1955; and also Lazzari (2002), who presents a large catalogue

of form factors]. For such a cylinder, if q is normal to the axis,

then for R = hi � h � ho = �R the section is a rectangle of

length H and width 2(R2
� h2)1/2. The first term of the series
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Figure 2
Sections of the revolution cylinder. Red denotes the surface of the
cylinder, blue the section by a plane parallel to the generatrices and green
a section in a generic direction.



development of the section area discontinuities at the two

critical values h = hi and h = ho is written S(") = 2H(2R")1/2,

leading to � = 1/2 for the two singularities and to an asymptotic

behaviour in 2H(2R)1/2q�3/2 for F(q). Since J1(x)/x decreases

asymptotically as x�3/2, the asymptotic behaviour found using

the sections method is in full agreement with that predicted by

the direct calculation of F(q).

The sections method has the great advantage of predicting

asymptotic behaviour for more complex cases for which the

amplitude form factor cannot be calculated analytically.

Firstly, let us consider a general cylinder of which the directrix

is a planar curve without apices, i.e. having a radius of

curvature R(t) defined at any point t. For q normal to the

generatrices’ direction, we will denote as ti the point of first

contact of the plane P with the cylinder corresponding to h =

hi . For hi
<
� h, the section is a rectangle of height H(ti) and

width 2[R(ti)
2
� h2]1/2. We retrieve for the first term of the

series development of the section area discontinuity S(") =

2H(ti)[2R(ti)"]
1/2, leading to � = 1/2. Note that the precise

shape and orientation of the two cylinder bases which control

the variation of H(ti) with ti do not play a role in the value of �
since they do not affect the degree of the first term of the

series development of S("). Secondly, it is easy to be

persuaded that the result established for a general cylinder is

retained when P touches the surface of a cone by a generatrix

(see Appendix A for detailed calculations).

4.3. k = 1: contact with a spheroid and contact with a straight
edge

4.3.1. Point contact with a sphere or a spheroid. Let us first

examine the case of a sphere of radius R. The amplitude form

factor can be calculated directly to obtain the well known

result

FðqÞ ¼ 4�½sinðqRÞ � qR cosðqRÞ� q�3; ð5Þ

which has an asymptotic behaviour in 4�Rcos(qR)q�2. Now,

using the sections method, for any direction of q and for R =

hi � h � ho = �R the section is a circle of radius r = (R2
�

h2)1/2, leading to A(h) = �(R2
� h2). The first term of the series

development of the area discontinuity is given by S(") = 2�R"
for both the entry singularity and the exit singularity. For both

cases, we have � = 1 and an asymptotic behaviour in 2�Rq�2

for the amplitude form factor, as predicted by the direct

formula.

The sections method allows us to generalize this result to a

point contact with a spheroidal part of a surface. In this case, at

the point contact, the surface possesses two main radii of

curvature, R1 and R2. To first order, the section is an ellipse of

area S(") = 2�(R1R2)1/2" and we get an asymptotic behaviour

in 2�(R1R2)1/2q�2.

4.3.2. Line contact with a straight edge, i.e. with the
intersection of two planar truncations. Let us study the case

of contact with a straight edge. We have already met this case

in the study of the tetrahedron, and the exact formula estab-

lished by Croset (2017) predicts � = 1 for q perpendicular to an

edge for any polyhedron. The sections method allows us to

generalize this result to any straight edge. Let us examine the

case of a surface with two planar truncations, T 1 and T 2,

secant along an edge AB. We will show that A(h) possesses a

singularity with � = 1 when q is perpendicular to AB. Let us

denote as hc the value of h for which AB is in P . Three cases

occur, two of them being equivalent: first, P intercepts neither

T 1 nor T 2 for h < hc , while it intercepts T 1 and T 2 for h > hc ;

second, P intercepts T 1 for h < hc , while it intercepts T 2 for h

> hc ; third, P intercepts neither T 1 nor T 2 for h > hc , while it

intercepts T 1 and T 2 for h < hc . We denote by �1 and �2 the

angles of T 1 and T 2, respectively, with P . In the first and

third cases, for the values of h for which P and T 1 and P and

T 2 intersect, the section is a rectangle of length AB and width

|cot(�1) � cot(�2)| |"| plus two parts which depend on the

details of the shape around A and B but of which the areas

vary quadratically with ". Therefore, we have � = 1 and an

asymptotic behaviour for the amplitude form factor in

AB |cot(�1) � cot(�2)|q�2. In the second case, for h < hc a part

of the section perimeter is a straight line of length AB and of

position varying as hcot(�1), while for h > hc the same straight

line has its position varying as hcot(�2). Therefore, a slope

discontinuity exists for A(h) equal to AB[cot(�1) � cot(�2)].

Again, we have � = 1 and an asymptotic behaviour for the

amplitude form factor in AB |cot(�1) � cot(�2)|q�2.

4.4. k = 3/2: point contact with the curved edge of a planar
truncation

We will now consider the case of an object having a planar

truncation T with a curved edge, and we will study the

singularity linked to the contact of P with this curved edge for

h = hc . Two cases must be considered.

Firstly, the contact t with T is the first (or the last) contact

of P with the body. We will denote as � the angle between T

and P and as � the angle between P and the plane tangent to

the body in t. Therefore, the section for h <� hc is a circular

segment of radius r and of sagitta f = "[cot(�) + cot(�)]. Its

area is

AðhÞ ¼ r2 arccosð1� f=rÞ � ð1� f=rÞ ½1� ð1� f=rÞ
2
�
1=2

� �
¼ 4ð21=2Þ=3 r1=2f 3=2 þOðf 5=2Þ

¼ 4ð21=2Þ=3 r1=2"3=2½cotð�Þ þ cotð�Þ�3=2
þOð"5=2Þ: ð6Þ

Therefore, the contact leads to a singularity with � = 3/2

and an asymptotic behaviour in 4/3(21/2)r1/2[cot(�) +

cot(�)]3/2q�5/2. The details of the body shape determine the

value of r. For a truncated sphere of radius R truncated at a

height H = Rcos(’0), we have r = Rsin(’0� �) and � = ’0� �,

leading to an asymptotic behaviour in [4(21/2)R1/2 sin(’0)3/2]/

[3sin(’0 � �)sin(�)3/2]q�5/2 (see Fig. 3). In this case, the

condition for the contact between T and P being the first

contact is � < ’0 . For a right revolution cylinder of radius R

(see Fig. 2), we have r = Rcos(�) and � = �/2� �, leading to an

asymptotic behaviour in [4(21/2)R1/2]/[3cos(�)sin(�)3/2]q�5/2,

in full agreement with the asymptotic behaviour which can be

deduced from the direct formula. In this case, the contact

between T and P is the first for 0 � � � �/2.

research papers

4 of 8 Bernard Croset � Form factor of rounded objects J. Appl. Cryst. (2018). 51



Secondly, the contact between T and P does not corre-

spond to the entry or the exit. The singularity is essentially the

same, but now the circular segment contributes like a differ-

ence between the shape before the contact and the shape after

the contact, quite similar to the case studied for the tetra-

hedron. In this case, the rule of dominant singularities may

apply, avoiding the observation of an asymptotic term in q�5/2

associated with the circular segment. This is the case for the

truncated sphere, for which the entry or exit by a spheroid part

leads to an asymptotic behaviour in q�2. But this is not the

case for the cylinder for which, in a generic direction, we have

four contacts with the bases’ curved edges, all of them leading

to an asymptotic behaviour in q�5/2.

4.5. k = 2: contact with an apex

We will show that this contact leads to � = 2 and an

asymptotic term in q�3. Since all the other singularities lead to

smaller values of �, the observation of this singularity implies

that the contact with an apex should occur at both the entry

and the exit of the body. For the sake of simplicity, we will limit

our discussion to the entry case. In this case, for h < hi , the

section is a polygon, with or without curvilinear parts, of shape

given by the detailed shape of the apex. This polygon can be

decomposed into several parts, namely a standard straight

polygon and circular segments associated with each curvi-

linear side. The size of the straight polygon varies locally

homothetically with ". Therefore, its section area varies

quadratically with ". The sagitta of the circular segments

associated with each curvilinear side varies quadratically with

". Using the relation between the sagitta of a circular segment

and its area established in x4.2, we conclude that the circular

segments associated with the curvilinear sides have areas

varying as "3 (see Appendix B for detailed calculations).

Therefore, we have � = 2 for the whole section and an

asymptotic behaviour in q�3.

4.6. On nesting

It may often occur that, for a given direction, we meet two

singularities of the same �. This may correspond to two

parallel faces; to the entry and exit by two parallel genera-

trices; to the entry and exit by two spheroidal points; to a q

direction perpendicular to two edges; and finally to the fringe

pattern parallel to the great circle perpendicular to an edge

which corresponds to the nesting between the two apices

terminating the edge (Croset, 2017). In all these cases, the

asymptotic behaviour exhibits fringes of period 2�/|h1 � h2|,

the fringe contrast being dependent on the amplitude of the

two singularities. We will not discuss such nesting cases in

detail, since the purpose of this work is the discussion on a

large scale of the contrast behaviour of intensity maps of F(q).

However, this nesting phenomenon is the price to pay for the

observation of singularities of large �, since both the rule of

dominant singularities and the frequent centrosymmetry of

the bodies lead to the study of bodies presenting nesting. An

accurate description of the fringe pattern is quite complex

since its details depend on numerous parameters: the quality

of the ‘parallelism’ of two truncations, the equality or

inequality of the amplitudes of the interfering singularities,

Moiré patterns due to superpositions of fringe patterns

occurring in different directions etc. All these features contain

information which can lead, in a numerical approach, to quite

fine details of the body shape, but we think that the fringe

pattern is too complex to be addressed in a general analytical

approach.

5. An exhaustive study: the fourfold truncated sphere

So far, we have studied analytically the asymptotic behaviours

of F(q) and we have shown that they can be related to the

shape singularities of the body. In this section, we will discuss

numerically the q domain of validity of these predictions for a

precise example, the fourfold truncated sphere. We will show

that the contrast associated with the different asymptotic

behaviours is observable for reasonable values of q, i.e.

qR = 100.

5.1. Choice of the studied body

We want to construct a rounded body that is as simple as

possible while allowing the observation of the singularities

associated with a face, a straight edge, a spheroidal part, a

curved edge and an apex. Using two secant truncations on a

sphere of radius R, we obtain all the required objects. In order

to circumvent the rule of dominant singularities and to allow

the observation of all the asymptotic behaviours, the simplest

choice is to choose to build a centrosymmetric object, i.e. a

fourfold truncated sphere. To simplify one step further, we

choose to have the z axis as a fourfold symmetry axis, leading

to four truncations in x = Rcos(’0), x = �Rcos(’0), y =

Rcos(’0) and y =�Rcos(’0). We take ’0 = �/3. Choosing the z

axis as the polar axis, we denote ’ the elevation angle and �
the azimuthal angle of q. The symmetries of the chosen object,

the z axis as the fourfold symmetry axis and the sphere centre

as the inversion centre, allow us to restrict the angular domain

of study to 0 � ’ � �/2 and 0 � � � �/4 and to restrict the

study of the section and of A(h) to positive values of h for each

q direction.
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Figure 3
Sections of a truncated sphere. Red denotes the surface of the truncated
sphere, and blue and green the sections by a generic plane for two
different values of h. (a) Perspective view. (b) A view normal to yy0. To
first order in ", EF0 = EF = [cot(�) + cot(�)]h.



5.2. Classification of the q direction

We will denote by T 1 the truncation corresponding to x =

Rcos(’0) and T 2 the truncation corresponding to y =

Rcos(’0), E the straight edge corresponding to the intersec-

tion between T 1 and T 2, and A the extremity of E belonging

to the angular domain studied. Let us study the nature of the

entry points for the different q directions, indicated by their

positions on the unit sphere.

(i) The direction ’ = 0, � = 0 leads to q normal to the face

T 1. The entry point corresponds to the contact with the whole

face. We will denote by C1 the point of the unit sphere

corresponding to this direction.

(ii) The great circle ’ = 0 corresponds to q perpendicular to

the edge E. For the part of the great circle corresponding to 0 <

� < �/4, the entry point corresponds to the contact with the

edge E.

(iii) For ’ > arccos[cos(’0)/cos(�)], the entry point is the

non-truncated part of the sphere. The boundary of this locus

corresponds to the circular edge of the truncation of the unit

sphere by the plane z = cos(’0). We refer to this circle asC T 1
.

(iv) For

’< arccos
cosð’0Þ

2

cosð�Þ2 cosð’0Þ
2
þ sinð�Þ2 sinð’0Þ

2

� �1=2

; ð7Þ

the entry point is A, corresponding to A0 on the unit sphere.

The boundary of this locus corresponds to the arc of the great

circle joining A0 to the point C1. We will refer to this boundary

as C A0C1
.

(v) Inside the triangle delimited by the three circles C T 1
,

C A0C1
and ’ = 0, the entry point corresponds to the contact

with the circular edge of T 1.

Using the symmetries of the body a full map of the different

entry points can be drawn (Fig. 4).

In order to compute F(q) we must find, for a given q

direction, all the section singularities occurring in the interval

ho� h� hi and identify the section shape for each sub-interval

hn�1 � h � hn . Even for the very symmetric case we have

chosen, such a task divides the angular domain (0 � ’ � �/2;

0 � � � �/4) into 18 different regions, each of which leads to

four to eight sub-intervals for h. These large numbers make

the sections method rather tedious to implement numerically.

Nevertheless, in the symmetric case that we have chosen, for

every q direction, the exponent of the entry singularity is

inferior or equal to all the critical exponents met in this

direction. This implies that the map of Fig. 4 describes not only

the different entry points but also the different asymptotic

behaviours. It exhibits poles in the direction normal to the

faces for which the asymptotic behaviour is in q�1, two regions

outside the truncations around the z axis for which the

asymptotic behaviour is the common q�2 expected for spher-

oidal objects, a great circle joining the poles for which the

asymptotic behaviour is again in q�2, four curvilinear quad-

rilaterals around this great circle for which the asymptotic

behaviour is in q�3, and eight curvilinear triangles for which

the asymptotic behaviour is in q�5/2. Note that the presence of

a strong singularity in the body shape is not only at the origin

of an asymptotic trailing edge in the q direction ‘perpendi-

cular’ to this singularity but also the cause of a decrease in the

asymptotic behaviour in the surrounding region because of its

boundary. In our case, a truncation leads to a pole in q�1 and

to a region in q�5/2 due to its curved edge, while a straight edge

leads to a circle in q�2 and a region in q�3 due to its two

extremities. It is as though the excess intensity was locally

pumped.

5.3. The validity domain of the asymptotic predictions

Fig. 5 shows the amplitude form factor modulus for qR =

100 ’ 16 	 2�, together with the calculated boundaries of the

different asymptotic regions. The contrast is in remarkable

agreement with the map of the asymptotic behaviour. The
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Figure 4
(a) A map of the � values for a fourfold truncated sphere.The poles ’ = 0
and � = n�/2, and the circle ’ = 0, are widened for the sake of visibility.
Brown denotes � = 0, red � = 1, orange � = 3/2 and blue � = 2. (b) A
fourfold truncated sphere.

Figure 5
The amplitude form factor of a fourfold truncated sphere at qR = 100.
The colour scale is logarithmic. The form factor amplitude, F, is
normalized by the body volume, V. Dashed lines denote the C T 1

circular
arc and its symmetry-equivalent arcs. Solid lines denote the C A0C1

circular
arc and its symmetry-equivalent arcs.



excess intensities associated with the x and y poles and the

great circle joining them are clearly visible, together with three

different regions: strong intensity around the z axis, medium

intensity in the triangles and low intensity in the curvilinear

quadrilateral. Note that the boundaries between the different

regions are clear and follow the analytical predictions very

well.

6. Conclusions

The Patterson result, which shows that the amplitude form

factor of a body can be understood as the Fourier transform of

the sections of the body by planes normal to the scattering

vector, has allowed us to establish a strong relationship

between the singularities of the body surface and the asymp-

totic behaviour of the amplitude form factor at large q. We

have studied the contacts of an intersecting plane with the

main possible singularities of the body surface. All the studied

cases lead to an asymptotic behaviour in q�(�+1), with � a half

integer and 0 � � � 2. The strong singularities of the surface –

truncation, straight edge – are associated with both narrow

regions of the orientation sphere, for which � is low, and

surrounding extended regions, for which � is high. A numer-

ical study shows that this analysis is pertinent to describing the

intensity landscape for rather small values of q: qR = 100 ’

16 	 2� for a truncated sphere of radius R. Since, for the

reconstruction of direct space, the reciprocal-space regions of

both high and low scattering intensities are relevant, we think

that this approach, the sections method, will be useful in

studies of objects by coherent scattering with the new high-

brightness X-ray sources. Since the presence of apices is

strictly associated with q�3 asymptotic behaviour, we believe

that it is of primary importance to collect experimental data in

the low counting rate regions.

APPENDIX A
The cone case

For the sake of simplicity, we will consider the case of a

revolution cone, C t , truncated by two planes normal to its axis

at height z1 and z2. We will denote by � the half apical angle.

When the angle between P and the cone axis is equal to �, the

first contact between P and C t is a portion of the directrix. For

lower values of h, the section is a curvilinear trapezoid of

which two sides are arcs of the same parabola. Choosing in the

plane P the parabola directrix as the Y axis and its normal

passing through the focus as the X axis, the parabola equation

is Y2 = 2" tan(�)X. The area of the section is written as

Sð"Þ ¼ 2
Rx2

x1

Y dX; ð8Þ

and varies as "1/2. Thus, we have � = 1/2. Full calculations lead

to

Sð"Þ ¼ 4ð21=2
Þ=3 "1=2 sinð�Þ1=2 cosð�Þ�2

z
3=2
2 � z

3=2
1

� 	
: ð9Þ

APPENDIX B
Curvilinear triangle

Let us consider the curvilinear triangle ABC drawn in Fig. 6.

We will denote as � the length AD, and we will seek the lowest

term in � of the area of the curvilinear triangle, S(�). This area

is the sum of the area of the straight triangle ABC plus the

area of the circular segment BC. The key point is that the

sagitta of the circular segment, ED, is of second order in � and

that AE = AD to first order in �. The area of the straight

triangle is therefore equal to �2 tan(�) to the lowest order in �
while, using the result obtained in x4.4, the area of the circular

segment is of third order in �. The first term of the series

development of the area of S(�) is therefore �2 tan(�).
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Figure 6
Curvilinear triangle.
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