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Abstract

By means of Shubnikov-de-Haas and de-Haas-van-Alphen oscillations, and ab initio calculations,

we have studied the Fermi surface of high-quality BaNiS2 single crystals, with mean free path

l ∼ 400 Å. The angle and temperature dependence of quantum oscillations indicates a quasi-two-

dimensional Fermi surface, made of an electron-like tube centred at Γ, and of 4 hole-like cones,

generated by Dirac bands, weakly dispersive in the out-of-plane direction. Ab initio electronic

structure calculations, in the density functional theory framework, show that the inclusion of

screened exchange is necessary to account for the experimental Fermi pockets. Therefore, the choice

of the functional becomes crucial. A modified HSE hybrid functional with 7% of exact exchange

outperforms both GGA and GGA+U density functionals, signalling the importance of non-local

screened-exchange interactions in BaNiS2, and, more generally, in 3d compensated semimetals.

PACS numbers: 71.20.Ps, 71.18.+y, 71.38.Cn, 72.15.Lh, 71.15.Mb

Keywords: transition metal sulphide, semimetal, BaNiS2, quantum oscillations, hybrid functional, ab initio

methods
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I. INTRODUCTION

After having been considered as a potential candidate for high-temperature

superconductivity1,2, which is however absent in the doping3 and pressure4 ranges explored,

the BaNiS2 compound has seen a renewed attention for its fascinating spin properties, dis-

covered only very recently5. Indeed, angle resolved photoemission spectroscopy (ARPES)

and ab initio electronic structure calculations based on the density functional theory (DFT)

have shown that the spin-orbit (SO) interactions play an important role in this material5,6.

Despite the inversion symmetry of the crystal and the low Z number of the nickel atoms, an

unexpected Rashba spin-orbit splitting was found in the bulk, with a Rashba spin-orbit cou-

pling (SOC) as large as 26 eV Å. This value usually corresponds to much heavier elements,

or to surface physics.

These surprising results can be related to the peculiar symmetry of crystal structure of

BaNiS2, reported in Fig. 1. The transition metal site is located at the center of edge-shared

square pyramids, composed of sulfur atoms, whose orientation is staggered with respect to

the basal plane. The BaNiS2 structure is quasi-two-dimensional, with the barium atoms

acting as a charge reservoir, intercalated between the electronically active layers, stacked

along the c axis. The interlayer distance is approximately twice the metal-metal distance in

the NiS plane. The presence of a large crystal field at the Ni sites in a locally asymmetric

position enhances the SOC, and splits the electronic bands. Spin-orbit gaps and splittings

of about 50 meV take place at the Fermi level, or in its proximity, paving the way to possible

spintronic applications of this compound, which is a Pauli paramagnetic metal7,8.

In view of exploiting the unique electronic properties of BaNiS2 for future spintronic

applications, it is important to have a detailed account of its band structure and Fermi

surface topology. Following our previous ARPES experiment of Ref. 5, the Fermi surface

can be further investigated by means of quantum oscillations (QOs). This complementary

technique gives, by controlling the angle of the magnetic field, the topology of the Fermi

sheets in the three-dimensional space, but without knowing their position in the first Bril-

louin Zone (FBZ). Except for the experimental investigations, the ab initio description of

BaNiS2 can also be improved. Previous DFT calculations of the band structure of BaNiS2

did not consider SOC and the Hubbard U repulsion 1,2. Nevertheless, correlation effects in

BaNiS2 are non negligible, owing to the presence of a transition metal element at interme-
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FIG. 1: (color online) (a) Crystallographic structure of BaNiS2. Large green and small yellow

spheres stand for Ba and S, respectively. Ni is represented by medium size grey spheres at the

center of the pyramids (b) First Brillouin zone of BaNiS2 showing high-symmetry points.

diate filling. For instance, the interplay of filling, correlation, and charge transfer leads to

a Fermi liquid breakdown in BaCoS2, where Ni has been substituted by cobalt9. Although

our simulations within the generalized gradient approximation (GGA) supplemented by the

Hubbard repulsion (GGA+U) 5 significantly improves the description of the band structure

of BaNiS2 as compared to previous studies, discrepancies in the kz dispersion have been

found with ARPES results.

In this paper, we bring about an improved and highly accurate description of the band

structure and Fermi surface of BaNiS2. For the first time, we performed Shubnikov-de

Haas (SdH) and de Haas-van Alphen (dHvA) oscillation measurements on BaNi2, which are

direct probes for the bulk Fermi surface. The k -space resolution in the three crystallographic

directions is high enough to determine Fermi surface cross-sections with a resolution of 10−3

of the FBZ. The resolution in energy is also very high (∆E ≈ µBB = 0.6 meV for B = 10

T) so that one can access to the effective mass very close to the Fermi energy. To reach

these goals, we worked at low temperatures and strong magnetic fields. Moreover, we have

been able to grow BaNiS2 samples with a large enough scattering time 8, such that they can

be investigated by means of quantum oscillations (QOs).
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For the above reasons, QOs are a stringent probe to benchmark the quality of ab initio

electronic structure methods. The measured Fermi pockets volumes can be directly com-

pared with the outcome of band structure calculations. The corresponding Fermi surface is

sensitive to bandwidth renormalization, band shifts, and chemical potential. Therefore, it

is a delicate quantity to compute from first principles, as it results from the fragile balance

of many contributions, whose magnitude is set by the electronic correlations. On the other

hand, ab initio calculations add invaluable information to the QOs, because they allow to

locate the measured Fermi pockets in the Brillouin zone, as long as a clear match can be

made between measured and computed pockets.

We performed DFT band structure calculations within the GGA, GGA+U and hybrid

functional approximations. We show that the local Hubbard repulsion included in a mean-

field fashion in the GGA+U framework is not adequate to account for the data. Instead, we

reach a qualitative agreement with the experiment only when a fraction of the exact non-local

exchange is added in the functional. By appropriately tuning the Heyd-Scuseria-Ernzerhof

(HSE) hybrid functional10,11, we obtain a quantitative agreement with the measured QOs.

This corresponds to a 7% of exact exchange, while the screening length l0 is kept equal to

the original HSE06 functional (ω = 1/l0 = 0.200 Å
−1

)11,12. The very good match between

the measured and computed frequencies of the QOs allows us to provide a detailed picture of

the Fermi surface topology and electronic properties of this compound. Moreover, the com-

parison between our three different DFT functionals against the QOs measurements reveals

the importance of non-local correlation effects in this class of transition metal systems. The

semimetallic character of BaNiS2 is responsible for an enhanced screening of the exchange

operator. However, its non-local nature cannot be neglected, because its impact on the

low-energy properties and on the fermiology is strong. Indeed, the optimal value of exact

exchange fraction results from electronic screening mechanisms acting on the non-local ex-

change operator. The stronger the metallic character, the smaller the exact exchange weight

in the functional. Our 7% value, smaller than in the original HSE functional, but still non

negligible, is thus a consequence of the semimetallic character of the material.

Similar effects have been observed in the iron pnictides and selenides superconductors13–16,

which share with BaNiS2 the presence of d electrons at intermediate filling, a compen-

sated (semi)metallic character, and the P4/nmm point group in the undistorted phases.

Band shifts non explained by local correlations have been reported in both theory17 and
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experiments18. Therefore, the interplay between local and non-local interaction effects is

key to explain the rich physics of this class of transition metals. The present work demon-

strates that QOs measurements and DFT calculations with advanced functionals can be

fruitfully combined to assess and quantify in an unambiguous way the importance of these

contributions.

The paper is organized as follows. In Sec. II, we detail the experimental methods (Sub-

sec. II A) and report the results (Subsec. II B) of the QOs measurements. In Sec. III, we

describe the first-principles methods (Subsec. III A) and present the outcome of the elec-

tronic structure calculations (Subsec. III B). We draw our conclusions in Sec. IV.

II. QUANTUM OSCILLATIONS MEASUREMENTS

A. Methods

We have grown samples by a self-flux technique similar to that reported in Ref. 19,

yielding high-quality platelet-like single crystals with dimensions of ∼ 1×1×0.1 mm3. We

selected those crystals with the best residual resistivity ratios, ρab(300K)/ρab(10K) ≈ 17 for

experiments in magnetic fields. We detected SdH oscillations by a four probe resistivity mea-

surement using a lock-in detection in an Oxford Kelvinox 400 dilution refrigerator equipped

with a 16-T superconducting magnet. We applied a current along the ab-plane and the

magnetic field perpendicular to it. We swept the magnetic field at a rate of 10 G/s. dHvA

oscillations were deduced from magnetic torque measurement in pulsed magnetic fields of

up to 58 T, using a commercial piezoresistive microcantilever 20 at the LNCMI in Toulouse.

We measured variations of the piezoresistance of the cantilever with a Wheatstone bridge

with an ac excitation at a frequency of 63 kHz. We varied the angle θ between the normal

to the ab-plane and the magnetic field by a one-axis rotating sample holder with a precision

of +/- 1˚.

B. Results

Figures 2 (a) and (b) show the oscillating parts of the longitudinal magnetoresistance and

of the torque for various temperatures. Fourier analysis of the oscillatory magnetoresistance

(Fig. 2(c)) displays peaks at frequencies Fα = 37 T, Fβ = 60.5 T, Fβ′ = 122 T, Fγ = 184 T
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FIG. 2: (color online). (a) Oscillating part of the longitudinal magnetoresistance, ∆R measured at

T = 44 mK. (b) Oscillating part of the torque, ∆τ at various temperatures. θ was set to 17(1)˚.

(c) and (d) display the Fourier transforms of ∆R and ∆τ (T = 2.28 K) taken in the range [5 - 13

T] and [10 - 55.2 T], respectively.

and Fγ′ = 361 T. These data are in agreement with Fourier analysis of the oscillatory torque

(Fig.2(d)) which displays peaks at frequencies Fβ = 60(6) T, Fβ′ = 120(3) T, Fγ = 182(1)

T, Fγ′ = 363(3) T and Fγ′′ = 549(8) T.

Within the reported uncertainties, it can be considered that the frequencies Fβ′ , Fγ,

Fγ′ and Fγ′′ are multiple of Fβ. Hence, it cannot be excluded that these frequencies are

harmonics of either Fβ or Fγ. As discussed in the following this point can be checked

through the analysis of the temperature dependence of the relevant Fourier amplitudes.

Indeed, according to the Lifshitz-Kosevich (LK) formula, the amplitude of the first harmonic

of a dHvA Fourier component with frequency F can be written 21:

∆M ∝ RTRDRS sin
(

2πF

B
+ φ

)
(1)

where RT = κTm∗/B sinh[κTm∗/B], RD = exp(−κTDm∗/B) and RS are the thermal,
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Dingle and spin damping factors, respectively, with κ = 2π2kBm0/eh̄ ' 14.69 T/K and

TD = h̄/2πkBτ the Dingle temperature. m∗ is the cyclotron effective mass in unit of the

bare electron mass, m0. τ is the scattering time and φ is the phase. For the pth harmonic,

with frequency pF , the effective mass is pm∗. Temperature dependence of the Fourier

amplitudes, an example of which is given in figure 3, are studied for three different directions

of the magnetic field (θ = 17˚, 34.5˚, and 68˚). The deduced effective masses are given in

table I.

θ (˚) m∗
α m∗

β m∗
γ m∗

γ′ m∗
γ′′

17 0.39(12) 0.77(8)

34.5 ∼ 0.4 ∼ 0.6 0.41(12) 0.87(11) 1.7(3)

68 0.77(13) 0.86(4)

TABLE I: Effective masses m∗(θ) in bare electron mass units for few of the Fourier components

observed in figure 2.

Within the error bars, these data are compatible with the relation m∗
γ = m∗

γ′/2 = m∗
γ′′/3

whereas m∗
γ 6= 3m∗

β. It can therefore be supposed that three cyclotron orbits with frequencies

Fα, Fβ and Fγ enter the Fermi surface while Fβ′ , Fγ′ , and Fγ′′ are harmonics. Given the

uncertainty on the amplitude of Fβ′ , it was not possible to determine its effective mass.

Dingle plots for the γ orbit at θ = 34.5˚are reported in figure 4 in which solid lines

are best fits of Eq. 1 to the data with TD = 7 K. Hence, the deduced scattering time is

τ = 8.4× 10−14 s from which, by assuming a circular orbit with vF = h̄kF/m
∗, a mean free

path, l ∼ 400 Å can be deduced. The latter value is close to the longest mean free paths

measured in high-TC cuprates 22 and iron-based pnictides 23.

The dimensionality of the Fermi surface can be studied by analyzing the angle dependence

of the frequencies. A strictly 2D Fermi surface would result in a θ-independent value of

F cos(θ). As shown by figure 5, this is not the case for β and γ, since F cos(θ) decreases

as θ increases. Figure 5 also indicates that β and γ orbits belong to two different pockets

because otherwise the two curves would cross at a given Yamaji angle 24. One may also

wonder if the α orbit belongs to the same Fermi surface as the β or γ orbits. In fact, the

data in Table I show similar effective masses for the three orbits. As a consequence, it is

8



1 2 3 4 5 6 7

- 8

- 6

- 4

- 2

2 0 3 0 4 0
0 . 2
0 . 3
0 . 4
0 . 5
0 . 6

 

 

m*
/m

0

B m  ( T )

 

3 9 . 7 5  T
3 3 . 4 2  T
2 8 . 8 3  T
2 5 . 3 6  T
2 2 . 6 3  T
2 0 . 4 3  T
1 8 . 6 2  T
1 7 . 1 0  T
1 5 . 8 1  T
1 4 . 7 1  T

ln(
A/T

)

T  ( K )

FIG. 3: (color online). Temperature dependence of ln(A/T ) where A is the Fourier amplitude

of the component with the frequency Fγ determined at different mean magnetic fields, Bm for

θ = 34.5˚. Solid lines are the best fits of Eq. 1 to the data. Inset shows the normalized effective

mass, m∗/m0 issued from these fits. The mean value of m∗/m0 is shown by the thick straight line.

possible that two of these orbits are extreme orbits of the same sheet. This point will be

discussed later based on the angle dependence of the frequencies and on band calculations.

It can be noticed that the angle dependence of Fβ and Fγ is nicely accounted for by the

expression :

F (θ) cos(θ) =
F (0)√

1 + ξ2 tan2(θ)
(2)

obtained for Fermi surface pockets with a bi-axial ellipsoidal shape derived from standard

parabolic bands, where ξ = kxyF /k
z
F is the ratio of the major to minor semiaxes. Here

kzF > kxyF because F cos(θ) decreases with increasing θ. Assuming a circular cross section

in the kxky- plane, kxyF is related to F (0) through the Onsager relation : kxyF =
√

2e
h̄
F (0).
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FIG. 4: (color online). Dingle plot for the frequency Fγ , at θ = 34.5˚. The solid line is the best

fit of Eq. 1 with m∗(34.5˚) = 0.41m0 and TD = 6.3 K.

At small enough θ values, in particular for θ = 17˚and 34˚, both frequencies and effective

masses are reasonably well approximated by a 2D Fermi surface, i.e. F (0) = F (θ) cos(θ) and

m∗(0) = m∗(θ) cos(θ). While for θ = 68˚it is necessary to consider the ellipsoidal shape:

m∗(θ) cos(θ) =
m∗(0)√

1 + ξ2 tan2(θ)
(3)

introducing ξ values found in Eq. 2. F (0), deduced cross section areas, m∗(0) and ξ values

are given in table II. All the orbits have very small area which is in agreement with the

low carrier densities of BaNiS2 given by band structure calculations 1 and magnetotransport

measurements 8. ξ values of 0.24(2) and 0.179(4) correspond to kzF/c
∗ ratios of 0.51(6) and

1.15(4) for the β and γ pockets, respectively. Therefore the β pocket can be modeled by

an elongated ellipsoid. On the other hand, kzF/c
∗ > 1 obtained for γ is not consistent with

an ellipsoid. It probably means that the ellipsoid model describes the dispersion only up

to θ ≈ 80˚but not more. Instead, it can be assumed that γ is the belly orbit of a two-
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dimensional warped tube running along c*. Within this picture, α could be the neck of this

warped tube.

0 3 0 6 0 9 00

5 0

1 0 0

1 5 0

α

β

γ

Fc
os

 θ (
T)

θ����

FIG. 5: (color online). Observed dHvA frequencies plotted as F cos(θ) vs θ. Solid lines are best

fit of Eq. 2 to the data relevant to β and γ orbits.

Orbit F (0) (T) % of FBZ ξ m∗(0)

α 36(7) 0.17(4) ∼ 0.3

β 63(3) 0.30(2) 0.24(2) 0.34(6)

γ 176(1) 0.839(5) 0.179(4) 0.35(8)

TABLE II: Parameters relevant to the three detected orbits projected in the kxky-plane. The cross

section areas are given in percentage of the FBZ area. The ratio of the major to minor semiaxes

(ξ) are deduced from the data in figure 5 assuming ellipsoidal Fermi surfaces (see Eq. 2). Effective

masses are in bare electron mass units.

In summary, the quantum oscillations data of BaNiS2 are consistent with a Fermi surface

composed of two pockets. The larger one, named S1 is a constricted tube with neck and
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belly orbits α and γ, respectively. The angle dependence of the corresponding frequencies is

in agreement with a sinusoidal dispersion along kz, which at small enough angle between the

field direction and the normal to the conducting plane can be approximated by an ellipsoid.

A better resolution of Fα and a more detailed exploration of quantum oscillations as a

function of θ would be necessary to investigate the existence of a Yamaji angle. The total

volume of S1 assuming such an energy dispersion is V1 = 6.4(6) × 10−3 Å−3. The smaller

pocket, denoted as S2 is an elongated ellipsoid which is responsible of a single frequency

Fβ in quantum oscillations and which covers half of the FBZ in the kz direction for a total

volume V2 = 1.5(4)× 10−3 Å−3.

In order to establish a model of Fermi surface, we cross-check this analysis with previously

published results of photoemission spectroscopy and magnetotransport measurements 5,8.

According to the Hall effect data 8, BaNiS2 is a semimetal very close to compensation, with

a charge imbalance of only 1% in favor of electrons. For the compensation to be fulfilled,

S1 and S2 must have different electronic characters and, since V1 ≈ 4V2 and owing to the

tetragonal symmetry of BaNiS2, the former must be located at the center of the FBZ while

the latter has to be repeated four times. Within this picture, the total number of holes

and electrons is of the order of ∼ 5× 1019 cm−3, in agreement with magnetotransport data.

These statements are also in agreement with ARPES measurements 5 which, for a given kz

value, reveal two pockets: an electron-like one at the center of the FBZ and a hole-like one

along Γ-M at mid-distance between the two high-symmetry end points.

III. AB INITIO ELECTRONIC STRUCTURE CALCULATIONS

A. Methods

In order to identify the Fermi pockets detected by QOs, we are going to use three different

density functionals, namely the GGA with the Perdew-Burke-Ernzerhof (PBE) functional25,

the PBE supplemented by local Hubbard interactions (GGA+U)26,27, and a modified hybrid

Heyd-Scuseria-Ernzerhof (HSE) functional10,11 with an optimized 7% of exact exchange.

Nowadays, the hybrid functionals, introduced for molecular systems12, are getting more and

more popular in solid state physics as well28–30, because they correct for some deficiencies of

the regular density functionals, thanks to a reduced self-interaction error, and the restoration
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of the derivative discontinuity. The hybrid functionals are non-local and orbital dependent.

In all three cases, we included nickel spin-orbit (SO) interactions, whose importance has

been recently demonstrated in this system5,6. Indeed, despite the quite low Z number of

the nickel atoms, the peculiar crystal structure of BaNiS2 enhances the SOC, with sizable

splittings showing up in certain regions of the Brillouin zone, and for some bands crossing

the Fermi level5. Therefore, we expect that the shape of some Fermi pockets will be affected

by SOC.

All ab initio DFT calculations have been carried out by using the Quantum ESPRESSO

package31,32. The geometry of the cell and the internal coordinates are taken from the

experimental values reported previously 33. Ni, Ba and S atoms are described by norm-

conserving pseudopotentials. The Ni pseudopotential is fully relativistic, with 10 valence

electrons (4s2 3d8) and non-linear core corrections. For Ba, the semi-core states have been

explicitly included in the calculations. The S pseudopotential is constructed with the 3s2

3p4 in-valence configuration. The k-point sampling convergence is reached for a 8×8×8

electron-momentum grid and a Methfessel-Paxton smearing of 0.01 Ry. The plane-waves

cutoff has been set to 120 Ry for the wave function in the GGA and GGA+U calculations. In

the HSE calculations, we lowered this cutoff to 60 Ry in order to reduce the computational

burden of the non-local exchange potential evaluation. We checked that this lower cutoff

does not affect the results within a target accuracy of 0.01 eV in the band structure.

For the GGA+U calculations performed in the fully rotational invariant framework27, we

took the same Hubbard parameters as in Ref. 5, namely U=3 eV, J=0.95 eV, and with the

F4/F2 Slater integral ratio equal to its atomic value. This is in agreement with experimental

values34 and recent cRPA estimates9.

For the HSE functional, we used the latest fast implementation of the exact Fock exchange

energy32, based on the adaptively compressed exchange (ACE) scheme35. The significant

CPU time reduction, allowed by the ACE implementation, makes hybrid functional calcu-

lations of BaNiS2 possible in a plane-waves framework, which guarantees a systematic and

controlled basis-set convergence. The q-integration of the non-local Fock operator has been

performed in a downsampled grid made of 8×8×2 q-points. To minimize the number of

non-equivalent momenta in the k + q grid, we found that shifting the k-grid by half-a-grid

step in the z direction further speeds up our calculation. The loss of precision caused by the

q-downsampling is critical for metals. However, given the quasi-two-dimensional nature of
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BaNiS2, reducing the q grid by a factor of 4 in the out-of-plane direction does not deteriorate

the results, which still fulfill our target accuracy, while leading to a significant gain in CPU

time.

As a final step, we obtained an accurate determination of the band structure, chemical

potential, Fermi surface, and Fermi pocket cross-sections by the Wannier interpolation of the

ab initio bands, performed with the Wannier90 code36 for all functionals taken into account.

The tight-binding model comprises 22 bands, originating from all Ni d and S p states in the

BaNiS2 unit cell.

B. Results

The band structures are reported in Fig. 6, while the corresponding Fermi surfaces are

plotted in Fig. 7. Four cones are present in the BZ, whose axes are located at the proximity

of the (−1/4,−1/4, z), (−1/4, 1/4, z), (1/4,−1/4, z), and (1/4, 1/4, z) directions. At kz = 0,

the Fermi level crosses the cones at their apex. The conical energy dispersion drifts as a

function of kz, being lifted up when we move away from kz = 0. The dispersion along kz is

caused by the necessity of charge-carrier compensation. This leads to 4 Fermi surfaces that

are also conical, instead of being Dirac lines, with vertices lying on the kz = 0 plane. These

four conical surfaces are a very robust feature of the system, present in all DFT calculations

performed here. Therefore, they are insensitive to the correlation level, and to the quality of

the density functional used. Nevertheless, their related QOs signal, evaluated from the area

of the extremal cross-section at kz = π/c, varies from functional to functional, as reported

in Fig. 8. However, their F fluctuation is much milder than for any other Fermi pocket,

and it is in a quite good agreement with the experiment for all functionals. Thus, from the

ab initio values, we can safely attribute the β orbit to these 4 cones. The linear dispersion

close to the cone apex is not captured by our experimental results, because it would require

the angle dependence of both frequencies and effective mass, as stated in Ref. 37. However,

it is reassuring that our conclusions drawn in Sec. II B regarding the carrier concentration

remain valid within this picture since, according to the DFT calculations, the volume of the

conic part is small. The highly mobile holes observed in magnetotransport measurements

are assigned to this conic portion.

In contrast to the robustness of the conical Fermi surfaces, the most fragile Fermi structure
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FIG. 6: (color online). Panel (a): Band structure obtained with the GGA and GGA+U functionals.

The U values are reported in the key. The main difference between the functionals is in the band

dispersion along the Γ-Z path. The larger the U , the lower the position of the bands that cross

the Fermi level. Panel (b): Band structure obtained with the HSE functional with two fractions

of exact exchange. The regular 25% of exchange is used in “HSE”, while only the 7% is used in

“HSE(7%)”. Again, the main difference is in the Γ-Z path.

is the one along the Γ-Z direction. As one can evince from Fig. 6(a), the position of the

valence and conduction bands, that cross the Fermi level in Γ-Z, strongly depends on the

on-site repulsion strength included in the GGA+U functional. These bands are shifted down

by about 50 meV by the addition of a Hubbard term U = 3 eV. This shift increases upon

increasing the value of U . As a result, the hole pocket centered at Γ shrinks while the

electron pocket centered at Z grows (see Figs. 7(a) and 7(b)). Anyway, the corresponding

F values reported in Fig. 8 for the hole pockets at Γ are far too large if compared with the

experimental findings. Neither GGA nor GGA+U agree with experimental data. Instead,

the use of properly tuned hybrid functionals corrects for this pitfall. While regular HSE

opens a fictitious gap in the Γ-Z region, by reducing the exact exchange weight down to 7%

the crossing bands acquire an electron character all the way from Γ to Z (Fig. 6(b)). This

is reflected in the Fermi surface by the disappearance of the hole pocket at Γ, as seen in

Fig. 7(c). In the modified HSE (“HSE(7%)”), the electron pocket becomes a 2D constricted

tube that stretches throughout the whole BZ along kz. The QOs generated by this structure

at θ = 0 are given by the extremal cross-sections at Γ (minimum) and Z (maximum). Their

values are plotted as histograms in Fig. 8. They nicely correspond to the experimental values

of the α and γ orbits, respectively. Therefore, we can identify these two orbits as belonging
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to the same Γ-constricted tube, and having Γ-Z as rotational axis. This maps all measured

dHvA frequencies into identified pockets, based on a Fermi surface picture provided by our

modified HSE.

FIG. 7: (color online). Fermi surfaces of BaNiS2 from ab initio calculations with GGA (panel (a)),

GGA+U(=3eV) (panel (b)), and modified HSE with 7% of exact exchange (panel (c)). The red

lines are the frontiers of the first BZ, drawn in Fig. 1(b) together with the high-symmetry points.

The yellow (purple) surfaces indicate Fermi pockets of hole (electron) character.

It is worth noting that in the GGA and GGA+U band structure, there is yet another

electron pocket, centered at R (Fig. 6(a)), which is Rashba active5. The Rashba splitting

gives rise to two nested parabolas, filled by spinors with opposite chirality. One can see

the nested shapes in Figs. 7(a) and 7(b). This should yield additional frequencies F , the

strongest being as large as 300 T . This value is not found in the experiment. The improved

HSE band structure does not have any pocket at R, because the conduction bands are raised

just above the Fermi level, without touching it. This is another feature that highlights the

reliability of the modified HSE functional. At variance, the GGA and GGA+U functionals

show several drawbacks, and they are unable to reproduce neither quantitatively nor quali-

tatively the experimental frequency values. This tells us about the importance of non-local

screened-exchange interactions in this material, as we will argue in the concluding Sec. IV.

This theoretical analysis allows us to unambiguously assign the S1 surface to the electron-

type quasi-2D tube having Γ-Z as axis with neck and belly centered at Γ (α orbit) and Z (γ

orbit), respectively. On the other hand, the 4 S2 hole-type pockets, corresponding to β, are

assigned to 4 conical Fermi surfaces, whose vertical axes are approximately (−1/4,−1/4, z),

(−1/4, 1/4, z), (1/4,−1/4, z), and (1/4, 1/4, z), with extremal cross-sections located at kz =

π/c, and apex at kz = 0.
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FIG. 8: (color online). Computed QOs frequencies for θ = 0 by employing the same density

functionals that give the Fermi surfaces plotted in Fig. 7. Those frequencies correspond to the

extremal cross-sections containing the k-points reported in the caption. For the modified HSE

with 7% of exact exchange (“HSE(7%)”), there is no pocket around R, at variance with the GGA

and GGA+U cases.

IV. CONCLUSIONS

Shubnikov-de Haas and de Haas-van Alphen oscillations are reported for the first time

in the undoped BaNiS2 compensated semimetal. The estimated mean free path of 400 Å

indicates a low concentration of defects in the measured single crystals. We detected three

independent main frequencies corresponding to small cyclotron orbits, covering less than 1%

of the FBZ cross-section area. Angle dependences of these frequencies suggest the existence

of two types of pockets, which is confirmed by DFT electronic structure calculations when

a modified HSE hybrid functional with 7% of exact exchange is used.

The first type (S1) is a constricted tube of electron-like character and having the Γ-

Z direction as rotational symmetry axis. By symmetry there is just one pocket of this

type. The remaining four hole-like pockets belong to the second type (S2). They are

oriented in the z direction, and centered in the proximity of one of the (−1/4,−1/4, z),

(−1/4, 1/4, z), (1/4,−1/4, z), and (1/4, 1/4, z) axes. For this second type, the measured
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frequency indicates a conventional ellipsoidal shape due to parabolic bands. According to

band structure calculations the unprobed part of these pockets has a conic-like dispersion

and should result in high-mobility carriers. This could be verified experimentally by the

determination of the angle dependence of the effective mass.

At first sight, the present results may be in contradiction with our model of the mag-

netotransport data including three types of charge carriers8: minority holes with a high

mobility and majority holes and electrons. However, the latter model is based on the Drude

law of parabolic bands, which supposes homogeneous effective masses and scattering times

of charge carriers, and is not adapted for linear dispersions characteristic of the present

hole pockets. It turns out that the recourse to two discrete and homogeneous populations of

charge carriers is sufficient to simulate the properties of the conic-like and ellipsoid-like parts

of the S2 pockets, hosting hole carriers with different mobilities, very high for the conic-like

part, lower in the ellipsoid sector.

By carrying out ab initio electronic structure calculations, we showed that the use of a

modified hybrid functional is necessary to explain the experimental values. This modified

functional has a reduced ratio of exact exchange, if compared with the standard HSE func-

tional. We found that 7% of the exact exchange yields a good quantitative agreement with

the QOs results. The agreement is lost, even qualitatively, in the case we use a regular GGA

functional. Adding the local Hubbard repulsion to the GGA in the GGA+U framework

does not improve the GGA picture. This indicates the importance of non-local screened-

exchange interactions in the system. Therefore, in the BaNiS2 semimetal, the main role of

the electronic correlation is non-local, rather than Hubbard-like.

The role played by the non-local screened exchange can be relevant to other transition

metal compounds, such as the iron selenide. Like BaNiS2, FeSe is a multiband compensated

semimetal, although its correlation strength is known to be much larger than the one in

BaNiS2
13,15,16,38. Nevertheless, there are features that are not explained by a local self energy

only18. The present study suggests that the non-local screened-exchange interactions cannot

be neglected in 3d semimetals, particularly when the screening is poor, as a consequence of

d-electron correlation and charge-carrier compensation. To model these systems, advanced

ab initio methods are necessary, which include non-local correlations, such as hybrid func-

tionals or many-body methods with non-local self energy, such as GW, GW+DMFT, and

their variants39,40. Combining QOs measurements with various types of first-principles cal-
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culations turns out to be very important to identify the main renormaliation mechanisms of

the low-energy electronic structure.
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