
HAL Id: hal-01832650
https://hal.sorbonne-universite.fr/hal-01832650

Submitted on 8 Jul 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Software Product Line Extraction from Variability-Rich
Systems: The Robocode Case Study
Jabier Martinez, Xhevahire Tërnava, Tewfik Ziadi

To cite this version:
Jabier Martinez, Xhevahire Tërnava, Tewfik Ziadi. Software Product Line Extraction from Variability-
Rich Systems: The Robocode Case Study. Systems and Software Product Line Conference (SPLC),
Sep 2018, Gothenburg, Sweden. �hal-01832650�

https://hal.sorbonne-universite.fr/hal-01832650
https://hal.archives-ouvertes.fr


Software Product Line Extraction from Variability-Rich Systems:
The Robocode Case Study

Jabier Martinez∗
Tecnalia

Derio, Spain
jabier.martinez@tecnalia.com

Xhevahire Tërnava
Sorbonne University UPMC

Paris, France
xhevahire.ternava@lip6.fr

Tewfik Ziadi
Sorbonne University UPMC

Paris, France
tewfik.ziadi@lip6.fr

ABSTRACT
The engineering of a Software Product Line (SPL), either by creating
it from scratch or through the re-engineering of existing variants, it
uses to be a project that spans several years with a high investment.
It is often hard to analyse and quantify this investment, especially
in the context of extractive SPL adoption when the related software
variants are independently created by different developers follow-
ing different system architectures and implementation conventions.
This paper reports an experience on the creation of an SPL by re-
engineering system variants implemented around an educational
game called Robocode. The objective of this game is to program
a bot (a battle tank) that battles against the bots of other develop-
ers. The world-wide Robocode community creates and maintains
a large base of knowledge and implementations that are mainly
organized in terms of features, although not presented as an SPL.
Therefore, a group of master students analysed this variability-rich
domain and extracted a Robocode SPL. We present the results of
such extraction augmented with an analysis and a quantification
regarding the spent time and effort. We believe that the results and
the a-posteriori analysis can provide insights on global challenges
on SPL adoption. We also provide all the elements to SPL educators
to reproduce the teaching activity, and we make available this SPL
to be used for any research purpose.

CCS CONCEPTS
• Software and its engineering→ Software reverse engineer-
ing; Software product lines; • Social and professional topics
→ Software engineering education;

KEYWORDS
Software Product Lines, Reverse-engineering, Extractive Software
Product Line Adoption, Education, Robocode

1 INTRODUCTION
Software Product Line (SPL) engineering enables a systematic reuse
within a family of systems. Its general framework is defined by the
dual phases of domain and application engineering [2]. During
domain engineering, the scope of the SPL is defined, and com-
monalities and variabilities among software products are explicitly
specified. The prime entities in this specification use to be based
on the concept of feature, which is defined as a prominent or dis-
tinctive characteristic, quality or user-visible aspect of a software
system or systems [9]. Domain engineering also aims at implement-
ing reusable assets and shaping them according to the identified

∗The work of Jabier Martinez was mainly done during his stay at Sorbonne University
UPMC as post-doctoral researcher.

features. Domain engineering can be achieved using an extractive
SPL adoption approach [11] where existing legacy artefact variants
are analysed and their variability models with reusable assets are
extracted. The existence of legacy artefact variants is a usual case in
SPL adoption (50% of the cases according to an industrial survey [5]),
and re-engineering them into an SPL is still a challenging process
requiring a high investment which is often difficult to analyse and
quantify. In addition, the problem is exacerbated when the related
software variants are not created through the clone-and-own ap-
proach but independently created by different developers following
different system architectures and implementation conventions.

In this work, we apply the extractive SPL adoption approach to
a variability-rich family of systems, the Robocode programming
game1 and, more specifically, the source code-based bots imple-
mented by its community. Robocode has a large body of documenta-
tion and available bot implementations, which make it an appealing
domain for our study. Moreover, it is not organized as an SPL, as
different developers create independently their own bot variants
for their different needs. The objectives of our work are threefold:
(1) to report an experience on the extraction of an SPL which can
help to bring light to SPL extraction issues in a comprehensible
scenario, (2) to analyse and quantify the investment required to
extract the SPL from the existing artefact variants, (3) to contribute
pedagogical material on SPL adoption which is a real industrial
need [15] not sufficiently covered by current pedagogical mate-
rial [1]. A group of students had the task to analyse the Robocode
domain, formalize the bots commonalities and variabilities using
feature modelling [9] in the FeatureIDE tool [21], and to extract
feature-based reusable assets using a compositional approach to
implement variability based on the FeatureHouse composer [3].

We present in this paper the results of the extracted Robocode
SPL in terms of features and their associated reusable assets. We
discuss the time and effort spent during the SPL extraction based
on the collected answers from a survey that we conducted among
the participants. Principally, we present the distribution of time in
the different activities and discuss some reflections on the gained
knowledge. In addition, we make publicly available the extracted
SPL and the teaching material, and we present how the extracted
SPL can be used beyond education. The findings are not only in-
teresting for educators but also for a wider audience interested
in understanding SPL extraction issues from a practical perspec-
tive. These issues appear during the end-to-end extraction of our
“academic-scale” family of systems. Moreover, the provided material
together with our publicly available extracted Robocode SPL can
be used to reproduce the case study and compare with our results.

1Robocode: http://robocode.sourceforge.net

http://robocode.sourceforge.net


SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi

Figure 1: Battle of two bots. Screenshot from the RoboWiki

The Robocode SPL including technical information for how to use
it, and extra material is available 2.

In the following, we present background information about
Robocode and its existing assets (Section 2). We also present the
case study settings including the participants’ description and the
context and duration of the project (Section 3). We report the re-
sults of the domain analysis phase (Section 4) and the results of the
domain implementation phase (Section 5). Further, an analysis and
discussion of the results are also given (Section 6). We then outline
some possible uses of our extracted Robocode SPL (Section 7). Fi-
nally, we present related works (Section 8) and we conclude the
paper while outlining future work (Section 9).

2 BACKGROUND ON ROBOCODE
An API of the Robocode game, in Java or .NET, is provided to
any participant to develop a virtual battle tank (bot from now
onwards) that battles against other bots from other developers in
a closed-arena. A battle simulation environment is provided to
observe the programmed behavior and debug the bots as shown in
the screenshot of Figure 1. Under the motto “Build the best, destroy
the rest”, the Robocode community is active with a long history
which started in 2001. Besides its pedagogical values for teaching
programming [18] or even artificial intelligence approaches [8],
it has been also used as case study for advanced computational
intelligence research (e.g., genetic programming [20]).

Figure 2: Anatomy of
a bot. Illustration from
the RoboWiki

Game rules. A Java API 3 is
provided to implement a virtual
bot with body, gun, and radar
(as shown in Figure 2). We ex-
plain some of the most relevant
API methods. The body will move
with the setAhead method that
takes a distance as parameter.
Also the desired velocity can be
2Robocode SPL: https://github.com/but4reuse/RobocodeSPL_teaching
3Robocode Java API: http://robocode.sourceforge.net/docs/robocode/

defined. The body can be turned
with setTurnRight and a desired
angle. In a similar way, the gun,
which is on top of the body, can be turned with setTurnGunRight.
One can also decide when to fire with setFireBullet and defining
as parameter which power they want to put in the bullet (bullets
with lower power travel faster, and our bot will lose less energy for
firing the bullet). The radar, on top of the gun, can be turned with
setTurnRadarRight. There are several events that can be listened
by the bot, the most important one is the event when the radar
detects an enemy bot because its position can be stored (bullets are
not detected by the radar). Other examples of events are related to
being hit by a bullet, by a wall, or by a bot.

These API primitives for movement, targeting, and radar enable
to program very diverse and advanced techniques to face the bat-
tle. These techniques are behavioral features which are the more
relevant source of diversity in the Robocode family of bots. There
are other sources of variability such as the colors of the body, gun,
radar and bullets which are not of our interest in this work as they
do not have any impact on the behavior. There is also variability in
the type of battle such as 1 vs 1 (see Figure 1), melee with several
bots fighting among them, or teamwhere several bots communicate
among teammates and fight against another team. This variability
is not taken into account as we focused on behavioral features of
the bots.

Knowledge and assets base. The Robocode community has cre-
ated a large knowledge base which is centralized in their official
wiki called RoboWiki 4. Beginners and advanced developers can
find, share and discuss any topic with a special focus on bots’ fea-
tures. A plethora of bots is publicly available including its source
code in common or personal repositories. For example, more than
2900 bots (including variants and versions) are available in a pub-
lic repository 5. We automatically checked that, in this repository,
more than 1500 made their source code publicly available with an
average of 24.38 Java files each. Around one-third of these 1500 are
bots with only one or very few number of Java files. The reason
is that there are Robocode competitions where the code size is re-
stricted giving rise to the haiku [20], nano,mini ormicro categories.
For those that do not have code size restrictions, we can find bots
with hundreds of Java files.

The Robocode community, as result of their collaborative work,
maintains the documentation of known features. This includes a
description and, in some cases, some hints or snippets of how to
implement them. Apart from the RoboWiki pages dedicated to the
features, 300 bots are documented in the RoboWiki by the authors
themselves6, including information about the features used for
movement and targeting. Despite all this Robocode knowledge
and assets base, there is an absence of an explicit specification
of all the existing variability among these thousands of bots. The
Robocode SPL extra material that we make public includes the data
we gathered about the bots repository and the RoboWiki bots.

4RoboWiki: http://www.robowiki.net
5Robocode archive: http://robocode-archive.strangeautomata.com/robots/
6http://robowiki.net/wiki/Category:Bots

https://github.com/but4reuse/RobocodeSPL_teaching
http://robocode.sourceforge.net/docs/robocode/
http://www.robowiki.net
http://robocode-archive.strangeautomata.com/robots/
http://robowiki.net/wiki/Category:Bots


Software Product Line Extraction from Variability-Rich Systems: Robocode SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

3 THE ROBOCODE CASE STUDY
This Section explains the Module framework which was used as
the reference architecture for the SPL, and the case study settings
regarding the task and the involved participants.

3.1 An Imposed Reference Architecture: The
Module Framework

Robocode bots are development projects requiring a certain design
and structure to ease their maintenance and iterative enhancements.
As mentioned in Section 2, several bots are implemented in just one
Java class, especially those competing in categories with code size
limitations. However, bots without these limitations use to be more
carefully structured. To facilitate the reuse of common function-
alities and to facilitate the integration of behavioral components,
certain members of the community have developed frameworks
aiming to ease the development of bots. One example is the Xan-
der framework 7 or the Module framework 8. In this work, we
used the Module framework (version 1.0.0) which was created and

7http://robowiki.net/wiki/XanderFramework
8https://github.com/jabiercoding/ModuleRobocodeFramework

documented by the first author. The UML Class diagram of Fig-
ure 3 presents an excerpt of the framework. The abstract class
Module extends TeamRobot from the official Robocode API, so a
Java class implementing Module can be used in Robocode as a new
bot. The Module class takes care of managing all the information
about the battle (e.g., listening and processing events, updating
enemy positions, keeping the history of fired bullets, sharing in-
formation if there are teammates, and executing the behavior by
extending the runmethod from the Robot class). The abstract meth-
ods initialize and selectBehavior will be specialized when a
bot instance wants to be created. The Module class contains five
Parts and it will notify the parts for each event that happens during
the battle. Each part has its own responsibility:
• Radar: to scan the enemies by moving the radar.
• Movement: to move the bot by rotating and setting the speed.
• Targeting: to target by turning the gun. This will usually re-
quire to use the current enemy position but not necessarily. For
example, the AreaTargeting strategy will turn the gun to the
area of the battlefield with the greatest number of enemies.

• Gun: to set the fire power.
• SelectEnemy: to select the current main enemy among all the
enemies.

Figure 3: Excerpt of a UML Class diagram illustrating the Module framework, its relation with the Robocode API, and an
example of a bot implementing a Module bot

http://robowiki.net/wiki/XanderFramework
https://github.com/jabiercoding/ModuleRobocodeFramework


SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi

At the bottom of Figure 3, we have an example of a bot named
ModuleBot. This bot extends Module and the behavior is defined
with the implementation of the different Parts. SpinningRadar is
a radar behavior that turns the radar indefinitely without focusing
on any specific enemy. HeadOnRamming is a movement that tries
to crash the enemy by continuously moving towards the enemy
position at the maximum speed. LinearTargeting is a targeting
behavior that assumes that the enemy will continue in the same
direction and at the same speed to estimate its position and target
the gun accordingly. Maximum is a gun behavior to always fire with
the maximum of bullet power. Closest is a SelectEnemy behavior
that continuously checks which is the nearest enemy to select it as
the current enemy.

The Module framework follows the strategy pattern to include
the bot behavior so we considered that it was a good candidate
to be used as the base for the implementation of an SPL. This
imposed framework for the SPL required that features extracted
from the RoboWiki or from existing bots will need to conform to
the framework. In general, the integration in the framework was
not difficult (as stated by the SPL developers), but they were aware
of this activity during the re-engineering of the existing code.

3.2 Case Study Settings
Participants and duration. The case study included 6 Master stu-

dents at Sorbonne Université (last year before starting a Ph.D. or
starting an industrial professional career) over 3 months to ex-
tract the Robocode SPL. The six participants (three men and three
women, uniform in age and in their university background) formed
a group in the context of a course related to project management.
The technical tasks for software development within the course
must not be trivial but challenging for the three months of its dura-
tion. The Robocode SPL was realized in this time frame, working
as a self-organized group, and in parallel with other courses and
projects in their master program.

Training activities. The participants had no initial knowledge of
SPL theory nor on any tool for SPL implementation. In view of this
project, a tutorial was conducted during 4 hours by the last author

of this paper, as a senior expert on SPLE. This tutorial included
an introduction to SPLs and a hands-on practice on FeatureIDE
and FeatureHouse. In a similar way, they had not any knowledge
on Robocode. Another 4 hour tutorial was performed to teach
Robocode and the Module framework by the first author of this
paper. A small example of FeatureIDE usage to derive variants
of bots was implemented. This SPL was then used as a base to
incrementally develop the final Robocode SPL. Despite that their
work was autonomous, we gave support for specific questions about
the SPL implementation tooling and Robocode.

4 DOMAIN ANALYSIS
Formalization of domain variability. Figure 4 shows the resulting

feature model [9]. Feature names are not readable but it serves to get
an impression of its size and topology. The feature model includes
a total of 115 features from which 7 are part of the mandatory core.
22 are abstract features intended to group alternative or optional
features, and the remaining 93 are behavioral features intended to
have an implementation counterpart. Features starting from level
two of the feature model tree are behavior techniques which are
grouped as alternative features (i.e., only one can be selected). For
example, for the Radar, there are 9 feature alternatives, or for the
Movement, there are 27 alternatives grouped in different movement
categories. On the zoomed part of Figure 4, we can see 5 out of
these 9 features related to radar, and we can also see a targeting
category called BasicTargeting with 7 alternative features. Given
the combinatorial explosion of possible configurations, the number
of possible variants exceeds several hundred thousands. The Fea-
tureIDE tool was not able to compute an exact number after several
hours of computation.

There are only two exceptionswhere the features are not grouped
as alternatives but as a set of optional features (i.e., you can select
none of them or any of them). One of them are features related to
EnergyManagement techniques. When a bot fires a bullet, the bot
loses a certain energy amount depending on the power that was
established for the bullet. Energy management is a set of optional

Figure 4: An excerpt of the extracted feature model for Robocode SPL



Software Product Line Extraction from Variability-Rich Systems: Robocode SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

features to preserve the energy of the bot under certain circum-
stances. For example, if our bot energy is low, some bots establish
the condition that we will never fire with a power value equal or
higher than the value that will disable our bot. In those cases where
the enemy energy is low, some bots reduce the bullet power to the
strictly necessary power to eventually destroy the target. The other
set of optional features are related to the GuessFactorTargeting
feature that targets based on the histograms of the angles of previ-
ously fired bullets. These histograms can be segmented based on
some battle information. For example, different histograms based
on the enemy distance (e.g., when it is close, when it is far) or based
on the enemy velocity or acceleration (e.g., when it is stopped,
when it is moving). More than 10 segmentation options are added
as optional features. The implementation of concrete examples will
be shown in Section 5. Apart from these alternative constraints and
groups of optional features, there are no cross-tree constraints.

Representativeness. It is difficult to measure how representative is
this featuremodel to the existing variability in the Robocode domain
which is quite vast. Based on our experience, we consider that it is
representative of the main topics of the domain but we are aware
that several concepts are missing. Examples of non-covered topics
are: Droid bots are special bots with no radar, features to perform
file-based serialization of data as bots can optionally store data
of previous matches (e.g., GuessFactorTargeting histograms), or
features to include or exclude debugging graphics of the features.

5 DOMAIN IMPLEMENTATION
Technical solution. Features in a variability model need its im-

plementation counterpart to derive actual product variants. As
variability implementation mechanism, we decided to impose the
FeatureHouse [3] composer available in FeatureIDE [21] which en-
ables the composition of Java source code. Annotative approaches
such as the preprocessor-based Antenna or Munge (Java-based
alternatives to the widespread usage of #ifdef pre-processor direc-
tives in C source code) were also available in FeatureIDE but we
opted for FeatureHouse to force a more clear separation of features.

To present a feature implementation and its composition we used
a basic targeting feature called HeadOnTargeting. This technique
consists in aiming the gun directly to the enemy position (or at least
where we last saw our enemy). We use the notation used by Apel
et al. [3] where the symbol ‘•’ is used to denote the composition
operator of software artefacts. Figure 5 illustrates the composition
of the feature structure trees (FSTs) [3] of the HeadOnTargeting and
Module features. The composition operation results in an FSTwhere

1 package jab.targeting;
2
3 public class HeadOnTargeting extends Targeting {
4
5 public HeadOnTargeting(Module bot) {
6 super(bot);
7 }
8
9 public void target () {
10 if (bot.enemy != null) {
11 double absoluteBearing = bot.getHeadingRadians () +

bot.enemy.bearingRadians; bot.
setTurnGunRightRadians(robocode.util.Utils.
normalRelativeAngle(absoluteBearing - bot.
getGunHeadingRadians ()));

12 }
13 }
14 }

1 package jab;
2
3 public class ModuleBot extends Module {
4 Targeting selectedTargeting = new HeadOnTargeting(this)

;
5 }

Listing 1: The implementation of feature HeadOnTargeting

the HeadOnTargeting feature is included in a bot variant. Listing 1
shows the complete source code of the HeadOnTargeting feature.
The first Java class HeadOnTargeting extends the Targeting class
of the Module framework and the target method is implemented
to turn the gun. The other Java file below this one is a fragment of
source code that just declares the variable selectedTargeting and
assigns it an instance of the HeadOnTargeting class. In Listing 2 we
show how the HeadOnTargeting is composed using FeatureHouse
inside the Module mandatory feature. In line 5 of Listing 2, we can
observe how the variable coming from line 4 in the second part
of Listing 1 was added. Then, if the HeadOnTargeting feature is
selected, the instance of HeadOnTargeting will be the targeting
behavior of the derived bot variant.

Size metrics. The extracted Robocode SPL had 80 features with
an actual implementation counterpart. Not all the 115 features
in the feature model had an implementation, as mentioned in
Section 4, 22 of them are abstract features. Also, the students did
not have time to implement 13 features identified in the domain
analysis given the constrained duration of the project. Figure 6
shows, in the first box-plot on the left, the distribution of the

jab

ModuleBot targeting

selectedTargeting HeadOnTargeting

HeadOnTargeting jab

ModuleBot …

Module

selectBehavior

=

jab

ModuleBot targeting

selectedTargeting HeadOnTargeting

HeadOnTargeting

selectBehavior

Module

…

…

…

Figure 5: HeadOnTargeting • Module. The composition of the feature HeadOnTargeting in the Module mandatory feature. (The
notation is adapted from Apel et al. [3])



SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi

1 package jab;
2
3 public class ModuleBot extends Module {
4 ...
5 Targeting selectedTargeting = new HeadOnTargeting(this)

;
6 ...
7 protected void selectBehavior () {
8 radar = selectedRadar;
9 movement = selectedMovement;
10 targeting = selectedTargeting;
11 selectEnemy = selectedSelectEnemy;
12 gun = selectedGun;
13 }
14 ...
15 }

Listing 2: HeadOnTargeting • Module. The composition of the
feature HeadOnTargeting in the Module mandatory feature

number of lines of code (LoC)9 for the 80 features. The median is
30 LoC but we can observe several features with higher numbers.
The outlier counting 633 LoC, in the upper left of the figure,
corresponds to the mandatory Module feature (i.e., the root of the
feature model) that, as described in Section 3.1, is responsible to
manage all the data of the battle and handle the events before
dispatching them to the bot parts. The rest of the box-plots show
the distribution of subsets of features corresponding to the six
main relevant feature categories: Targeting, Movement, Gun,
SelectEnemy, Radar, and EnergyManagement. We can observe
that, in general, movement features are the category with a
higher number of LoC, followed by targeting features. On the
contrary, the features related to energy management, radar, enemy
selection or gun are rather small. The other outlier of the “All
features” box-plot with more than 400 LoC corresponded to a
movement feature. This feature is called WaveSurfing and it is
an advanced technique used by many high-competitive bots 10.
There are also tiny feature implementations. Two of the smallest
features with an implementation are related to EnergyManagement
features such as NoFireHigherThanRequiredToKill and
NoFireHigherOwnEnergy, which implementation will be ex-
plained and shown in Listing 3.

The Robocode SPL implementation size, measured as the sum of
the feature implementations, is 4,403 LoC. The mandatory Module
feature represents already the 14.38%. Then, the features under
Targeting and Movement constitute the 71.43%, and 14.19% for the
rest of the features all together. The size of the SPL is not realistic
in industrial SPLs. However, in the Robocode domain, these feature
sizes are realistic. Also, we consider that the relatively small size
of the features enables to implement a large diversity of features
within the time constraints of the project. This characteristic makes
Robocode a good candidate for educational purposes.

Feature interactions. A feature interaction is some way in
which a feature or features modify or influence another fea-
ture in describing or generating the system’s overall behav-
ior [22]. In the Robocode SPL, there are two cases of feature in-
teractions, (1) the EnergyManagement features modifying the re-
sult of the Gun features in the assignation of the bullet power,
9LoC calculated with Google CodePro Analytics
10http://robowiki.net/wiki/Wave_Surfing

A
ll
fe
at
ur
es

Ta
rg
et
in
g

M
ov
em

en
t

G
un

Se
le
ct
En

em
y

Ra
da
r

En
er
gy

M
ng

0
50
100
150
200
250
300
350
400
450
500
550
600

#L
oC

Figure 6: #LoC for all features, and according to the sixmain
compound features

1 package jab.module;
2
3 public class Module {
4 protected void energyManagement () {
5 original ();
6
7 if (enemy!=null){
8 bulletPower = Math.min(bulletPower , getEnergy () -

0.01);
9 }
10 }
11 }

Listing 3: The implementation of feature NoFireHigherOwnEnergy

and (2) the segmentation features influencing the behavior of
the default GuessFactorTargeting feature. To implement the
EnergyManagement features, the participants evolved the Module
framework to support this new concept which is complementary
to the Gun strategies. An energyManagement method was added
to the abstract Module class where the default behavior is not to
perform any kind of energy management and takes directly the
power defined by the Gun feature. Then, the optional energy man-
agement features, if selected, will chain conditions in this method
to preserve energy. Listing 3 shows the implementation of the
feature NoFireHigherOwnEnergy. In Line 5 we can see a call to
original(), which is a FeatureHouse reserved method to include
the original code of the feature where this feature will be composed.

The GuessFactorTargeting feature was designed in a way
that optional features can define the segment that applies
at each moment in the battle. Listing 4 shows the im-
plementation of DistanceSegmentation that interacts with
GuessFactorTargeting by defining the segment that applies ac-
cording to the distance to the current enemy. In Line 17 we can

http://robowiki.net/wiki/Wave_Surfing


Software Product Line Extraction from Variability-Rich Systems: Robocode SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

1 package jab.targeting;
2
3 public class GuessFactorTargeting extends Targeting {
4
5 public void target () {
6 if(bot.enemy!= null) {
7 if (bot.enemy.distance <= 100) {
8 segmentsValues.add("close");
9 } else if (bot.enemy.distance > 100 && bot.enemy.

distance <= 300) {
10 segmentsValues.add("less close");
11 } else if (bot.enemy.distance > 300 && bot.enemy.

distance <= 500) {
12 segmentsValues.add("far");
13 } else {
14 segmentsValues.add("very far");
15 }
16 }
17 original ();
18 }
19 }

Listing 4: The implementation of feature DistanceSegmentation

see the call to the original() method that will include the origi-
nal code of GuessFactorTargeting. This advanced technique in
the use of FeatureHouse was the solution they found to include
segments. In general, different implementation solutions can be
found to solve diverse technical problems in SPL implementation.
We did not compare their solution with other possibilities but they
proposed working solutions which we consider valid.

Duplicated code in feature implementations. The a-posteriori anal-
ysis of the implementation revealed several cases of duplicated code
among some features. For example, a method goTo(x,y) for mov-
ing the bot to a given battlefield position is present in more than
ten features. The SPL features were not refactored to include these
clones in separated features (that will be included if any of the
features were selected). Moreover, this will avoid having source
code clones among features but there is the trade-off that features
will not be self-contained. There are still discussions about when
cloning is considered harmful [10], but in the Robocode SPL, the
identified clones can represent issues in maintenance. For example,
at least three different ways to implement the same goTo method
can be found in the resulting SPL.

6 RESULTS, DISCUSSIONS AND LIMITATIONS
This section discusses the results from different perspectives, (1) its
educational value, (2) the extractive process, and (3) the analysis of
the time and effort. The results are based on individual question-
naires (available in the Robocode SPL extra material) and interviews.

6.1 Educational Value
The results of the knowledge gained during the project are shown
in Figure 7. Concretely, it shows the average of their self-assessment
before and after the project on a scale from one to ten. We can ob-
serve how their knowledge in the Java programming language
remains almost constant while more advanced software engineer-
ing concepts such as feature modeling, implementing feature-based
systems and SPLs are highly increased. With almost the same in-
crease, we find the understanding of the Robocode domain and the
technical skills required to use the FeatureIDE tool. One conclusion

that can be obtained from this graph is that this experience has
no knowledge pre-requirements for the participants apart from
knowing Java (a minimum requirement accessible to anyone with
basic knowledge of programming). The result is a dramatic gain of
knowledge to design and implement an SPL. Compared to the tradi-
tional single-system development, the participants gained hands-on
practice on implementing systematic reuse so they can respond to
more advanced software engineering challenges in implementing
families of systems.

before after

0.17

7.67

0.83

6.33

0.17

7.17

0

7.17

0

88.17 8.5

FM SPL Impl. FB
FeatureIDE Robocode Java

Figure 7: Reflection on the gained knowledge: Feature Mod-
eling (FM), SPL, Implementing Feature-Based systems (Impl.
FB), FeatureIDE, Robocode domain, and Java

Their high self-assessment after the project needs to be put in
perspective with the scope of the project, in the sense that if they
will be confronted to an industrial SPL in the future, or they will re-
search on these topics, they will realize how broad SPL engineering
is (e.g., economic models, SPL scope, different ways to implement
variability, different binding times etc.) and they will probably have
to re-evaluate their self-assessments. However, they gained the min-
imum knowledge required to start using state of the art methods
and tools, instead of ad hoc solutions.

6.2 Emerging SPL Extraction Process
Given the Robocode SPL extraction task, we wanted to understand
how they proceeded to implement features to investigate if their
process could be generalized. Figure 8 shows the process followed
by the participants to implement a feature. The flow-chart is the
result of individual interviewswhere, quite unanimously, they agree
in the presented steps. Therefore, this is the process that emerged
for the majority after interviewing them once the project had been
completed. Each of them begins by selecting a feature that is not
already implemented or assigned to others. Then, they analyse
the feature information from the RoboWiki. Whenever there is a



SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi

corresponding implementation snippet for that feature, they take
and adapt it to their extracted core-code assets in the Robocode
SPL, while the adaptation includes the integration in the Module
framework. When there is no implementation in the RoboWiki,
then they have to identify which bots have this feature, so they
can take the implementation from one of those bots and adapt it.
Otherwise, they implemented that feature from scratch by using
only its documentation. Finally, they test and debug the feature.

Unimplemented
feature

Check documen-
tation (RoboWiki)

Code snippet
available?

Adapt feature
to the Module
framework

Identify bots im-
plementing feature

Bots implement-
ing feature?

Select one
implementation

Implement feature

Test, debug

yes

no

yes

no

Figure 8: Feature implementation process

Following this process, the source of the implementation can be
either from a source code snippet available in the RoboWiki, from an
existing bot, or from the documentation in the RoboWiki. Figure 9
shows the percentage of the source of the implementation. We can
observe that more than a half were taken from source code snippets
available in the RoboWiki and then adapted to the Robocode SPL.
Taking and adapting features from a bot was also the case for
around a quarter of the features. As a last option, implementing
from scratch based on the documentation also happened for 22.60%
of the features.

The high percentage of the use of snippets from the RoboWiki
shows that the Robocode community not only explains the prin-
ciples of a feature, but there is also a will to facilitate its reuse in
practice. These snippets, at a smaller scale, can be analogous to
the existence of reusable components in industrial settings that
can be taken to implement a feature offered by this component
(e.g., in-house reusable components or COTS). Taking the source
code of a bot is similar to trying to locate and extract a specific
feature from a complete system or from a system variant that we

51.37%

26.03% 22.60%

RoboWiki snippet

Bot
Documentation

Figure 9: Sources to implement features: Robowiki code
reused and adapted for the Robocode SPL, existing bot code
reused and adapted for the Robocode SPL, and features im-
plemented from scratch

know that contains this feature. Finally, implementing a feature
from scratch is the case where there are no available assets to mine
the feature and it has to be implemented as per specification. Given
that features are documented, this case study lacks a scenario (usual
in industrial settings [15]) consisting in the need to perform inter-
views and workshops with different technical and non-technical
stakeholders to identify and understand features.

The quality of the extracted SPL artifacts was briefly discussed
during the paper. The feature model is representative according to
our expert judgment but it is not complete (Section 4) and dupli-
cated code was found in feature implementations (end of Section 5).
Further work will be needed to investigate which metrics can be
used to evaluate the quality of the extracted SPL and which tools
can be used to obtain them. More in-depth analysis of the SPL
quality was out of the scope of this work.

6.3 Time and Effort During SPL Extraction
Each student was asked regarding the time spent in five main activ-
ities: (1) understanding feature modeling (FM), (2) understanding
how to use FeatureIDE, (3) understanding the Robocode domain, (4)
modeling the Robocode domain variability, and (5) implementing
the features of the Robocode SPL. Figure 10 shows the total time of
the project and the percentage dedicated to the different activities.
Around half of their time was spent in the feature implementation
part, which includes the time to understand certain mathemati-
cal concepts and algorithms behind the implementation of the bot
behaviors. With 17.83% we have the analysis of the Robocode do-
main. They made a remark about several cases where features with
different names were similar and they spent time thinking if they
were actually different or the same. The same time was spent to
understand FMs and FeatureIDE (8.67%), and a little bit less (5.67%)
to actually use FeatureIDE to model the Robocode commonality
and variability. Finally, an average of 11.67% of their time was spent
in other activities, such as project management and documentation.
In the Robocode SPL extra material we add the documentation of
each feature.

Features which were well-documented in the RoboWiki and
that included a snippet were much faster to extract than using



Software Product Line Extraction from Variability-Rich Systems: Robocode SPLC ’18, September 10–14, 2018, Gothenburg, Sweden

47.50%

17.83%

8.67% 8.67%
5.67%

11.67%

Implementation
Domain analysis
Understanding FM
Understanding FeatureIDE
Modeling the variability

Others

Figure 10: The average distribution of time in different ac-
tivities by each participant, in percentage (%)

other means, such as taking from an existing bot or implementing
from scratch. This also explains why they always began the im-
plementation process of a feature by searching it in the RoboWiki
(cf. Figure 8), and most of the features are extracted from there
(cf. Figure 9). The case of taking the implementation from existing
bots was more complicated. Specially because several bots imple-
ment the same feature in different ways and by different developers.
Thus, it was not always easy to define a criteria to know which one
should be used as base for the extraction.

As the implementation or extraction of features took most of
the time, they were asked for the time spent to implement a fea-
ture. First, they grouped features into three main categories (1)
easy, (2) medium, and (3) difficult to implement. And, depending
on these categories, they provide different implementation time
for such features. Figure 11 shows in average their evaluated used
time for features in each of the three categories. While they spent a
quite uniform time to implement the “easy” and “medium” features,
there were some features which were more complicated to integrate,
understand their functionality, or understand the mathematical con-
cepts and algorithms behind them. The outlier “difficult” feature that
took around 9 hours corresponded to the GuessFactorTargeting
including its design to interact with segmentation features, as de-
scribed in Section 5. The last box-plot in Figure 11 shows the aver-
age time spent for all features. It indicates that in average a feature
took between one hour to four hours and a half to be extracted or
implemented.

7 ROBOCODE SPL AS PLAYGROUND
The Robocode SPL that we make available can be used for different
purposes. In this section, we describe some of them that exploit
interesting characteristics of the Robocode domain.

Extending it to attributed feature models. The variability resolu-
tion in the implemented Robocode SPL is just boolean decisions.
Therefore, selected features cannot be parameterized (e.g., through
feature attributes). In the current SPL implementation approach, if
different feature parameters were really important, different values
should have been implemented through different boolean features
(e.g., a feature requires to measure if the enemy is far or not, but

0 1 2 3 4 5 6 7 8 9

A
ll
fe
at
ur
es

D
iffi

cu
lt

M
ed
iu
m

Ea
sy

#hours

Figure 11: The time to implement a feature (easy, medium,
difficult), and in average for all of them

it is unclear to decide which distance thresholds to use, and differ-
ent options can represent significantly different behaviors). The
Robocode SPL can be extended to support feature parameters.

Automatically finding the optimal bot configuration. Given the
combinatorial explosion of possible configurations in an SPL, find-
ing the best configuration for a given context is challenging. Current
approaches use to rely on evolutionary algorithms to explore the
configuration space [7]. For the Robocode SPL, it is challenging to
know which configuration performs the best against a given enemy
bot or against a set of bots. The Robocode community has created
the RoboRunner framework that enables to launch battles without
the user-visible simulation, so the results (i.e., scores) of a battle
are automatically obtained. These scores can be used as fitness
functions to explore the Robocode SPL configuration space. The
optimization can be also multi-criteria, having to balance not only
the scores but also other attributes such as code size. Compared
to other domains where the fitness function of a configuration is
always the same (e.g., cost), a fitness function based on the battle
score presents interesting characteristics as the score is not constant
each time you run the battle.

Dynamic change of bot behavior. The current Robocode SPL en-
ables to derive bots with a fixed behavior. For example, if you select
one type of movement, this movement cannot be changed to other
that might be more appropriate for the status of the battle at a
given time. The Robocode SPL can be enriched with customizable
process models [19] in a way that the configuration is going to
be replaced with other configuration at run-time when a set of
predefined events are triggered, or when certain battle conditions
are satisfied.

8 RELATEDWORK
We present the related work from the perspective of extractive SPL
adoption as well as from an educational perspective.



SPLC ’18, September 10–14, 2018, Gothenburg, Sweden Jabier Martinez, Xhevahire Tërnava, and Tewfik Ziadi

Extractive SPL Adoption. The extractive SPL adoption (ESPLA)
catalog [15] reports more than 125 case studies. However, only a
very few of them consider the analysis of variants that are not cre-
ated with clone-and-own or through automatic approaches. Only
three of them consider variants that are created independently
by different development teams. The HomeAway online vacation
rental marketplace had to deal with the fusion of several companies
of the same domain [12]. 12 variants were implemented indepen-
dently fitting each company requirements and an SPL wanted to
be adopted as part of the fusion. This kind of cases can be hardly
managed by tools which are mainly based in structural analysis
of the variants, such as BUT4Reuse [16] or ECCO [6]. The BSH
induction hobs company [4] also had to deal with the merging of
two families counting 112 variants (46 of one family and 66 of an-
other) with cases of features that were implemented independently.
The Robocode bots and features are implemented independently
by each developer representing a challenging case study for SPL
extraction. Also, compared to these industrial cases, the Robocode
SPL is made publicly available.

Education on SPL. Some case studies have been prepared to be
used in the context of learning and for classroom use. The Arcade
Game Maker pedagogical SPL [17] concisely explains the scenario
of a fictitious company adopting an SPL approach. Other case stud-
ies, such as the Graph Product Line (GPL) [13] or the Expressions
Product Lines (EPL) [14] have been presented as SPL examples
where understanding the domain is not complex. However, accord-
ing to a survey and the summaries from the SPL Teaching (SPLTea)
series of workshops by Acher et al. [1], there is still need of suitable
case studies for educational purposes. The Robocode case study
is proposed as a candidate to reduce the lack of well-documented
real-world examples and case studies suitable for teaching in the
context of reverse engineering and adoption. As commented is Sec-
tion 1, this context is not as frequently covered as other topics in
SPL pedagogical material [1].

9 CONCLUSION
We presented the Robocode case study as a way to analyse an end-
to-end extractive process for SPL adoption. The domain analysis
resulted in a feature model of considerable size and in a high diver-
sity of feature implementations that were (1) mined from existing
assets and (2) re-engineered to match the SPL architecture. We
provided time measures to show the distribution of time dedicated
to different activities. Our discussions of this academic-scale ex-
traction of an SPL can provide insights for real industrial settings.
The case study is also suitable for educational purposes as it en-
ables to gain knowledge and hands-on practice in SPLs through a
motivating project.

As further work, we aim to tackle some of the research directions
mentioned in Section 7. Also, we plan to get feedback about the do-
main analysis and implementation from the Robocode community.
The Robocode SPL can be used as a reference point to understand,
discuss and evolve their domain variability. Also, we hope to attract
the attention of the SPL community as the Robocode SPL can be
used for very diverse purposes.

ACKNOWLEDGMENTS
This work was partially supported by the ITEA3 15010 REVaMP2
project: FUI the Île-de-France region and BPI in France. Special
thanks to the students Aram, Hacene, Mariène, Morvan, Sara and
Wissem for their active involvement in this work.

REFERENCES
[1] Mathieu Acher, Roberto E. Lopez-Herrejon, and Rick Rabiser. 2017. Teaching

Software Product Lines: A Snapshot of Current Practices and Challenges. TOCE
18, 1 (2017), 2:1–2:31.

[2] Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. 2013. Feature-
Oriented Software Product Lines - Concepts and Implementation. Springer.

[3] Sven Apel, Christian Kästner, and Christian Lengauer. 2009. FEATUREHOUSE:
Language-independent, automated software composition. In ICSE 2009. 221–231.

[4] Manuel Ballarín, Raúl Lapeña, and Carlos Cetina. 2016. Leveraging Feature
Location to Extract the Clone-and-Own Relationships of a Family of Software
Products. In ICSR 2016, Vol. 9679. Springer, 215–230.

[5] Thorsten Berger, Ralf Rublack, Divya Nair, Joanne M. Atlee, Martin Becker,
Krzysztof Czarnecki, and Andrzej Wasowski. 2013. A Survey of Variability
Modeling in Industrial Practice. In VaMoS 2013.

[6] Stefan Fischer, Lukas Linsbauer, Roberto Erick Lopez-Herrejon, and Alexander
Egyed. 2014. Enhancing Clone-and-Own with Systematic Reuse for Developing
Software Variants. In ICSME. IEEE Computer Society, 391–400.

[7] Jianmei Guo, Jules White, Guangxin Wang, Jian Li, and Yinglin Wang. 2011. A
genetic algorithm for optimized feature selection with resource constraints in
software product lines. Journal of Systems and Software 84, 12 (2011), 2208–2221.

[8] KenHartness. 2004. Robocode: using games to teach artificial intelligence. Journal
of Computing Sciences in Colleges 19, 4 (2004), 287–291.

[9] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. 1990.
Feature-Oriented Domain Analysis (FODA) Feasibility Study. Technical Report.
Carnegie-Mellon University Soft. Eng. Institute.

[10] Cory Kapser and Michael W. Godfrey. 2008. "Cloning considered harmful" con-
sidered harmful: patterns of cloning in software. Empirical Software Engineering
13, 6 (2008), 645–692.

[11] Charles W. Krueger. 2001. Easing the Transition to Software Mass Customization.
In Software Product-Family Engineering, 4th International Workshop, PFE 2001
(Lecture Notes in Computer Science), Vol. 2290. Springer, 282–293.

[12] Charles W. Krueger, Dale Churchett, and Ross Buhrdorf. 2008. HomeAway’s
Transition to Software Product Line Practice: Engineering and Business Results
in 60 Days. In SPLC 2008. 297–306.

[13] Roberto E. Lopez-Herrejon and Don S. Batory. 2001. A Standard Problem for
Evaluating Product-Line Methodologies. In Generative and Component-Based
Software Engineering, Third International Conference, GCSE 2001, Erfurt, Germany,
September 9-13, 2001, Proceedings (Lecture Notes in Computer Science), Vol. 2186.
Springer, 10–24.

[14] Roberto E. Lopez-Herrejon, Don S. Batory, andWilliam R. Cook. 2005. Evaluating
Support for Features in Advanced Modularization Technologies. In ECOOP 2005
- Object-Oriented Programming (Lecture Notes in Computer Science), Vol. 3586.
Springer, 169–194.

[15] Jabier Martinez, Wesley K. G. Assunção, and Tewfik Ziadi. 2017. ESPLA: A
Catalog of Extractive SPL Adoption Case Studies. In SPLC. ACM, 38–41.

[16] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein, and Yves Le
Traon. 2015. Bottom-up adoption of software product lines: a generic and exten-
sible approach. In SPLC 2015. ACM, 101–110.

[17] John D. McGregor. 2014. Ten years of the arcade gamemaker pedagogical product
line. In SPLC 2014, Volume 2. ACM, 24–25.

[18] Jackie O’Kelly and J. Paul Gibson. 2006. RoboCode & problem-based learning:
a non-prescriptive approach to teaching programming. In SIGCSE ITiCSE 2006.
ACM, 217–221.

[19] Marcello La Rosa, Wil M. P. van der Aalst, Marlon Dumas, and Fredrik Milani.
2017. Business Process Variability Modeling: A Survey. ACM Comput. Surv. 50, 1
(2017), 2:1–2:45.

[20] Yehonatan Shichel, Eran Ziserman, and Moshe Sipper. 2005. GP-Robocode: Using
Genetic Programming to Evolve Robocode Players. In EuroGP 2005. 143–154.

[21] Thomas Thüm, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake,
and Thomas Leich. 2014. FeatureIDE: An extensible framework for feature-
oriented software development. Sci. Comput. Program. 79 (2014), 70–85.

[22] Pamela Zave. 2009. Modularity in Distributed Feature Composition. In Software
Requirements and Design: The Work of Michael Jackson.


	Abstract
	1 Introduction
	2 Background on Robocode
	3 The Robocode Case Study
	3.1 An Imposed Reference Architecture: The Module Framework
	3.2 Case Study Settings

	4 Domain analysis
	5 Domain implementation
	6 Results, discussions and limitations
	6.1 Educational Value
	6.2 Emerging SPL Extraction Process
	6.3 Time and Effort During SPL Extraction

	7 Robocode SPL as playground
	8 Related work
	9 Conclusion
	Acknowledgments
	References

