, SupraTrans project IEEE Trans. Appl. Supercond, vol.15, pp.2301-2306

L. S. Mattos, E. Rodriguez, F. Costa, G. G. Sotelo, R. De-andrade et al., MagLev-Cobra operational tests IEEE Trans. Appl. Supercond, vol.26, p.3600704, 2016.

W. J. Yang, Z. Wen, Y. Duan, X. D. Chen, M. Qiu et al., Construction and Performance of HTS Maglev Launch Assist Test Vehicle, IEEE Transactions on Applied Superconductivity, vol.16, issue.2, pp.1108-1119, 2006.
DOI : 10.1109/TASC.2006.870013

J. S. Wang, S. Wang, C. Deng, J. Zheng, H. Song et al., Laboratory-Scale High Temperature Superconducting Maglev Launch System, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.2091-2095, 2007.
DOI : 10.1109/TASC.2007.898367

H. Bornemann, T. Ritter, C. Urban, O. Paitsev, K. Peber et al., Low friction in a flywheel system with passive superconducting magnetic bearings IEEE Trans, 1994.

, Appl. Supercond, vol.2, pp.439-486

Q. Y. Chen, Z. Xia, K. B. Ma, C. K. Mcmichael, M. Lamb et al., Hybrid high Tc superconducting magnetic bearings for flywheel energy storage system, Applied Superconductivity, vol.2, issue.7-8, pp.457-64, 1994.
DOI : 10.1016/0964-1807(94)90036-1

Y. Miyagawa, H. Kameno, R. Takahata, and H. Ueyama, A 0.5 kWh flywheel energy storage system using a high-T/sub c/ superconducting magnetic bearing, IEEE Transactions on Appiled Superconductivity, vol.9, issue.2, pp.996-1005, 1999.
DOI : 10.1109/77.783466

URL : https://hal.archives-ouvertes.fr/hal-01861963

T. Coombs, A. M. Campbell, R. Storey, and R. Weller, Superconducting magnetic bearings for energy storage flywheels, IEEE Transactions on Appiled Superconductivity, vol.9, issue.2, pp.968-71, 1999.
DOI : 10.1109/77.783459

T. Ichihara, Application of Superconducting Magnetic Bearings to a 10 kWh-Class Flywheel Energy Storage System, IEEE Transactions on Appiled Superconductivity, vol.15, issue.2, pp.2245-2253, 2005.
DOI : 10.1109/TASC.2005.849622

F. N. Werfel, U. Floegel-delor, T. Riedel, R. Rothfeld, D. Wippich et al., A Compact HTS 5 kWh/250 kW Flywheel Energy Storage System, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.2138-2179
DOI : 10.1109/TASC.2007.899252

M. Strasik, Design, Fabrication, and Test of a 5-kWh/100-kW Flywheel Energy Storage Utilizing a High-Temperature Superconducting Bearing, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, pp.2133-2140, 2007.
DOI : 10.1109/TASC.2007.898065

S. Mukoyama, Development of Superconducting Magnetic Bearing for 300 kW Flywheel Energy Storage System, IEEE Transactions on Applied Superconductivity, vol.27, issue.4, p.3600804, 2017.
DOI : 10.1109/TASC.2017.2652327

K. Nagaya, Y. Kosugi, T. Suzuki, and I. Murakami, Pulse motor with high-temperature superconducting levitation, IEEE Transactions on Appiled Superconductivity, vol.9, issue.4, pp.4688-94, 1999.
DOI : 10.1109/77.819339

J. R. Hull, S. Hanany, T. Matsumura, B. Johnson, and T. Jones, Characterization of a high-temperature superconducting bearing for use in a cosmic microwave background polarimeter, Superconductor Science and Technology, vol.18, issue.2, pp.18-19, 2005.
DOI : 10.1088/0953-2048/18/2/001

T. Matsumura, H. Kataza, S. Utsunomiya, R. Yamamoto, M. Hazumi et al., Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing, IEEE Transactions on Applied Superconductivity, vol.26, issue.3, p.3602304
DOI : 10.1109/TASC.2016.2533584

, EBEX Collaboration 2017 The EBEX balloon borne experiment?optics, receiver, and polarimetry Astrophys, J

C. Navau, N. Del-valle, and A. Sanchez, Macroscopic Modeling of Magnetization and Levitation of Hard Type-II Superconductors: The Critical-State Model, IEEE Transactions on Applied Superconductivity, vol.23, issue.1, p.8201023, 2013.
DOI : 10.1109/TASC.2012.2232916

C. Bean, Magnetization of Hard Superconductors, Physical Review Letters, vol.248, issue.6, pp.250-253, 1962.
DOI : 10.1098/rsta.1955.0011

J. Rhyner, Magnetic properties and AC-losses of superconductors with power law current?voltage characteristics Physica, pp.292-300, 1993.
DOI : 10.1016/0921-4534(93)90592-e

C. Hofmann and G. Ries, superconductor material with a finite-element method, Superconductor Science and Technology, vol.14, issue.1, pp.34-40, 2001.
DOI : 10.1088/0953-2048/14/1/306

T. Sugihara, H. Hashizume, and K. Miya, Numerical electromagnetic field analysis of type-II superconductors, Int. J. Appl. Electromagn. Mater, vol.2, pp.183-96, 1991.

H. Ueda, S. Azumaya, S. Tsuchiya, and A. Ishiyama, 3D Electromagnetic Analysis of Levitating Transporter Using Bulk Superconductor, IEEE Transactions on Applied Superconductivity, vol.16, issue.2, pp.1092-1097, 2006.
DOI : 10.1109/TASC.2006.871280

D. Dias, E. S. Motta, G. G. Sotelo, R. De-andrade, . Jr et al., Simulations and Tests of Superconducting Linear Bearings for a MAGLEV Prototype, IEEE Transactions on Applied Superconductivity, vol.19, issue.3, pp.2120-2123, 2009.
DOI : 10.1109/TASC.2009.2019203

D. Dias, E. S. Motta, G. G. Sotelo, R. De-andrade, and . Jr, Experimental validation of field cooling simulations for linear superconducting magnetic bearings, Superconductor Science and Technology, vol.23, issue.7, p.75013, 2010.
DOI : 10.1088/0953-2048/23/7/075013

D. Dias, G. G. Sotelo, R. De-andrade, and . Jr, Study of the Lateral Force Behavior in a Field Cooled Superconducting Linear Bearing, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.1533-1570, 2011.
DOI : 10.1109/TASC.2010.2090635

N. Takeda, M. Uesaka, and K. Miya, Computation and experiments on the static and dynamic characteristics of high Tc superconducting levitation, Cryogenics, vol.34, issue.9, pp.745-52, 1994.
DOI : 10.1016/0011-2275(94)90161-9

G. Ma, Considerations on the Finite-Element Simulation of High-Temperature Superconductors for Magnetic Levitation Purposes, IEEE Transactions on Applied Superconductivity, vol.23, issue.5, p.3601609, 2013.
DOI : 10.1109/TASC.2013.2259488

G. T. Ma, H. Liu, X. T. Li, H. Zhang, and Y. Xu, Numerical simulations of the mutual effect among the superconducting constituents in a levitation system with translational symmetry, Journal of Applied Physics, vol.115, issue.8, p.83908, 2014.
DOI : 10.1007/s10948-009-0508-3

C. Q. Ye, G. Ma, and J. Wang, Calculation and Optimization of High-Temperature Superconducting Levitation by a Vector Potential Method, IEEE Transactions on Applied Superconductivity, vol.26, issue.8, p.3603309, 2016.
DOI : 10.1109/TASC.2016.2615120

Y. D. Chun, Y. H. Kim, J. Lee, J. Hong, and J. Lee, Finite element analysis of magnetic field in high temperature bulk superconductor, IEEE Transactions on Appiled Superconductivity, vol.11, issue.1, pp.2000-2003, 2001.
DOI : 10.1109/77.920246

D. Ruiz-alonso, T. A. Coombs, and A. Campbell, Numerical Analysis of High-Temperature Superconductors With the Critical-State Model, IEEE Transactions on Appiled Superconductivity, vol.14, issue.4, pp.2053-63, 2004.
DOI : 10.1109/TASC.2004.838316

L. Wang, H. Wang, and Q. Wang, Finite element analysis of magnetic levitation force in superconducting magnetic levitation system Cryog, pp.190-193, 2006.

G. G. Sotelo, R. De-andrade, . Jr, and A. Ferreira, Test and Simulation of Superconducting Magnetic Bearings, IEEE Transactions on Applied Superconductivity, vol.19, issue.3, pp.1681-1687, 2009.
DOI : 10.1109/TASC.2009.2019555

Y. L. Li, J. Fang, M. Z. Guo, L. Xiao, M. H. Zheng et al., ANSYS-based analysis of levitation force in the HTS hybrid magnetic bearings Cryog, pp.40-44, 2008.

A. Hauser, Calculation of superconducting magnetic bearings using a commercial FE-program (ANSYS), IEEE Transactions on Magnetics, vol.33, issue.2, pp.1572-1577, 1997.
DOI : 10.1109/20.582566

J. Zhang, Y. Zeng, J. Cheng, and . Tang, Optimization of Permanent Magnet Guideway for HTS Maglev Vehicle With Numerical Methods, IEEE Transactions on Applied Superconductivity, vol.18, issue.3, pp.1681-1687, 2008.
DOI : 10.1109/TASC.2008.2000900

X. J. Zheng and Y. , Transition Cooling Height of High-Temperature Superconductor Levitation System, IEEE Transactions on Applied Superconductivity, vol.17, issue.4, pp.3862-3868, 2007.
DOI : 10.1109/TASC.2007.910150

M. Uesaka, Y. Yoshida, N. Takeda, and K. Miya, Experimental and numerical analysis of three-dimensional high-T c superconducting levitation systems Int, J. Appl. Electromagn. Mater, vol.4, pp.13-25, 1993.

Y. Yoshida, M. Uesaka, and K. Miya, Magnetic field and force analysis of high T/sub c/ superconductor with flux flow and creep, IEEE Transactions on Magnetics, vol.30, issue.5, pp.3503-3509, 1994.
DOI : 10.1109/20.312694

X. F. Gou, X. J. Zheng, and Y. Zhou, Drift of Levitated/Suspended Body in High-$T_{c}$ Superconducting Levitation Systems Under Vibration???Part I: A Criterion Based on Magnetic Force-Gap Relation for Gap Varying With Time, IEEE Transactions on Applied Superconductivity, vol.17, issue.3, pp.3795-802, 2007.
DOI : 10.1109/TASC.2007.902104

M. Tsuchimoto and H. , Numerical evaluation of levitation force of HTSC flywheel, IEEE Transactions on Appiled Superconductivity, vol.4, issue.4, pp.211-216, 1994.
DOI : 10.1109/77.334961

M. Tsuda, H. Lee, and I. , `Electromaglev' (`active-maglev')???magnetic levitation of a superconducting disk with a DC field generated by electromagnets: Part 3. Theoretical results on levitation height and stability, Cryogenics, vol.38, issue.7, pp.743-56, 1998.
DOI : 10.1016/S0011-2275(98)00049-6

M. Tsuda, H. Lee, S. Noguchi, and Y. Iwasa, ???Electromaglev??? (???active-maglev???) ??? magnetic levitation of a superconducting disk with a DC field generated by electromagnets. Part 4: theoretical and experimental results on supercurrent distributions in field-cooled YBCO disks, Cryogenics, vol.39, issue.11, pp.893-903, 1998.
DOI : 10.1016/S0011-2275(99)00125-3

H. Ueda and A. Ishiyama, Dynamic characteristics and finite element analysis of a magnetic levitation system using a YBCO bulk superconductor, Superconductor Science and Technology, vol.17, issue.5, pp.17-170, 2004.
DOI : 10.1088/0953-2048/17/5/016

G. T. Ma, J. Wang, and S. Wang, 3-D Modeling of High-$T_{c}$ Superconductor for Magnetic Levitation/Suspension Application???Part I: Introduction to the Method, IEEE Transactions on Applied Superconductivity, vol.20, issue.4, pp.2219-2246, 2010.
DOI : 10.1109/TASC.2010.2044795

G. T. Ma, J. Wang, and S. Wang, 3-D Modeling of High-$T_{c}$ Superconductor for Magnetic Levitation/Suspension Application???Part II: Validation With Experiment, IEEE Transactions on Applied Superconductivity, vol.20, issue.4, pp.2228-2262, 2010.
DOI : 10.1109/TASC.2010.2044936

S. Pratap and C. Hearn, 2015 3D transient modeling of bulk high-temperature superconducting material in passive magnetic bearing applications, IEEE Trans. Appl. Supercond, vol.25, p.5203910
DOI : 10.1109/tasc.2015.2470670

Y. Lu and Y. Qin, Influence of critical current density on magnetic force of HTSC bulk above PMR with 3D-modeling numerical solutions, International Journal of Modern Physics B, vol.29, issue.25n26, p.1542038, 2015.
DOI : 10.1007/s10909-012-0637-0

Y. Y. Lu, J. S. Wang, S. Wang, and J. Zheng, 3D-Modeling Numerical Solutions of Electromagnetic Behavior of??HTSC Bulk above Permanent Magnetic Guideway, Journal of Superconductivity and Novel Magnetism, vol.310, issue.381, pp.467-72, 2008.
DOI : 10.1007/s10948-008-0386-0

Z. Q. Yu, G. M. Zhang, Q. Q. Qiu, and L. Hu, Numerical simulation of levitation characteristics of a cylindrical permanent magnet and a high-temperature superconductor based on the 3D finite-element method Trans, China Electrotech. Soc, vol.30, pp.32-40, 2015.

F. Sass, G. G. Sotelo, R. De-andrade, . Jr, and F. Sirois, H-formulation for simulating levitation forces acting on HTS bulks and stacks of 2G coated conductors, Superconductor Science and Technology, vol.28, issue.12, p.125012, 2015.
DOI : 10.1088/0953-2048/28/12/125012

URL : http://iopscience.iop.org/article/10.1088/0953-2048/28/12/125012/pdf

A. Patel, S. C. Hopkins, A. Baskys, V. Kalitka, A. Molodyk et al., Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders, Magnetic levitation using high temperature superconducting pancake coils as composite bulk cylinders, p.115007, 2015.
DOI : 10.1088/0953-2048/28/11/115007

URL : http://iopscience.iop.org/article/10.1088/0953-2048/28/11/115007/pdf

L. Quéval, G. G. Sotelo, Y. Kharmiz, D. Dias, F. Sass et al., IEEE Trans. Appl. Supercond, vol.26, p.3601905, 2016.

Y. Y. Lu, B. J. Lu, and S. Wang, The Relationship of Magnetic Stiffness Between Single and Multiple YBCO Superconductors over Permanent Magnet Guideway, Journal of Low Temperature Physics, vol.17, issue.6, pp.279-86, 2011.
DOI : 10.1109/TASC.2007.899257

Y. Lu and S. J. Zhuang, Magnetic Forces Simulation of Bulk HTS over Permanent Magnetic Railway with Numerical Method, Journal of Low Temperature Physics, vol.21, issue.1-2, pp.111-132, 2012.
DOI : 10.1103/PhysRevB.48.12893

Y. Y. Lu and Q. Dang, Magnetic Forces Investigation of Bulk HTS over Permanent Magnetic Guideway under Different Lateral Offset with 3D-Model Numerical Method, Advances in Materials Science and Engineering, vol.2012, p.640497, 2012.
DOI : 10.1007/s10948-008-0386-0

V. M. Rodriguez-zermeño, A. B. Abrahamsen, N. Mijatovic, B. Jensen, and M. Sørensen, Calculation of alternating current losses in stacks and coils made of second generation high temperature superconducting tapes for large scale applications, Journal of Applied Physics, vol.114, issue.17, p.173901, 2013.
DOI : 10.1016/j.phpro.2012.06.043

A. Patel, S. Hahn, J. Voccio, A. Baskys, S. Hopkins et al., Magnetic levitation using a stack of high temperature superconducting tape annuli, Magnetic levitation using a stack of high temperature superconducting tape annuli, p.24007, 2017.
DOI : 10.1088/1361-6668/30/2/024007

F. Sirois and F. Grilli, Potential and limits of numerical modelling for supporting the development of HTS devices, Superconductor Science and Technology, vol.28, issue.4, p.43002, 2015.
DOI : 10.1088/0953-2048/28/4/043002

G. T. Ma, H. F. Liu, J. S. Wang, S. Y. Wang, and X. Li, 3D Modeling Permanent Magnet Guideway for High Temperature Superconducting Maglev Vehicle Application, Journal of Superconductivity and Novel Magnetism, vol.21, issue.3, pp.841-848, 2009.
DOI : 10.1007/s10948-009-0508-3

R. Brambilla, F. Grilli, and L. Martini, Development of an edge-element model for AC loss computation of high-temperature superconductors, Superconductor Science and Technology, vol.20, issue.1, pp.16-24, 2007.
DOI : 10.1088/0953-2048/20/1/004

V. M. Rodriguez-zermeño and F. Grilli, A full 3D time-dependent electromagnetic model for Roebel cables, Superconductor Science and Technology, vol.26, issue.5, p.52001
DOI : 10.1088/0953-2048/26/5/052001

H. Huang, J. Zheng, B. T. Zheng, N. Qian, H. T. Li et al., Correlations Between Magnetic Flux and Levitation Force of HTS Bulk Above a Permanent Magnet Guideway, Journal of Low Temperature Physics, vol.60, issue.18, pp.42-52, 2017.
DOI : 10.1063/1.107034

C. Navau, A. Sanchez, E. Pardo, and C. , Equilibrium positions due to different cooling processes in superconducting levitation systems, Superconductor Science and Technology, vol.17, issue.7, pp.828-860, 2004.
DOI : 10.1088/0953-2048/17/7/002

Y. Y. Lu, Y. J. Qin, Q. Dang, and J. Wang, Influence of experimental methods on crossing in magnetic force?gap hysteresis curve of HTS maglev system Physica, pp.1994-2001, 2010.

Z. Hong, A. M. Campbell, and T. Coombs, Numerical solution of critical state in superconductivity by finite element software, Superconductor Science and Technology, vol.19, issue.12, pp.1246-52, 2006.
DOI : 10.1088/0953-2048/19/12/004

Y. B. Kim, C. Hempstead, and A. Strnad, Critical Persistent Currents in Hard Superconductors, Physical Review Letters, vol.7, issue.7, p.306, 1962.
DOI : 10.1103/PhysRevLett.8.243

F. Grilli, F. Sirois, V. Rodriguez-zermeño, and M. Vojen?iak, Self-consistent modeling of the I c of HTS devices: how accurate do models really need to be?, IEEE Trans. Appl. Supercond, vol.24, p.8000508, 2014.

V. M. Rodriguez-zermeño, N. Mijatovic, C. Traeholt, T. Zirngibl, E. Seiler et al., Towards Faster FEM Simulation of Thin Film Superconductors: A Multiscale Approach, IEEE Transactions on Applied Superconductivity, vol.21, issue.3, pp.3273-3279, 2011.
DOI : 10.1109/TASC.2010.2091388

V. Lahtinen and M. Lyly, Comparison of three eddy current formulations for superconductor hysteresis loss modelling, Superconductor Science and Technology, vol.25, issue.11, p.115001
DOI : 10.1088/0953-2048/25/11/115001

M. Zhang, J. Kvitkovic, S. Pamidi, and T. Coombs, Experimental and numerical study of a YBCO pancake coil with a magnetic substrate, Superconductor Science and Technology, vol.25, issue.12, p.125020, 2012.
DOI : 10.1088/0953-2048/25/12/125020

M. Sawamura and M. Tsuchimoto, Numerical analysis for superconductor in sheet and bulk form, Japan Journal of Industrial and Applied Mathematics, vol.8, issue.189, pp.199-208, 2000.
DOI : 10.1007/BF03167343

M. D. Ainslie and H. Fujishiro, Modelling of bulk superconductor magnetization, Superconductor Science and Technology, vol.28, issue.5, p.53002, 2015.
DOI : 10.1088/0953-2048/28/5/053002

M. Zhang and T. Coombs, superconductors by finite element software, Superconductor Science and Technology, vol.25, issue.1, p.15009
DOI : 10.1088/0953-2048/25/1/015009

Z. Deng, Trapped Flux and Levitation Properties of Multiseeded YBCO Bulks for HTS Magnetic Device Applications???Part I: Grain and Current Features, IEEE Transactions on Applied Superconductivity, vol.22, issue.2, p.6800110, 2012.
DOI : 10.1109/TASC.2011.2172437

M. Murakami, T. Oyama, H. Fujimoto, S. Gotoh, K. Yamaguchi et al., Melt processing of bulk high T/sub c/ superconductors and their application, IEEE Transactions on Magnetics, vol.27, issue.2, pp.1479-86, 1991.
DOI : 10.1109/20.133464

A. Badía-majós and C. López, Electromagnetics close beyond the critical state: thermodynamic prospect, Superconductor Science and Technology, vol.25, issue.10, p.104004, 2012.
DOI : 10.1088/0953-2048/25/10/104004

L. Quéval, V. Rodriguez-zermeño, and F. Grilli, Numerical models for ac loss calculation in large-scale applications of HTS coated conductors, Superconductor Science and Technology, vol.29, issue.2, p.24007, 2016.
DOI : 10.1088/0953-2048/29/2/024007

K. Liu, W. Yang, G. T. Ma, L. Quéval, T. Gong et al., Experiment and simulation of superconducting magnetic levitation with REBCO coated conductor stacks, Superconductor Science and Technology, vol.31, issue.1, p.15013, 2017.
DOI : 10.1088/1361-6668/aa987b

URL : http://iopscience.iop.org/article/10.1088/1361-6668/aa987b/ampdf

D. Dias, G. G. Sotelo, E. F. Rodriguez, R. De-andrade, . Jr et al., Emulation of a Full Scale MagLev Vehicle Behavior Under Operational Conditions, IEEE Transactions on Applied Superconductivity, vol.23, issue.3, p.3601105, 2013.
DOI : 10.1109/TASC.2012.2233832

C. S. Hearn, S. B. Pratap, D. Chen, and R. Longoria, Lumped-Parameter Model to Describe Dynamic Translational Interaction for High-Temperature Superconducting Bearings, IEEE Transactions on Applied Superconductivity, vol.24, issue.2, pp.46-53, 2014.
DOI : 10.1109/TASC.2014.2298112

C. S. Hearn, S. B. Pratap, D. Chen, and R. Longoria, Dynamic Performance of Lumped Parameter Model for Superconducting Levitation, IEEE Transactions on Applied Superconductivity, vol.26, issue.6, p.3602608, 2016.
DOI : 10.1109/TASC.2016.2581698