P. Visscher, M. Brown, M. Mccarthy, and Y. J. , Five Years of GWAS Discovery, The American Journal of Human Genetics, vol.90, issue.1, pp.7-24, 2012.
DOI : 10.1016/j.ajhg.2011.11.029

URL : https://doi.org/10.1016/j.ajhg.2011.11.029

T. Manolio, F. Collins, N. Cox, D. Goldstein, L. Hindorff et al., Finding the missing heritability of complex diseases, Nature, vol.41, issue.7265, pp.747-53, 2009.
DOI : 10.1016/j.tig.2007.12.007

URL : http://europepmc.org/articles/pmc2831613?pdf=render

B. Maher, Personal genomes: The case of the missing heritability, Nature, vol.455, issue.7218, pp.18-21, 2008.
DOI : 10.1093/hmg/ddm175

T. Polderman, B. Benyamin, C. De-leeuw, P. Sullivan, A. Van-bochoven et al., Meta-analysis of the heritability of human traits based on fifty years of twin studies, Nature Genetics, vol.6, issue.7, pp.702-711, 2015.
DOI : 10.1088/1742-5468/2008/10/P10008

G. De-los-campos, D. Sorensen, and D. Gianola, Genomic Heritability: What Is It?, PLOS Genetics, vol.77, issue.5, pp.1-21, 2015.
DOI : 10.1371/journal.pgen.1005048.s005

P. Phillips, Epistasis ??? the essential role of gene interactions in the structure and evolution of genetic systems, Nature Reviews Genetics, vol.1, issue.11, pp.855-67, 2008.
DOI : 10.1017/S0080456800012163

O. Zuk, E. Hechter, S. Sunyaev, and E. Lander, The mystery of missing heritability: Genetic interactions create phantom heritability, Proceedings of the National Academy of Sciences, vol.43, issue.11, pp.1193-1201, 2012.
DOI : 10.1038/ng.952

URL : http://www.pnas.org/content/109/4/1193.full.pdf

W. Wei, G. Hemani, and C. Haley, Detecting epistasis in human complex traits, Nature Reviews Genetics, vol.460, issue.11, pp.722-755, 2014.
DOI : 10.1186/1471-2105-13-164

C. Niel, C. Sinoquet, C. Dina, and G. Rocheleau, A survey about methods dedicated to epistasis detection, Frontiers in Genetics, vol.39, issue.51, 2015.
DOI : 10.1038/ng2110

URL : https://hal.archives-ouvertes.fr/hal-01205577

H. Cordell, Epistasis: what it means, what it doesn't mean, and statistical methods to detect it in humans, Human Molecular Genetics, vol.11, issue.20, pp.2463-2471, 2002.
DOI : 10.1093/hmg/11.20.2463

URL : https://academic.oup.com/hmg/article-pdf/11/20/2463/1699507/ddf251.pdf

Y. Wang, G. Liu, M. Feng, and L. Wong, An empirical comparison of several recent epistatic interaction detection methods, Bioinformatics, vol.26, issue.12, pp.2936-2979, 2011.
DOI : 10.1093/bioinformatics/btq186

URL : https://academic.oup.com/bioinformatics/article-pdf/27/21/2936/579528/btr512.pdf

H. Frost, C. Amos, and J. Moore, A global test for gene-gene interactions based on random matrix theory, Genetic Epidemiology, vol.103, issue.481, pp.689-701, 2016.
DOI : 10.1002/9783527633654

URL : https://onlinelibrary.wiley.com/doi/pdf/10.1002/gepi.21990

E. M. Indor, A new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies, Stat Med, vol.31, issue.21, pp.2359-73, 2012.

B. Goudey, D. Rawlinson, Q. Wang, F. Shi, H. Ferra et al., GWIS - model-free, fast and exhaustive search for epistatic interactions in case-control GWAS, BMC Genomics, vol.14, issue.Suppl 3, 2013.
DOI : 10.1086/519795

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-14-S3-S10?site=bmcgenomics.biomedcentral.com

Z. Yu, M. Demetriou, and D. Gillen, Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests Genetic Epidemiology, Genet Epidemiol, vol.0, pp.1-10, 2015.
DOI : 10.1002/gepi.21907

URL : http://europepmc.org/articles/pmc4544597?pdf=render

X. Wan, C. Yang, Q. Yang, H. Xue, X. Fan et al., BOOST: A Fast Approach to Detecting Gene-Gene Interactions in Genome-wide Case-Control Studies, The American Journal of Human Genetics, vol.87, issue.3, pp.325-365, 2010.
DOI : 10.1016/j.ajhg.2010.07.021

URL : https://doi.org/10.1016/j.ajhg.2010.07.021

S. Dudek, A. Motsinger, D. Velez, S. Williams, and M. Ritchie, DATA SIMULATION SOFTWARE FOR WHOLE-GENOME ASSOCIATION AND OTHER STUDIES IN HUMAN GENETICS, Biocomputing 2006, pp.499-510, 2006.
DOI : 10.1142/9789812701626_0046

E. M. Aggregator, A Gene-based GEne-Gene interActTiOn test for case-control association studies, Stat Appl Genet Mol Biol, vol.15, issue.2, pp.151-71, 2016.

V. Stanislas, C. Dalmasso, and C. Ambroise, Eigen-Epistasis for detecting gene-gene interactions, BMC Bioinformatics, vol.221, issue.9, p.54, 2017.
DOI : 10.1016/j.imbio.2016.05.015

URL : https://hal.archives-ouvertes.fr/hal-01601001

L. Ma, A. Clark, and A. Keinan, Gene-Based Testing of Interactions in Association Studies of Quantitative Traits, PLoS Genetics, vol.580, issue.2, pp.1-12, 2013.
DOI : 10.1371/journal.pgen.1003321.s010

Z. Su, J. Marchini, and P. Donnelly, HAPGEN2: simulation of multiple disease SNPs, Bioinformatics, vol.23, issue.16, pp.2304-2309, 2011.
DOI : 10.1093/bioinformatics/btm386

URL : https://academic.oup.com/bioinformatics/article-pdf/27/16/2304/16899079/btr341.pdf

C. Li and M. Li, GWAsimulator: a rapid whole-genome simulation program, Bioinformatics, vol.30, issue.2, pp.140-142, 2008.
DOI : 10.1002/gepi.20131

URL : https://academic.oup.com/bioinformatics/article-pdf/24/1/140/539039/btm549.pdf

V. Perduca, C. Sinoquet, R. Mourad, and G. Nuel, Alternative Methods for H1 Simulations in Genome-Wide Association Studies, Human Heredity, vol.73, issue.2, pp.95-104, 2012.
DOI : 10.1159/000336194

URL : https://hal.archives-ouvertes.fr/hal-00915530

C. Spencer, Z. Su, P. Donnelly, and J. Marchini, Designing Genome-Wide Association Studies: Sample Size, Power, Imputation, and the Choice of Genotyping Chip, PLoS Genetics, vol.165, issue.5, 2009.
DOI : 10.1371/journal.pgen.1000477.s009

URL : http://doi.org/10.1371/journal.pgen.1000477

T. Schüpbach, I. Xenarios, S. Bergmann, and K. Kapur, FastEpistasis: a high performance computing solution for quantitative trait epistasis, Bioinformatics, vol.34, issue.11, pp.1468-1477, 2010.
DOI : 10.1086/519795

X. Hu, Q. Liu, Z. Zhang, Z. Li, S. Wang et al., SHEsisEpi, a GPU-enhanced genome-wide SNP-SNP interaction scanning algorithm, efficiently reveals the risk genetic epistasis in bipolar disorder, Cell Research, vol.447, issue.7, pp.854-861, 2010.
DOI : 10.1038/cr.2009.33

URL : http://www.nature.com/cr/journal/v20/n7/pdf/cr201068a.pdf

L. Yung, C. Yang, X. Wan, and Y. W. , GBOOST: a GPU-based tool for detecting gene???gene interactions in genome???wide case control studies, Bioinformatics, vol.87, issue.9, pp.1309-1319, 2011.
DOI : 10.1016/j.ajhg.2010.07.021

URL : https://academic.oup.com/bioinformatics/article-pdf/27/9/1309/16902475/btr114.pdf

T. Wellcome, T. Case, and C. Consortium, Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls, Nature, vol.447, issue.7145, pp.661-78, 2007.

A. Auton, G. Abecasis, D. Altshuler, R. Durbin, G. Abecasis et al.,

N. Gharani, L. Toji, N. Gerry, A. Resch, P. Flicek et al., A global reference for human genetic variation, Nature, vol.526, issue.7571, pp.68-74, 2015.

Z. Younossi, A. Koenig, D. Abdelatif, Y. Fazel, L. Henry et al., Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes, Hepatology, vol.24, issue.1, pp.73-84, 2016.
DOI : 10.1111/j.1440-1746.2009.05831.x

Q. Wang, F. Shi, A. Kowalczyk, R. Campbell, B. Goudey et al., GWISFI: A universal GPU interface for exhaustive search of pairwise interactions in case-control GWAS in minutes, Proceedings -2014 IEEE International Conference on Bioinformatics and Biomedicine, pp.403-409, 2014.

O. Canela-xandri, A. Julià, J. Gelpí, and S. Marsal, Unveiling Case-Control Relationships in Designing a Simple and Powerful Method for Detecting Gene-Gene Interactions, Genetic Epidemiology, vol.79, issue.7, pp.710-716, 2012.
DOI : 10.1002/gepi.21665

T. Hu, Y. Chen, J. Kiralis, R. Collins, C. Wejse et al., An information-gain approach to detecting three-way epistatic interactions in genetic association studies, Journal of the American Medical Informatics Association, vol.20, issue.4, pp.630-636, 2013.
DOI : 10.1016/j.immuni.2007.03.012

URL : https://academic.oup.com/jamia/article-pdf/20/4/630/9518115/20-4-630.pdf

T. Kam-thong, D. Czamara, K. Tsuda, K. Borgwardt, C. Lewis et al., EPIBLASTER-fast exhaustive two-locus epistasis detection strategy using graphical processing units, European Journal of Human Genetics, vol.19, issue.4, pp.465-71, 2011.
DOI : 10.1038/cr.2010.68

URL : https://hal.archives-ouvertes.fr/hal-00598939

M. Hiersche, F. Rühle, and M. Stoll, Postgwas: Advanced GWAS Interpretation in R, PLoS ONE, vol.81, issue.8, p.71775, 2013.
DOI : 10.1371/journal.pone.0071775.g003

URL : https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0071775&type=printable

J. Barrett, B. Fry, J. Maller, and M. Daly, Haploview: analysis and visualization of LD and haplotype maps, Bioinformatics, vol.71, issue.5, pp.263-268, 2005.
DOI : 10.1086/344398

S. Gabriel, S. Schaffner, H. Nguyen, J. Moore, J. Roy et al., The Structure of Haplotype Blocks in the Human Genome, Science, vol.296, issue.5576, pp.2225-2234, 2002.
DOI : 10.1126/science.1069424

W. Press, S. Teukolsky, W. Vetterling, and B. Flannery, Numerical Recipes: The Art of Scientific Computing In: Numerical Recipes: The Art of Scientific, p.454, 2007.

B. William, Detection of Epistasis in Genome-Wide Association Studies

N. Ha, S. Freytag, and H. Bickeboeller, Coverage and efficiency in current SNP chips, European Journal of Human Genetics, vol.3, issue.9, pp.1124-1154, 2014.
DOI : 10.1371/journal.pgen.1002793

A. Locke, B. Kahali, S. Berndt, A. Justice, T. Pers et al., Genetic studies of body mass index yield new insights for obesity biology, Nature, vol.47, issue.7538, pp.197-206, 2015.
DOI : 10.1038/ng.3173

J. Macarthur, E. Bowler, M. Cerezo, L. Gil, P. Hall et al., The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog), Nucleic Acids Research, vol.26, issue.D1, pp.896-901, 2017.
DOI : 10.1093/nar/gku1061

E. Evangelou and J. Ioannidis, Meta-analysis methods for genome-wide association studies and beyond, Nature Reviews Genetics, vol.2013, issue.6, pp.379-89, 2013.
DOI : 10.1038/ng.2566

A. Mahajan, M. Go, W. Zhang, J. Below, K. Gaulton et al., Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility, Nature Genetics, vol.3, issue.3, pp.234-278, 2014.
DOI : 10.1371/journal.pone.0000841

J. Lambert, I. -. Verbaas, C. Harold, D. Naj, A. Sims et al.,

O. Combarros, O. Donovan, M. Cantwell, L. Soininen, H. Blacker et al., Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer's disease, Nat Genet, vol.45, issue.12, pp.1452-1460, 2013.

B. Atanasovska, V. Kumar, J. Fu, C. Wijmenga, and M. Hofker, GWAS as a Driver of Gene Discovery in Cardiometabolic Diseases, Trends in Endocrinology & Metabolism, vol.26, issue.12, pp.722-754, 2015.
DOI : 10.1016/j.tem.2015.10.004

P. Pharoah, Y. Tsai, S. Ramus, C. Phelan, E. Goode et al., GWAS meta-analysis and replication identifies three new susceptibility loci for ovarian cancer, Nature Genetics, vol.12, issue.4, pp.362-70, 2013.
DOI : 10.1038/nature07829

URL : http://europepmc.org/articles/pmc3693183?pdf=render

T. Pers, J. Karjalainen, Y. Chan, H. Westra, A. Wood et al., Biological interpretation of genome-wide association studies using predicted gene functions, Nature Communications, vol.6, issue.1, p.5890, 2015.
DOI : 10.1073/pnas.0400782101

J. Bedo, D. Rawlinson, B. Goudey, and C. Ong, Stability of Bivariate GWAS Biomarker Detection, PLoS ONE, vol.81, issue.3, 2014.
DOI : 10.1371/journal.pone.0093319.s063

G. Zimmermann, J. Lehár, and C. Keith, Multi-target therapeutics: when the whole is greater than the sum of the parts, Drug Discovery Today, vol.12, issue.1-2, pp.34-42, 2007.
DOI : 10.1016/j.drudis.2006.11.008

L. Xu, A. Pegu, E. Rao, N. Doria-rose, J. Beninga et al., Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques, Science, vol.358, issue.6359, pp.85-90, 2017.
DOI : 10.1128/JVI.02454-15

URL : http://science.sciencemag.org/content/sci/358/6359/85.full.pdf

T. Bramblett, M. Teleb, A. Albaghdadi, H. Agrawal, and D. Mukherjee, Heart Failure with Preserved Ejection Fraction: Entresto a Possible Option, Cardiovascular & Hematological Disorders-Drug Targets, vol.17, issue.2
DOI : 10.2174/1871529X17666170703120237

, Cardiovasc Hematol Disorders-Drug Targets, pp.80-85, 2017.

C. Lin, C. Chu, and S. Su, Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence, PLOS ONE, vol.3, issue.9, pp.1-17, 2016.
DOI : 10.1371/journal.pone.0152891.s008