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ABSTRACT
Although the cosmic microwave background (CMB) agrees with a perfect blackbody spectrum
within the current experimental limits, it is expected to exhibit certain spectral distortions with
known spectral properties. We propose a new method Frequency Space Differential (FSD) to
measure the spectral distortions in the CMB spectrum by using the inter-frequency differences
of the brightness temperature. The difference between the observed CMB temperature at
different frequencies must agree with the frequency derivative of the blackbody spectrum in
the absence of any distortion. However, in the presence of spectral distortions, the measured
inter-frequency differences would also exhibit deviations from blackbody that can be modelled
for known sources of spectral distortions like y and μ. Our technique uses FSD information for
the CMB blackbody, y, μ, or any other sources of spectral distortions to model the observed
signal. Successful application of this method in future CMB missions can provide an alternative
method to extract spectral distortion signals and can potentially make it feasible to measure
spectral distortions without an internal blackbody calibrator.

Key words: cosmic background radiation – cosmology: observations.

1 IN T RO D U C T I O N

Imprints of spectral distortions in the cosmic microwave back-
ground (CMB) are a prediction of the Standard Cosmological
Model (Zeldovich & Sunyaev 1969; Chluba, Khatri & Sunyaev
2012; Chluba & Sunyaev 2012a; Khatri & Sunyaev 2012a,b; Kha-
tri, Sunyaev & Chluba 2012; Emami et al. 2015; Hill et al. 2015;
Chluba 2016). Measurement of signals such as y and μ distortions
will help to validate our standard cosmological model. Indeed the
essential ansatz of structure formation by gravitational instability
predicts weak but potentially measurable μ distortions (Sunyaev
& Zeldovich 1970; Hu, Scott & Silk 1994; Chluba et al. 2012;
Khatri et al. 2012; Pajer & Zaldarriaga 2012). Discoveries of any
other kinds of spectral distortions can open up a window to new
physics. One of the main goals of several next-generation cosmol-
ogy missions is to measure the spectral distortions in the CMB
blackbody spectrum. The first observational bound on the spectral
distortion was given by Far Infrared Absolute Spectrophotometer

�
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(FIRAS; Smoot et al. 1991; Mather et al. 1994; Fixsen et al. 1997)
with μ < 9 × 10−5 and y < 15 × 10−6 at 95 per cent C.L. FI-
RAS used an absolute blackbody internal calibrator to measure the
monopole of the CMB temperature field and constrained its tem-
perature T = 2.725 ± 0.001 K (Mather et al. 1999; Fixsen 2009).
With the recent CMB anisotropy data, measurements of Sunyaev–
Zel’dovich (SZ) clusters (Staniszewski et al. 2009; Hasselfield et al.
2013; Bleem et al. 2015; Planck Collaboration XXVII 2016) and
bounds on the fluctuating y and μ have also been obtained (Khatri
& Sunyaev 2015a,b).

Several concepts are under discussion for a post-Planck CMB po-
larization mission in space, including spectrometry [PIXIE (Kogut
et al. 2011) or PRISM (André et al. 2014)], high-resolution imag-
ing (CMBPOL) (Dunkley et al. 2009), or a mission with modest
resolution focusing on the large-angle primordial anisotropy (Lite-
BIRD) (Matsumura et al. 2016). While imaging and spectroscopy
are often presented as mutually exclusive concepts we propose a
hybrid approach to image spectral distortions which we term the
Frequency Space Differential (FSD) method. This technique uses a
differential measurement of the CMB between different frequencies
and therefore does not require an absolute calibrator.
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In this paper, we propose a new technique for measuring the
spectral distortions in the CMB that can avoid using an absolute
blackbody calibrator. We describe the possibility of measuring the
spectral distortion in CMB by measuring the inter-frequency dif-
ferences of the sky intensity and matching it with the theoretical
prediction of the signal frequency spectrum. The blackbody spec-
trum predicts a well-known intensity or brightness temperature at
every frequency. As a result, the difference of the blackbody inten-
sity between two different frequencies can predict a unique spectral
shape, and we can obtain an all-sky FSD map of the blackbody spec-
trum. In the presence of any spectral distortions in the blackbody
intensity, the derivative of the observed intensity is a composite
signature of frequency derivatives of the blackbody spectrum and
other sources of spectral distortions.

We will see that the key idea is to design the measurement such
that any gain fluctuations couple only to the frequency derivative of
the blackbody spectrum rather than the blackbody spectrum itself. A
similar approach was discussed recently by Sironi (2017) who also
proposed a detector design. The idea of differential measurement in
the frequency domain was also discussed earlier in the context of
recombination line (Sunyaev & Chluba 2009; Sathyanarayana Rao
et al. 2015).

Even in the absence of an absolute calibrator, an overall cali-
bration can be obtained from the time-dependent velocity dipole
due to the orbital motion around the Sun. This effect can be ex-
tracted from a multiyear campaign due to its annual modulation.
Its frequency spectrum only depends on well-known relativistic
effects and is directly proportional to the derivative of the black-
body spectrum. It can therefore serve as an absolute and robust
calibrator for the FSD technique. This effect was used in Fixsen
(2009) to recalibrate the FIRAS data using the WMAP time ordered
data.

In this paper, we discuss the main idea of using the frequency
derivative of the spectral distortion signal to measure the μ and y
distortions without an absolute calibrator (in an analogous way to
how WMAP created a map from a purely differential measurement
of the anisotropies, in contrast to Planck that used an internal refer-
ence). We prescribe possible measurement strategies and statistical
techniques to implement this method for future CMB missions. The
implementation of this method to a particular mission puts require-
ments on measurement technique, scan strategy, detector properties,
and calibration techniques.

This paper is organized as follows. Section 2 sets out the form
of the expected signals in the sky when observed differentially in
frequency space. In Section 3, we discuss how to form differential
combinations of nearby frequency channels such that inter-channel
calibration errors do not couple to the CMB monopole but only to
the derivative of the Planck spectrum. Once this major source of
noise is removed, the remaining signal needs to be cleaned from
foreground contamination. A method for removal of those con-
taminants and recovery of the spectral distortion signal is given
in Section 4. In Section 5, we discuss the main requirements our
approach places on instrument design. In Section 6, we outline
the necessary steps to implement FSD method. We conclude in
Section 7.

2 FORMALISM

The all-sky average temperature field of the CMB exhibits a black-
body spectrum (Sbrightness ≡ c2Bν/2kBν2 = hν/kB(ehν/kBTCMB−1)
with a brightness temperature Sbrightness = 2.7255 K in the RJ limit

(hν/kBTCMB < 1). Any deviation from the blackbody spectrum can
be parametrized as (Mather et al. 1994; Fixsen et al. 1997)

I o
ν = Bν(TCMB) + �TCMB

∂B

∂T
+ �I gal

ν + u
∂B

∂u
, (1)

where I o
ν is the observed intensity in the sky and the first and second

terms are the blackbody spectrum and fluctuations in the blackbody
due to CMB temperature fluctuations. The third term indicates the
galactic contamination and the last term is the spectral distortion
due to cosmological processes (like u ≡ μ, y). The observed in-
tensity of the sky at every frequency should be compared with an
internal blackbody calibrator fixed at a particular temperature to de-
duce the temperature of the CMB field and also any departure from
blackbody. The FIRAS (Mather et al. 1994; Fixsen et al. 1997)
experiment used an internal blackbody calibrator to measure the
CMB temperature field and also provided the first observational
constraints on μ, y distortions as 9 × 10−5 and 15 × 10−6 at
95 per cent C.L., respectively. Measurement of any well-motivated
CMB spectral distortions to values of cosmological interest (Zel-
dovich & Sunyaev 1969; Hu et al. 1994; Sunyaev & Chluba 2009;
Chluba 2010; Chluba & Sunyaev 2012a,b; Chluba et al. 2012; Kha-
tri & Sunyaev 2012a,b; Khatri et al. 2012; Balashev et al. 2015;
Emami et al. 2015; Hill et al. 2015; Kholupenko et al. 2015; Chluba
2016) requires a much better absolute blackbody calibrator than
FIRAS.

We will show how to estimate cosmological spectral distortions
with any given spectrum using the FSD technique. Astrophysical
sources add contaminations with approximately known spectra. We
will find that these have a similar effect on the FSD technique as on
absolutely calibrated spectral distortion measurements.

2.1 Probing spectral distortions through spectral derivatives

The observed CMB blackbody intensity, along with spectral dis-
tortions like y and μ, also gets contaminated by several galactic
astrophysical emissions in the CMB frequency range by processes
like synchrotron, free–free, spinning dust, thermal dust, etc. The
total emission can be written in terms of intensity at a particular
frequency ν in a particular pixel (p̂) as a superimposition of various
effects that can be written in the form

Iν(p̂) =Ī (I pl
ν + �TCMB(p̂)I T

ν + μ(p̂)Iμ
ν + y(p̂)I y

ν )

+ Adust(p̂)I dust
ν + Asyn(p̂)I syn

ν + Afree(p̂)I free
ν

+ Aspin-dust(p̂)I spin-dust
ν ,

(2)

where x = hν/kBTCMB = ν/νCMB, Ī = 2k3
BT 3

CMB/c2h2, and Aj are
dimensionless and defined in units of current Planck measurements
(Planck Collaboration X 2016) (denoted by Āj ). In terms of the
brightness temperature, we can write this as

Sν(p̂) = c2

2kBν2
Iν(p̂)

Sν(p̂) =Kpl
ν + ACMB(p̂)KT

ν + Aμ(p̂)Kμ
ν + Ay(p̂)Ky

ν

+ Adust(p̂)Kdust
ν + Asyn(p̂)K syn

ν + Afree(p̂)K free
ν

+ Aspin-dust(p̂)K spin-dust
ν ,

(3)

where we defined Kj
ν = I j

ν /ν2. The spectral shape of the intensity
for different components (depicted in Fig. 1) can be written as
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Figure 1. We plot the intensity spectrum for different sources of spectral
distortions for y distortions (black), μ distortions (red), and blackbody spec-
trum (blue) at T0 = 2.7255 K. We also plot the two sources of foreground
contaminations, synchrotron (cyan), and dust (magenta). The synchrotron
spectrum is plotted without the external templates.

I pl
ν = x2x

(ex − 1)
,Tν = x4ex

(ex − 1)2
, (4)

Iμ
ν = x3ex

(ex − 1)2

(
x

2.1923
− 1

)
,

I y
ν = x4ex

(ex − 1)2

(
x
( ex + 1

ex − 1

) − 4

)
,

I dust
ν = Ādust

(
ν

ν0

)βd+3( eγ ν0 − 1

eγ ν − 1

)
,

γ = h

kbTd

, Td = 18 K, ν0 = 545 GHz, βd = 1.55,

I syn
ν = Āsyn

(
ν0

ν

)αs fs(ν/α)

fs(ν0/α)
ν0 = 408 MHz, fs = templates, αs = 0.8,

I free
ν = Āfreeν

2Te(1 − e−τ ),

τ = 0.05468T −3/2
e ν−2

9 log(e[5.96−√
3πlog(ν9T

−3/2
4 )] + e),

ν9 = ν

GHz
, T4 = Te/104,

I spin-dust
ν = Āspin-dust

fsd(ννp0/νp)

fsd(ν0νp0/νp)

νp0 = 30 GHz, fsd = templates.

The all-sky average measurement of equation (2) obtains the con-
tribution only from the monopole term, whereas the differential
measurement of equation (2) between different pixels gets the con-
tribution only from the fluctuation parts (�TCMB(p̂), �μ(p̂) and
�y(p̂)), and captures no contributions from the monopole of the
CMB or any other spectral distortion signals. However, the differ-
ential measurement in frequency space for sky brightness tempera-
ture (Sνji

= Sνj
− Sνi

) and intensity (Iνji
= Iνj

− Iνi
) has non-zero

contributions both from the monopole and from the fluctuation part,
which can be written as

Iνji
(p̂) =

(
Fpl

νji
+ �ICMB(p̂)FT

νji
+ μ(p̂)Fμ

νji
+ y(p̂)Fy

νji

+ AdustFdust
νji

(p̂) + AsynF syn
νji

(p̂) + AfreeF free
νji

(p̂)

+ Aspin-dustF spin-dust
νji

(p̂)

)
�νji,

(5)

Sνji
(p̂) =

(
Dpl

νji
+ ACMB(p̂)DT

νji
+ Aμ(p̂)Dμ

νji

+ Ay(p̂)Dy
νji

+ Adust(p̂)Ddust
νji

+ Asyn(p̂)Dsyn
νji

+ Afree(p̂)Dfree
νji

+ Aspin-dust(p̂)Dspin-dust
νji

)
�νji .

(6)

For closely spaced frequency channels, i.e. small �ν ji = ν j − ν i

this can be related to the derivative of the theoretical frequency spec-
trum Dx

νji
(p̂) = ∂Sx/∂ν|νji

and Fx
νji

(p̂) = ∂I x/∂ν|νji
evaluated at

the mid-point ν ji = (ν j + ν i)/2. The theoretical FSD spectrum of the
various sources can be expressed in terms as

Fpl
ν = Ī

νCMB

x2

(ex − 1)

[
3 − xex

(ex − 1)

]
,

FT
ν = Ī

νCMB

x4ex

(ex − 1)2

[
4

x
+ 1 − 2ex

(ex − 1)

]
,

Fμ
ν = Ī

νCMB

[
x2ex

(ex − 1)2

[
3 + x − 2xex

(ex − 1)

][
x

2.19
− 1

]

+ x3ex

2.19(ex − 1)2

]
,

Fy
ν = Ī

νCMB

[
I

y
ν

x

(
4 + x − 2xex

(ex − 1)

)

+ x4ex

(ex − 1)2

((
ex + 1

ex − 1

)
+

(
xex

ex − 1

)
−

(
xex (ex + 1)

(ex − 1)2

))]
,

Fdust
ν = Īdust

(
ν

ν0

)βd+3( eν0/Td − 1

eν/Td − 1

)[
βd + 3

ν
− γ eγ ν

(eγ ν − 1)

]
,

F syn
ν = Īsync

(
ν0

ν

)αs
(−αs

ν

fs (ν/α)

fs (ν0/α)
+ ∂fs (ν/α)

∂ν

1

fs (ν0/α)

)
,

F free
ν = (Īfree)Te(2ν(1 − e−τ ) + ν2eτ ∂τ

∂ν
),

F spin-dust
ν = (Īspin-dust)

(
ν0

ν

)2(−2

ν

fsd(ννp0/νp)

fsd(ν0νp0/νp)

+ ∂fsd(ννp0/νp)

∂ν

1

fsd(ν0νp0/νp)

)
,

(7)

Dpl
ν = ACMB

νCMB

1

(ex − 1)

[
1 − xex

(ex − 1)

]
,

DT
ν = 1

νCMB

x2ex

(ex − 1)2

[
2

x
+ 1 − 2ex

(ex − 1)

]
,

Dμ
ν = TCMB

νCMB

ex

(ex − 1)2

[
− 1 − x + 2xex

(ex − 1)

][
x

2.19
− 1

]

+ xex

2.19(ex − 1)2
,

Dy
ν = TCMB

νCMB

[
�ny

ν

(
2 + x − 2xex

(ex − 1)

)

+ x2ex

(ex − 1)2

((
ex + 1

ex − 1

)
+

(
xex

ex − 1

)
−

(
xex (ex + 1)

(ex − 1)2

))]
,

Ddust
ν = Ādust

(
ν

ν0

)βd+1( eν0/Td − 1

eν/Td − 1

)[
βd + 1

ν
− γ eγ ν

(eγ ν − 1)

]
,

Dsyn
ν = Āsyn

(
ν0

ν

)2(−2

ν

fs (ν/α)

fs (ν0/α)
+ ∂fs (ν/α)

∂ν

1

fs (ν0/α)

)
,

Dfree
ν = ĀfreeTeeτ ∂τ

∂ν
,

Dspin-dust
ν = Āspin-dust

(
ν0

ν

)2(−2

ν

fsd(ννp0/νp)

fsd(ν0νp0/νp)

+ ∂fsd(ννp0/νp)

∂ν

1

fsd(ν0νp0/νp)

)
,

(8)

MNRAS 477, 4473–4482 (2018)Downloaded from https://academic.oup.com/mnras/article-abstract/477/4/4473/4964762
by BIUS Jussieu user
on 09 July 2018



4476 S. Mukherjee, J. Silk and B. D. Wandelt

Figure 2. The FSD spectra in terms of intensities of the y distortions (black),
μ distortions (red), blackbody spectrum (blue), synchrotron (cyan), and dust
(magenta) are depicted over a wide frequency range that is usually accessible
by CMB missions. The synchrotron spectrum is plotted without the external
templates.

Figure 3. The FSD spectra of the y distortions (black), μ distortions (red),
and blackbody spectrum (blue) along with foregrounds like synchrotron
(cyan) and dust (magenta) are depicted over a wide frequency range that is
usually accessible by CMB missions. The synchrotron spectrum is plotted
without the external templates.

where �ny
ν = Ky

ν /xTCMB and Āj are the amplitude of the signal as
measured by Planck measurements (Planck Collaboration X 2016).
Equation (6) can be written in matrix notation as

S(p̂) = DA(p̂). (9)

Here, D is the matrix of the FSD spectrum with components
Dji = Dj

νi
�νi and A is the column matrix composed of the signals.

This equation relates the FSD with the known theoretical spectrum
of several sources. The FSD spectrum for intensity and brightness
temperature for different sources are plotted in Figs 2 and 3, respec-
tively. As is clear from Fig. 3, the spectrum for each of the sources
is distinct. For μ distortions, the FSD signal is mainly strong at
low frequencies and decays rapidly. The y distortions peak at higher
frequencies with a much wider FSD spectrum (ν ∈ 40−300 GHz)
than μ. A mission to constrain both y and μ therefore requires a
combination of low- and high-frequency channels. We will leave a
detailed design study of an optimal distribution of channel frequen-
cies and bandwidths to future work. An estimator such as modified
internal linear combination (MILC; Hurier, Macı́as-Pérez & Hilde-
brandt 2013) combines all frequency channels to reject foreground
contamination and improve signal-to-noise ratio (SNR). We will

develop the formalism of such an estimator in the context of the
FSD technique in Section 4.

In the next section, we describe the dominant source of systematic
error in this method and how to mitigate it.

3 ME A S U R E M E N T T E C H N I QU E A N D
SYSTEMATIC ERRO RS

Usage of the FSD technique to measure CMB spectral distortions
is only possible if the temperature differences between frequency
channels can be determined with sufficient systematic error control.
Though the measurement techniques and detector properties depend
on specific missions, we discuss the basic requirements that should
be addressed in order to use the FSD method in this section.

CMB experiments for the last three decades have used several
detector technologies like directly coupled bolometers, antenna cou-
pled bolometers, MKIDS etc. In this section, we mainly focus on the
bolometer-like detectors. However, this method can also be applied
to other techniques.

For bolometer-like detectors, the power measured from a black-
body source can be written as (Richards 1994)

Pν =
∫ ∞

0
dν w(ν)

2hν3

c2(exp(x) − 1)
A	, (10)

where x = hν/kBT, w(ν) is the transmission function and A	 is the
throughput or etendue, which is equal to λ2 = (c/ν)2 for a diffraction
limited beam experiment (Richards 1994). As a result, equation (10)
becomes

Pν =
∫ ∞

0
dν w(ν)

2hν

(exp(x) − 1)
,

Pν =
∫ ∞

0
dν w(ν)2kBSν,

(11)

where Sν is the brightness temperature, which in the RJ limit reduces
to (Richards 1994)

Pν =
∫ ∞

0
dν w(ν)2kBT . (12)

So the output voltage from a bolometer detector is directly related
to the sky brightness temperature Sν . In the next section, we will
calculate the output voltage from bolometer-like systems and hence
the corresponding output voltage Vν at a frequency ν.

3.1 The non-differential technique of measuring the radiation
field

To illustrate the problem, we will first discuss why non-differential
methods will not be able to provide useful constraints on spectral
distortions. The radiation impinging on a pixel (p̂) at a frequency
ν i of the detector produces a voltage Vνi

(p̂) that is related to the
observed temperature field by the gain factor Gνi

as

Tνi
(p̂) = Gνi

Vνi
(p̂) + T off

νi
, (13)

where T off
νi

is the instrumental off-set temperature. In the absence
of mean detector noise, the measured temperature at a pixel p̂ in
frequency ν i is related to the theoretical signal by the relation,

Tνi
(p̂) = Sνi

(p̂) + T off
νi

. (14)

However, detectors even with a known and stable gain factor Gνi

and offset temperature T off
νi

= 0 exhibit variations δGνi
and δT off

νi

that are the sources of systematic errors that propagate through the
measurements. As a result, the systematic error associated with the
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temperature field (equation 13) are due to the gain and off-set error,
which can be written as

(σνi
)2
sys ≡ (δTνi

(p̂))2 =
(

δGνi

Gνi

)2

(Gνi
Vνi

(p̂))2 + (δT off
νi

)2. (15)

After using equation (14), above equation can be expressed as

(σνi
)2
sys =

(
δGνi

Gνi

)2

(Sνi
(p̂))2 + (δT off

νi
)2. (16)

The dominant contribution to Sνi
(p̂) is the blackbody temperature

field of CMB (Kpl
νi

in equation 2). As a result, the dominant source
of systematic error in equation (16) is induced by the coupling
between gain error δGνi

and Kpl
νi

. For the typical values of gain
error (of order 0.1–0.01 per cent),1 the contribution of the systematic
error is greater than the usual signal strength of μ and y distortions.
So to measure the spectral distortion signals, an absolute internal
blackbody calibrator with a precisely known reference temperature
is required under this method of measurement.

In the following subsection, we will introduce a new differential
method that can reduce the systematic error without an absolute
calibrator and also use the cross-calibration between the frequency
channels to minimize the budget of the systematic error.

3.2 The FSD technique for measuring the radiation field

The incoming electromagnetic waves (composed of multiple com-
ponents) from the sky at a particular frequency channel ν i falls on
the detector (operating at this frequency) will have an induced volt-
age, which we define as Vνi

. In the FSD technique, we propose the
measurement of the difference in the amplitude of electromagnetic
field at two different frequencies by taking the difference between
the induced voltages (Vνj

− Vνi
). This differential measurement of

the signal carries the information of the change in the electromag-
netic field of CMB (and also in other contaminations) with variation
in the frequency. The measured differential voltage can be converted
into a temperature difference by a known gain factor Gνi

and Gνj

by the relation

Tνji
(p̂) = Gνj

δVνji
(p̂) + Gνi

δVνji
(p̂), (17)

where δVνji
(p̂) = (Vνj

− Vνi
)/2, ν ji = (ν j + ν i)/2, and the off-set

temperature difference between the two channels is assumed to be
zero. If Gνi

= Gνj
, then the above equation is directly related to the

theoretical FSD signal Sνji
(equation 6) as

Tνji
(p̂) ≡ Gνj

(δVνji
(p̂) + δVνji

(p̂)) = Sνji
(p̂). (18)

However, if Gνi
= Gνj

+ �Gνji
, then

Tνji
(p̂) = Sνji

(p̂) + �G

Gνj

Gνj
δVνji

(p̂), (19)

where the second term is an extra bias originating from the dif-
ference of the gain factors between two frequency channels. This
indicates that any variation in gain factor will affect the measure-
ment by coupling it with the difference in the voltages and not with
the absolute value of the voltages. As the voltage difference be-
tween two channels have the dominant contribution from the FSD
spectrum of the blackbody Spl

νji
, along with other contaminations,

the above equation can be written as

Tνji
(p̂) ≈ Sνji

(p̂) + �G

Gνj

Sνji
(p̂). (20)

1A detailed description of the systematic error is given in Section 3.4.

The variance of equation (17) only due to the uncorrelated sys-
tematic errors in the gain factor and off-set temperature can be
written as

(σ 2
νji

)sys ≡ (δTνji
)2=

(
δGνi

Gνi

)2

G2
νi
δV 2

νji
+
(

δGνj

Gνj

)2

G2
νj

δV 2
νji

+(δT off
νj

)2 + (δT off
νi

)2.

(21)

Here, (δT off
νi

)2 denotes the variance in the offset measurement. The
systematic error is related to the voltage difference which according
to equation (19) have major contribution from the FSD spectrum
of CMB blackbody along with the contributions from synchrotron
at low frequency and dust at high frequency. The relative intensity
of the CMB, synchrotron, and dust can be seen in Fig. 3. The
comparison of equations (15) and (21) exhibits the key difference
between the non-differential technique and the FSD technique. The
systematic error is related to the absolute blackbody signal in the
former case and to the difference of the sky temeperature in the
latter case. As depicted in Fig. 3, for �ν = 1 GHz, the amplitude of
FSD spectrum of blackbody is two orders of magnitude below the
blackbody signal. Hence, the systematic error between these two
methods will also differ by two orders of magnitude.

The total error due to both the systematic and statistical errors
can be written as

(σ 2
νji

)tot = (σ 2
νji

)sys + (σ 2
νji

)stat, (22)

where we define the statistical error in terms of the uncorrelated
instrumental noise as

(σ 2
νji

)stat(p̂) = (δT N
νi

(p̂))2 + (δT N
νj

(p̂))2. (23)

The key concept of the FSD method that separates it from the
usual absolute calibration method is the fact that FSD is not the
difference of the already calibrated sky temperature, rather it is the
calibration of the difference in the sky temperature.

3.3 Required optimization for a multifrequency system

The above-mentioned FSD technique is a differential measurement
of the imaging signal obtained from the high-resolution frequency
bands to construct the deviations from blackbody. Implementation
of this method along with the standard imaging method (by using
low resolution frequency bands) is required to achieve the science
goals from the spectral distortions as well as the anisotropic part of
CMB. So we need a hybrid composition of frequency resolution to
implement both FSD technique and imaging technique, such that
we can obtain the spectral distortion signal and anisotropic signal
from the same conceptual framework and also with minimum cost
and minimum error.

To minimize the sources of systematic error, it is required to
reduce the contribution of CMB blackbody in the differential mea-
surement between two different frequency channels. So we need
high-resolution frequency channels to subtract the blackbody part
substantially so that the total systematic error is smaller than the
spectral distortion signal. The high-resolution FSD technique needs
to be implemented on the frequency range that have the large values
of FSD kernel for μ distortion (approximately 1−50 GHz) and y
distortion (approximately 100−300 GHz), which can be identified
from Fig. 3. The remaining frequency ranges can have large band-
width to perform the scientific studies related to imaging. A detailed
case study of the FSD technique can be done for a specific mission
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with the knowledge of the detector properties, calibration error, data
read-out frequency, size of the focal plane, etc.

For multiple frequency channels, we require to estimate the co-
variance matrix consisting of contributions from systematic errors2

(Csys), statistical error (CN), and error due to each cosmological and
astrophysical component (CA ≡ 〈AA†〉). So the total covariance
matrix becomes

〈T T †〉 ≡ CT = DCAD
T + Csys + CN . (24)

The covariance matrix is not diagonal and needs to be evaluated
for every mission with the particular instrumental noise, system-
atic errors and frequency coverage. The essential requirement to
implement the FSD technique is to reduce the contribution of the
total error on the signals of spectral distortion. The total contribu-
tion from the systematic and the instrumental noise matrix can be
written as

CÑ = Csys + CN, (25)

which can be decomposed as

CÑ = EET , (26)

where � is a diagonal matrix of eigenvalues γ1, γ2, . . . , γn such that
γ1 > γ2 > . . . > γn and the matrix E contains the corresponding
eigenvectors. An experimental design that can achieve the condi-
tion that the eigenvectors with largest eigenvalues have a minimum
projection on the FSD kernel (like Dμ

ν and Dy
ν for μ and y, respec-

tively) can significantly improve the SNR of the measurement. In
Section 4, we elaborate more on this and also explain the procedures
to extract the signal.

3.4 Gain factor and the calibration error

For CMB experiments, there are several standard calibration sources
(Planck Collaboration VIII 2016) like the CMB solar dipole, the
orbital dipole, and planets. These are used for calibration by the
Planck mission (Planck Collaboration VIII 2016). The orbital dipole
is a very good calibrator due to the well-known value of the satellite
velocity and gives a very small calibration error of typically 0.1 −
0.01 per cent (Planck Collaboration VIII 2016). The motion of the
solar barycentre (dipole) or the orbital motion (of the satellite)
also exhibits a known spectrum that can be written as �TdipK

T
νi

,
where �Tdip is the magnitude of the induced temperature due to
the solar or the orbital motion and KT

νi
is the derivative of the

blackbody spectrum with respect to the temperature. So using the
known value of the brightness temperature of the CMB dipole and
(time-dependent) orbital motion, we can calibrate the detectors for
each frequency channel. For the remaining discussion in the paper
we will focus only on the orbital dipole because of several factors
like (i) ease of modelling accurately, (ii) measurement with very
high SNR by current detectors, and (iii) clean demodulation from
multiyear data due to its annual variation. Schematically, the CMB
dipole can be measured within each frequency channel through its
pixel-to-pixel variation

δSdip
νi

≡ Sνi
(p̂1)−Sνi

(p̂2) =Gνi
(Vνi

(p̂1)−Vνi
(p̂2)) ≡ Gνi

�Vνi
. (27)

Due to the known frequency spectrum of δSdip
νi

, one can write this
as

Gνi
= KT

νi
�Tdip

�Vνi

. (28)

2Bold fonts denotes matrices.

As a result, the gain error in terms of the error associated with the
dipole measurement (δ(�Tdip)) and voltage measurement (δ(�V))
can be written as(

δGνi

Gνi

)2



(

δ(�Tdip)

�Tdip

)2

+
(

δ(�V )

�V

)2

. (29)

So the gain error of each channel is related to the error associated
with the measurement of dipole amplitude, even if the error in the
measurement of voltage is negligible.

We can accurately obtain the relative gain coefficients at different
frequencies by cross-calibrating between frequency channels. By
equating the dipole amplitude fluctuation �Tdip between any two
frequency channels, we can write

Gνj
�Vνj

KT
νj

= Gνi
�Vνi

KT
νi

, (30)

which implies

Gji ≡ Gνj

Gνi

= �Vνi

�Vνj

KT
νj

KT
νi

. (31)

This indicates that the relative calibration depends only on the mea-
sured voltage difference. Therefore, the corresponding error in the
ratio of the gain is affected only by the error associated with the
measurement of voltage difference and not that associated with the
orbital dipole measurement. As a result, the error on the relative
gain ratio can be reduced. This also indicates that the accurate cal-
ibration of the gain factor at any one frequency channel translates
into an accurate calibration at all channels. Though this step is not
directly usable to calibrate the channels in the FSD method, it gives
us an additional way to cross-calibrate different frequency channels.
Systematic errors due to any additional sources can be regulated by
comparing the relative outputs between the frequency channels.

4 SI GNA L EXTRACTI ON U SI NG DI FFERENT
TECHNI QUES

4.1 Fitting the FSD spectrum

The FSD measurement of the all-sky intensity (or equivalently
brightness temperature) at different frequency channels is an ad-
dition of several signals due to cosmological and astrophysical
sources and also instrumental noise. With the known spectrum of
the FSD and a high spectral resolution measurement over a wide fre-
quency band, we can estimate the best-fitting parameter Âx (where
x ∈ [y, μ, . . .]), which minimizes the chi-square defined as

χ2
y ,,μ =

∑
ν,ν′

(
T̄ν − Ây,μDy,μ

ν

)
(C−1

T )νν′

(
T̄ν′ − Ây,μDy,μ

ν′

)
. (32)

Addition over a wide range of frequencies increases the overall SNR
of the signal. The corresponding error bar on Ây,μ is a standard
result given by

σ 2
y,μ =

[∑
ν,ν′

Dy,μ
ν (C−1

T )νν′ Dy,μ

ν′

]−1

. (33)

As mentioned before, the covariance matrix CT is non-diagonal
and is a quantity that depends upon instrumental noise, scanning
strategy, systematic errors, etc. For a particular mission, these quan-
tities need to be evaluated for successfully implementing the FSD
technique.
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4.2 Internal linear combination method

After the removal of the coupling between gain errors and the CMB
monopole the main remaining hurdle to measuring μ and y dis-
tortions is foreground contamination. At low frequencies, the main
sources of contamination are synchrotron emission and spinning
dust emission from our galaxy. At high frequency, foreground con-
tamination is mainly due to dust. Since the FSD spectrum of μ and
y are not degenerate with these foregrounds, we will now discuss
how to use combinations of frequency channels over a wide range
of frequencies to project out foreground contamination.

We at first address the extraction of the monopole part of the
spectral distortion signal by an all-sky average of the FSD spectrum.
The all-sky average value of the distortion signal can be extracted
using the known FSD spectrum (equation 8) by the internal linear
combination (ILC; Remazeilles, Delabrouille & Cardoso 2011) and
modified internal linear combination algorithm (MILCA; Hurier
et al. 2013). With Mν frequency channels over which Ti is estimated,
we can write

Tνi
≡ Tνi

(p̂) = Dj
νi
�νiA

j (p̂) + Nνi
(p̂), (34)

where i ∈ [1, Mν] and Aj ≡ [ACMB, Aμ, Ay, . . . , ANs−1]. Aj con-
tains both cosmological signal and also foreground contaminations.
In terms of the Mν × 1 column vector T , Ns × 1 column vector A
and Mν × Ns mixing kernel D, we can write

T = DA + N. (35)

In the presence of a non-zero value of �G (introduced in the previ-
ous section), there is also an additional component given by

Tνi
= Dj

νi
�νiA

j (p̂) + Nνi
(p̂) + �Gνi

Gνi

Spl
νi
, (36)

T = DA + N + JG, (37)

where Spl
νi

is the FSD blackbody spectrum at frequency ν i and JG is
the residual column matrix that can arise due to difference in the gain
of the frequency channels. The extraction of the signal is achievable
with the requirement that we recover only one component and follow
the constraint that all other components do not contribute to the
signal. For Ns rejected components, we can define weights w such
that

u1 = wT f1 = 0,

u2 = wT f2 = 0,

...
...

uj = wT f j = 1,

...
...

uNs
= wT fNs = 0,

uNs+1 = wT JG = 0,

(38)

where f j are the frequency dependence of the jth signal defined
as f j = Dx j . f j is a column vector with Mν × 1 elements and
x j = [0, 0, . . . , 1, . . . , 0]T with only jth element equal to one. The
last condition of equation (38) also put constraints on the nature of
relative gain difference �Gi/Gi. For the FSD technique to work, JG

should not behave like any of the spectral signatures like μ, y, etc.
and hence needs to satisfy the condition

[
JG f j

]
i
= �Gνi

Gνi

Spl
νi
f j

νi
= 0. (39)

As Spl
νi

is the known FSD spectrum of blackbody at frequency ν i,
so the required frequency dependence of �Gνi

/Gνi
to minimize

the residual contaminations in the signal is manifested by equation
(39). By combining the measurement of �Gνi

/Gνi
from different

frequency channels, we can infer any projection of the gain error
on the spectral distortion signals and hence will subtract it prior to
the calibration of the FSD signals. A special case with �Gνi

= 0 is
a trivial solution of this equation and is sufficient but not necessary
to be satisfied by the detectors. In the remaining of the paper, we
will assume that the correction from �Gνi

/Gνi
can be made and

we restrict only to Ns values of u.
With the requirement that the variance in the extracted signal

map CÂ = 〈ÂÂT 〉 is minimum, the weight matrix can be obtained
by solving the equation[

2CT −D
DT 0

][
w

λ

]
=

[
0
x

]
, (40)

where λ is the Lagrange multiplier and the covariance matrix CT
is a Mν × Mν dimension matrix that can be expressed as

CT = DT CAD + CN̄, (41)

where CN̄ is defined in equation (25) and have the contributions
from instrumental noise, systematic errors, and covariance matrix
of the cosmological and astrophysical sources.

The weight matrix that satisfies equation (40) can be expressed
as

W = C−1
T D(DT C−1

T D)−1, (42)

and the corresponding jth component of the map can be obtained as

Âj = xT
j WTT . (43)

The error estimate of the signal map R̂j can be written as

CÂj
= xT

j WT CT Wxj. (44)

Using the above formalism for every component of the signal,
we can obtain the weight matrix W that minimizes the variance of
the signal. To further reduce the error of the signal, we can satisfy
the condition similar to equation (26) for the covariance matrix CT
such that weight matrix projects minimally with the eigenvector
corresponding to the largest eigenvalue of the covariance matrix. So
the error estimate on the jth component in terms of the eigenvector
decomposition (CT̃ = ET̃ T̃ ET̃

−1) can be written as

CÂj
= xT

j WT ET̃ T̃ ET̃
−1Wxj , (45)

which satisfies the condition

xT
j WT Ei

T̃ ≈ 0 ∀ γi > γmin. (46)

where γ min is the smallest eigenvalue of the covariance matrix CT .

4.3 Measurement of spatial variations in the spectral
distortion

The methods described previously have a particular application for
approaching the monopole part of the spectral distortion signal.
However, this approach can be readily extendable to measure the
fluctuations in the spectral distortion signal. Measurement of the
FSD signal at every frequency channel gives a pixel space map of
the signal, which in general can be written as

Tνi
(p̂) = ∑

j Dj
νi
�νiA

j (p̂), (47)

(Tνi
)lm = ∑

lm

∑
j Dj

νi
�νi(Aj )lm, (48)
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where (Tνi
)lm and (Aj)lm are the spherical harmonics transformation

of Tνi
(p̂) and Aj (p̂), respectively. The fluctuations in the signal can

be captured by the power spectrum νC
T T
l =

∑
m(Tν )lm(T ∗

ν )lm
(2l+1) that is

a composite effect of all the mechanisms. The dominant source of
fluctuations in the spectral distortion is due to the y distortion (Hill
et al. 2015). With this technique, we can access the spatial fluctua-
tions in the spectral distortions that are expected to be stronger than
μ distortions. The intrinsic temperature fluctuations exhibit a very
different FSD spectrum from y and hence are easily separable. The
ILC method for FSD signal discussed previously is also directly ap-
plicable to reconstructing the signal at every pixel and to generating
a map of the fluctuations.

5 R EQUIREMENTS TO U SE FSD

While not using an absolute internal calibrator to measure CMB
spectral distortions has clear practical advantages, the both ap-
proaches have their unique features and challenges. For an ab-
solute internal calibrator, it is essential that the calibrator is stable
in temperature and is a perfect blackbody so that it matches the
blackbody distribution of CMB. Even a tiny departure from the
blackbody spectrum of the absolute internal calibrator can act as
a source of systematic error and obscure any cosmological spec-
tral distortion. In the absence of an absolute internal calibrator, we
have to achieve good control of the systematic errors in the tem-
perature measurement and excellent relative calibration of different
frequency channels, but for a potentially significant reduction in
mission complexity and hence cost.

We now discuss the necessary requirements to use FSD for de-
tecting CMB spectral distortions.

(i) Instrument and measurement technique should be designed
such that the final output is calibrated only with the relative voltage
difference between two frequency channels as discussed in Sec-
tion 3.2.

(ii) The FSD signal due to y and μ distortions peak at different
frequency ranges as shown in Fig. 3. So, multiple high spectral
resolution channels in those frequency range should be implemented
with minimum instrumental noise. Use of high spectral resolution
channels can help in reducing the contaminations from other sources
and also improve the systematic errors in the measurement.

(iii) Measurement techniques should be devised such that the
coupling of the FSD spectrum of the signal with the eigenvectors
corresponding to the largest eigenvalues of the noise covariance ma-
trix is minimized. This can improve the measurability of the spectral
distortion signal and reduce the contamination from systematic error
and instrumental noise.

(iv) The relative difference in the gain factor G between fre-
quency channels should satisfy the condition given in equation (39).

(v) A stable gain factor G for the complete frequency range is
required with a very small relative calibration error of δG/G between
different frequencies. The requirement for a controlled gain error is
provided in Section 3.4.

(vi) The systematic errors due to off-set temperature of the de-
tectors must be controlled below the desired signal Sμ

ν and Sy
ν at

every frequency channel.

6 STEPS TO IMPLEMENT FSD METHOD

In this section, we briefly elaborate the steps one needs to perform
in order to implement the FSD method by using orbital/solar dipole
as a calibrator. Though the exact calibration method will depend

on the details of the detector technology, frequency channels, and
instrument properties, we summarize here the sequential steps one
should follow to implement this method. For this discussion, we
assume that the output is measured as the power incident on the
detectors. This method is also applicable for an antenna like set-up.

The bolometer-like detectors measure the total power at a par-
ticular frequency and gives output in terms of the voltages. The
measured voltage at a particular frequency ν and sky direction p̂ is
related to the sky temperature by the relation equation (13)

Sνi
(p̂) = Gνi

Vνi
(p̂) + T off

νi
, (49)

A differential measurement between two directions but at same
frequency gives us

Sνi
(p̂1) − Sνi

(p̂2) = Gνi
(Vνi

(p̂2) − Vνi
(p̂1)). (50)

For a known orbital/solar dipole measurement of Sνi
(p̂1) − Sνi

(p̂2),
we can calibrate the voltage difference as mentioned in equation
(27). This induces an error δGνi

as mentioned in equation (29).
The calibration of the all sky average brightness temperature

(which relates to the blackbody temperature of CMB) can be cali-
brated using these gain factors with an error

δSpl
νi

= δGνi

Gνi

Spl
νi
. (51)

So for Tνi
= 2.7255 K, the error in δTνi

in K is of the same order of
the gain error.

For the FSD method, we propose to measure the difference of
the output voltage between two frequency channels, �Vij = Vνi

−
Vνj

. Then we convert this quantity into the difference in the sky
temperature between two frequency channels using equation (20).
The corresponding measurement error in the FSD signal can be
calculated using equation (21). For the FSD case, the error is related
to the difference in the sky brightness temperature between two
frequency channels and not with the value of brightness temperature
itself, i.e.

(δTνij
)2 =

[(
δGνi

Gνi

)2

+
(

δGνj

Gνj

)2](
Sνij

)2

. (52)

As the difference between the sky temperature between two fre-
quency channels (Sνij

) nearly vanishes for the blackbody distribu-
tion, the induced variance (δTνij

)2 in the measurement of the signal
is also reduced in comparison to the case when there is an absolute
measurement, as mentioned in equation (51).

The crucial difference in calibrating the absolute temperature
value and FSD temperature spectrum is the reduction in the sys-
tematic error as can be seen in equations (51) and (52). Equation
(51) couples with Spl

νi
≈ 2.7255 K in RJ limit, whereas equation (52)

couples with Sνij
which is of the order of 10−2 K in the RJ limit

and for unit frequency band width (�ν = 1 GHz). FSD is not the
difference of the already calibrated absolute sky temperature. It is
the measurement of difference in the voltages from the detectors
working at two different frequency channels and then converting
the voltage difference into the corresponding FSD sky temperature.

Steps for the implementation of FSD method:

(i) Calibrate the gain factor Gν at each frequency channel us-
ing the orbital/solar dipole. This gives a set of values of gain as
[Gν1 , Gν2 ,Gν3 , . . . , Gνn

] for n frequency channels. From this, we
can also obtain the difference in the mean value of gain factor
between different pairs of channels like �Gνij

= Gνi
− Gνj

.
(ii) The measurement of �Gν assures the implementation of

equation (39). As long as the difference in the gain factors do
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not mimic any spectral distortion spectrum like y, μ, etc., we can
satisfy the requirement of equation (39). So, the array of difference
in the gain factor, JG , can be obtained by this method.

(iii) The FSD detector set-up is arranged such that it can estimate
only the difference in voltages between two frequency channels
of the bolometers (or the corresponding output for other kinds of
detectors), and multiply it with the gain factor to get the FSD sky
temperature as shown in equation (17).

(iv) With the FSD sky temperature measurement and the mean
differences in the gain factor between different frequency channels
JG , we can implement the method mentioned in Section 4 to extract
the spectral distortion signal.

7 C O N C L U S I O N S

The rich domain of cosmological information embedded in the spec-
tral distortion of the CMB spectrum is going to be unveiled by the
next generation of CMB missions. The CMB absolute intensity is
usually compared with an internal blackbody calibrator to search
for any deviations from blackbody. In the presence of an internal
blackbody calibrator, the observed intensity of the sky is compared
at every frequency with the intensity from the internal blackbody
calibrator and any departure of the observed sky intensity from the
blackbody can be modelled with the known spectrum of spectral dis-
tortions. As a result, a successful measurement of spectral distortion
signals with a high SNR requires the internal blackbody calibrator
to be extremely stable at a fixed temperature and also should obey
a perfect blackbody spectrum over the complete frequency range
of a mission (typically 1−1000 GHz). The departure of the internal
calibrator from blackbody can induce a systematic error and can
also be misunderstood with the spectral distortion signal.

We propose an alternative strategy called the FSD to measure
spectral distortions in CMB. This technique measures the difference
in the observed brightness temperature at different frequencies and
models the observed difference with the theoretically predictable
FSD kernel for different components in equation (8). The FSD
spectrum for expected sources of spectral distortions like μ and y are
different and not degenerate, which makes it easily distinguishable
and extractable. The μ spectrum is stronger at low frequencies and
decreases rapidly at higher frequencies, whereas y distortion FSD
spectrum is dominant at high frequency range as depicted in Fig. 3.

Our proposed method uses the CMB itself between the neigh-
bouring channels as a calibrator to measure the deviations from
blackbody. This method does not directly measure the absolute
blackbody spectrum, but only measures the FSD of a blackbody sig-
nal. In the presence of spectral distortions, the FSD signal exhibits
a combination of effects from blackbody along with other sources
and can be fitted uniquely for a known FSD spectrum. Success-
ful implementation of the FSD method needs several instrumental
controls in order to reduce contaminations by systematic errors and
instrumental noise, which we listed in Section 5. Measurement of
the spectral distortion signal without an internal absolute black-
body calibrator can be possible in implementing this formalism via
suitable instrumental engineering for future missions.

The main insight of this paper is to explore signatures of spectral
distortion and measuring any deviations from blackbody through
the FSD spectrum. This process enables one to measure the spectral
distortion signal in the same spirit as WMAP measured the CMB
anisotropies through a differential measurement without an inter-
nal reference. The main advantage of our method is that it does
not require an internal blackbody calibrator to measure the signal.

Secondly, this approach opens up an alternative way of measuring
the spectral distortion signal that can be useful for comparing re-
sults from other missions that use an internal blackbody calibration
method. Next-generation CMB missions with upgraded detector
technologies can implement this method to measure spectral distor-
tions without using an absolute calibrator. Estimation of the noise
properties and experimental requirements in order to implement this
method for a future CMB mission like LiteBIRD (Matsumura et al.
2016) will be addressed in a follow-up paper.
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