Unveiling the ionic exchange mechanisms in vertically-oriented graphene nanosheet supercapacitor electrodes with electrochemical quartz crystal microbalance and ac-electrogravimetry

T. Léa,c, D. Aradillaa,*, G. Bidana, F. Billonc, M. Delaunayb, J.M. Gérardb, H. Perrotc and O. Selc,*

aUniv. Grenoble Alpes, CEA, CNRS, INAC-SyMMES, F-38000 Grenoble, France

bUniv. Grenoble Alpes, CEA, INAC-PhELIQS, F-38000 Grenoble, France

cSorbonne Université, CNRS, Laboratoire Interfaces et Systèmes Électrochimiques, LISE, 75005 Paris, France

*Corresponding authors: Ozlem.sel@upmc.fr and David.ARADILLA@cea.fr
Abstract

This work presents the first electrochemical quartz crystal microbalance (EQCM) results for vertically-oriented graphene nanosheets (VOGNs) as supercapacitor electrodes. Conventional EQCM technique delivered primary insights on the ionic exchange mechanisms between VOGNs and organic electrolytes, showing a major contribution of anions. A more advanced electrogravimetric methodology, ac-electrogravimetry, was then used to access specific dynamic attributes for each species exchanged at the VOGN electrode surface. Accordingly, under the conditions of this study, anions were confirmed to be the major energy storage vector with high kinetic values and low transfer resistance while cations and free solvent molecules are given non-negligible supporting roles.

Keywords: Supercapacitors, Microbalance, ac-electrogravimetry, Graphene
1. Introduction

The stunning capabilities of supercapacitor devices in terms of power density and cycling stability has led many research groups to focus on nanostructured carbonaceous materials with enhanced capacitance and lifetime performances [1]. Among such materials, VO$_2$GNs have recently shown a great potential as electrodes for electrochemical double layer capacitors (EDLCs) due to their peculiar characteristics such as high conductivity, ion access facility and open structure with high surface area [2-4]. In spite of the numerous conventional morphological, structural and physical-chemical techniques employed for their characterization, a better understanding of the electrochemical processes involved in VO$_2$GN electrodes has not yet been provided with in-situ characterization techniques. In this direction, EQCM is commonly used to complement the electrochemical analysis with in situ gravimetric measurements, unraveling new insights on the ionic transfer mechanisms occurring at the electrode-electrolyte interface [5, 6].

Mass and charge variations measured simultaneously during the electrode cycling allow the derivation of the global mass per mole of electrons (MPE) that is exchanged between the electrode and the electrolyte according to the following equation [7, 8]:

$$\text{MPE} = F \frac{\Delta m}{\Delta q} = F \frac{\Delta m/\Delta t}{\Delta q/\Delta t}$$ \hspace{1cm} (eq. 1)

with F the Faraday number, Δm and Δq the mass and charge variations respectively.

The average mass and charge variations measured with classical EQCM give a general understanding of the exchange processes, but only few details on the dynamic behaviour of individual ions or solvent molecules. This study aims at overcoming these limitations with ac-electrogravimetry, a non-conventional technique combining the mass measurements with electrochemical impedance spectroscopy (EIS) to deconvolute the classical EQCM response.
Frequency dependant mass and charge variations are obtained under a fixed potential with a small sinusoidal perturbation and used to generate both the classical EIS transfer function (TF) $\frac{\Delta E}{\Delta I}$ and the mass/potential TF $\frac{\Delta m}{\Delta E}$. These TF are then fitted with an appropriate model to obtain detailed identification of the species involved in the charge transfer mechanism, along with the kinetics and the concentrations associated with each species [8-12]. We here report the results from both classical EQCM and its complementary counterpart ac-electrogravimetry on VOGN electrodes directly grown on the microbalance device.

2. Experimental

2.1 Materials and reagents

Anhydrous propylene carbonate (PC) and tetrabutylammonium tetrafluoroborate (TBABF₄) were purchased from Sigma Aldrich and used without further purification. GaPO₄ plain crystals with a diameter of 14 mm were purchased from AWS company (Spain).

2.2 Synthesis of VOGNs on GaPO₄ microbalance

VOGNs were synthesized by electron cyclotron resonance-chemical vapor deposition (ECR-CVD) through a reactor built in CEA-Grenoble [13]. The experimental conditions have been reported in our previous works [14, 15]. Thus, briefly, VOGNs were grown on GaPO₄ substrates at a temperature of 480°C during 80 min at 2·10⁻³ mbar, (7 µg deposited).
2.3 Morphological characterization of the electrodes

The morphology of the VOGNs was examined by using a ZEISS Ultra 55 SEM operating at an accelerating voltage of 10 kV.

2.4 Electrogravimetric characterization with EQCM and ac-electrogravimetry

A lab-made QCM device (Miller oscillator) was used to measure Δf of the GaPO$_4$ crystal (~6 MHz) which is then converted into mass changes using the Sauerbrey equation:

$$\Delta f = -k_s \cdot \frac{\Delta m}{A}$$

where A is the electrode surface and k_s is the sensitivity factor (Theoretical value: $7.92 \cdot 10^7 \text{Hz g}^{-1} \text{cm}^2$) [16]. A solution of PC containing 0.5 M TBABF$_4$ was used as electrolyte, with a platinum grid as counter electrode and acetonitrile-based Ag/Ag$^+$ reference electrode. This EQCM setup was used to perform cyclic voltammetry (CV) combined with mass variation measurements in a potential window from -1.5 V to 1V vs Ag/Ag$^+$ at scan rates from 10 to 100 mV s$^{-1}$. An open-circuit-potential of 175 mV vs Ag/Ag$^+$ was measured. Ac-electrogravimetry was then performed for 11 potentials ranging from -1.5 V to 1V vs Ag/Ag$^+$ using a frequency response analyzer (Solartron-1254) and a lab-made potentiostat (SOTELEM-PGSTAT). For each potential, the electrode was polarized and a potential perturbation (80 mV) was superimposed (relatively high perturbation was necessary to obtain measurable mass variations in ac-electrogravimetry while keeping a linear response).

The mass change Δm of the working electrode was measured simultaneously with the ac response, Δf, of the electrochemical system. The frequency range was between 63 kHz and 10
mHz. The four-channel FRA was then used to obtain the electrogravimetric transfer function, \(\frac{\Delta m}{\Delta E}(\omega) \), and the electrochemical impedance, \(\frac{\Delta E}{\Delta I}(\omega) \) simultaneously at a given potential [8].

3. Results and discussion

Figure 1a shows the morphology of VOGNs grown by ECR-CVD on gold-coated GaPO_4 crystals (inset). According to the SEM image, VOGNs are organized in a dense layer of graphene sheets that grow perpendicular to the substrate’s surface, which was found in excellent agreement with our previous works using SEM, TEM and Raman spectroscopy [14, 15]. A thickness of 1 \(\mu \)m was estimated by a cross-sectional view.

Figure 1b depicts the CV and the mass variations measured simultaneously (EQCM) on the electrode before and after the VOGN growth at a scan rate of 100 mV s\(^{-1}\). The CV response on VOGNs displays a good capacitive behavior according to our previous works [14, 15]. Nevertheless, an increase of the current density from 0.2 V was ascribed to chemical reactions of gold and the peak at 0 V was associated to impurities in the electrolyte or the presence of oxygen groups on VOGNs [17]. These reactions have a contribution to the mass variations below 30 ng while the mass of the electrode with VOGNs increases by ~200 ng between -1 V and 1 V and decreases by the same amount during the reverse scan, showing completely reversible mass intakes when the electrode is positively charged. Such behaviour is associated with anion electro-adsorption at the electrode surface. A slight reversible mass increase is also measured during the reverse scan between -1 V and -1.5 V. This is associated with cation electro-adsorption on the negatively charged electrode. The same measurements at scan rates from 10 to 50 mV s\(^{-1}\) gave similar results. Figure 1c depicts the MPE calculated using eq. 1 for all potentials where the
current is not near zero. Positive and negative values of the MPE correspond to a major contribution to the energy storage mechanism by anions and cations, respectively. If only one species is exchanged, then the MPE corresponds to its molar mass. Here, we obtain a MPE of \(\sim 80 \) and \(\sim 50 \text{ g mol}^{-1} \) above 0 V for decreasing and increasing potentials, respectively. For decreasing potentials, it is close to the \(\text{BF}_4^- \) ion’s molar mass (86 g mol\(^{-1}\)), indicating almost solely anion exchange. This value lowers at the increasing potentials (\(\sim 50 \text{ g mol}^{-1} \)), indicating complex interfacial behavior. Below 0 V the MPE values decrease, suggesting that multiple species are exchanged [18]. In such cases, using Faraday’s law to interpret classical EQCM data reaches its limitations. To discriminate between the involved species, Donnan-type electrical double layer models were used [19]. However, kinetic analysis of ion electroadsorption/(desorption) by classical EQCM remains limited to scan rates of the CV.

To overcome these limitations, complementary ac-electrogravimetric measurements were necessary. The squares and circles on Figure 2a (resp. 2b) depict the Nyquist plot of the resulting experimental charge/potential TF \(\frac{\Delta q}{\Delta E}(\omega) \) and mass/potential TF \(\frac{\Delta m}{\Delta E}(\omega) \) at two potentials, 1 V and -1 V. The mass/potential TF \(\frac{\Delta m}{\Delta E}(\omega) \) obtained at all potentials shows a clear suppressed loop in the first quadrant at frequencies ranging from 0.01 Hz to 10 Hz. It is characteristic for anion contribution in ac-electrogravimetry.

The experimental data were fitted with a model described in previous works [9-12] in a configuration where the electrolyte’s cations (TBA\(^+\)), anions (BF\(_4^-\)) and free solvent molecules (PC) are exchanged. Within this model, the theoretical TFs for \(\frac{\Delta q}{\Delta E}(\omega) \) and \(\frac{\Delta m}{\Delta E}(\omega) \) are calculated using eq. 2 and 3 and depicted as continuous lines in Figure 2:

\[
\frac{\Delta q}{\Delta E}(\omega) = F \cdot d \left(\frac{G_a}{j\omega d + K_a} - \frac{G_c}{j\omega d + K_c} \right) \tag{eq. 2}
\]
\[
\frac{\Delta m}{\Delta E}(\omega) = -d \left(m_a \frac{G_a}{j\omega d + K_a} + m_c \frac{G_c}{j\omega d + K_c} + m_s \frac{G_s}{j\omega d + K_s} \right) \quad \text{(eq. 3)}
\]

where \(K_i\) is the kinetic parameter and \(G_i\) is the parameters related to the ease of interfacial transfer for each species \((i=a \text{ (anion)}, c \text{ (cation)}, s \text{ (solvent)})\), \(\omega = 2\pi f\) and \(d\) the film thickness.

For potentials above 0.25 V, cations, anions and free solvent molecules are required in the model to obtain a perfect match for both the TFs \(\frac{\Delta q}{\Delta E}(\omega)\) and \(\frac{\Delta m}{\Delta E}(\omega)\). For potentials between -0.25 V and 0.25 V, no cation contribution was needed to fit the TFs and it was thus removed from the model. For potentials below -0.25 V free solvent molecules are not required to fit the TFs, therefore a configuration with only cations and anions was used. Using eq. 3, the partial mass/potential TFs were calculated by removing the contribution of anions (resp. cations) to \(\frac{\Delta m}{\Delta E}(\omega)\) and their Nyquist plots were depicted in Figure 2c (resp. Figure 2d). At 1 V vs Ag/Ag\(^+\), the cation-solvent partial mass/potential TF (Figure 2c) shows a loop in the third quadrant for frequencies above 0.1 Hz, characteristic for cation contribution. Below 0.1 Hz this loop continues towards the upper quadrants as a result of free solvent molecules being exchanged with the same flux direction as the anions. At -1 V the solvent’s contribution disappears and only the cation contribution can be seen. The anion-solvent partial mass/potential TF (Figure 2d) displays suppressed loops in the 1st quadrant (characteristic for anion contribution) with a diameter around 5 times greater than those from the \(\frac{\Delta m}{\Delta E}(\omega)\) TF (Figure 2b) for which the loops were diminished by the cation contribution. Figure 2e depicts the evolution of the kinetic parameters \(K_i\) obtained for each species in the model at all the studied potentials. Anions always have slightly higher kinetic parameters \((K_a = 4 \cdot 10^{-4} \text{ to } 1.2 \cdot 10^{-3} \text{ cm s}^{-1})\) than cations \((K_c = 3 \cdot 10^{-4} \text{ to } 8.5 \cdot 10^{-4} \text{ cm s}^{-1})\), showing a faster ionic transfer of the BF\(_4^-\) compared to the heavier TBA\(^+\) \((M_{TBA^+} = 242.46 \text{ g mol}^{-1})\).
Free solvent molecules are exchanged above -0.5 V but at very slow rates of transfer ($K_s = 2 \cdot 10^{-6}$ to $5 \cdot 10^{-6}$ cm s$^{-1}$). The parameters G_i of each species are used to calculate the transfer resistance, $R_{t_i} = \frac{1}{FG_i}$, depicted in Figure 2f at all the studied potentials. Free solvent molecules have the highest transfer resistance ($R_{t_s} = 17$ to 38 kΩ cm2), followed by cations ($R_{t_c} = 0.4$ to 6 kΩ cm2) while anions have the lowest transfer resistance ($R_{t_a} = 100$ to 150 Ω cm2).

The values of K_i and G_i collected for each species at various potentials revealed the dynamics of the charge transfer mechanism, showing that BF$_4^-$ anions have a major contribution to the energy stored in VOGN electrodes under the conditions of this study. These values also allow the calculation of the relative concentration changes of individual species C_i-C_0 to be done. For that, an integration of $\left. \frac{\Delta C_i}{\Delta E} \right|_{\omega \to 0} = - \frac{G_i}{K_i}$ is realized following the same procedure as given in references [9-11]. Figure 3a depicts C_i-C_0 calculated for each species, showing that BF$_4^-$ anions have the largest concentration variations which increase linearly from -1.5 V to 1 V vs Ag/Ag$^+$. Free solvent molecules follow the same concentration variations as the anions between -0.5 V and 1 V while the concentration of cations rises very slightly at negative potentials (-0.75 V to -1.5 V vs Ag/Ag$^+$). These results show that BF$_4^-$ anions are the main species that contribute to the energy storage mechanism in this configuration, with a perm-selectivity failure between -1.5V to -0.5 V.

The concentration variations C_i-C_0 can be turned into mass variations m_i for each species in the volume of the porous VOGN electrode $V_{electrode}$ ($m_i = M_i \cdot V_{electrode} \cdot (C_i-C_0)$ with M_i the molar mass of species i). Figure 3b depicts the total mass variations measured in CV and calculated with $m = \sum m_i$, with the individual calculated mass variations m_i depicted in the inset. Δm calculated from ac-electrogravimetry is in good agreement with the Δm given by our classical EQCM. This
indicates the utility of ac-electrogravimetry to deconvolute the EQCM response into individual contributions. This was also possible by using advanced global EQCM analysis [20].

Conclusions

The energy storage mechanisms in VOGN supercapacitor electrodes were deeply investigated for the first time using EQCM and ac-electrogravimetry method. After achieving a successful growth of VOGNs on piezoelectric GaPO₄ resonators, EQCM measurements in an organic electrolyte of PC containing 0.5M TBABF₄ led to first insights on the charge transfer mechanism, showing that anion electro-adsorption played a major role. This evidence was further proved and scrutinized by ac-electrogravimetry which enabled the deconvolution of the global EQCM outcome into individual dynamic responses for each species exchanged at the electrode/electrolyte interface. BF₄⁻ anions were found to be faster than their cation counterpart, and to have the highest concentration variations along the whole electrochemical window.

Acknowledgements

This work was supported by the ANR-11-IDEX-0004-02 and the Cluster of Excellence-LABEX-MATISSE-Sorbonne Université. T. Lé acknowledges also CEA for financial support.
References

Figure Captions

Figure 1. a) SEM image of VOGNs grown on gold-patterned GaPO$_4$ electrode (full electrode pictured in inset), b) cyclic voltammetry coupled with the mass measurement of the electrode before growth (Au) and after growth (VOGNs) at 100 mV s$^{-1}$ and c) MPE calculated at all potentials with non-negligible current density.

Figure 2. a-d) Nyquist plots of the experimental and theoretical results of ac-electrogravimetry on VOGN electrodes at 1V and -1V, depicting a) the charge/potential TFs $\frac{\Delta q}{\Delta E} (\omega)$, b) the mass/potential TFs $\frac{\Delta m}{\Delta E} (\omega)$, c) the cation-solvent partial mass/potential TFs and d) the anion-solvent partial mass/potential TFs. e) Evolution of the kinetic parameters K_i (cm s$^{-1}$) and f) Evolution of the transfer resistance values R_t (Ω cm2).

Figure 3. a) Evolution of the relative concentrations, $C_i - C_0$, of each species exchanged, derived from ac-electrogravimetric measurements. b) Total mass variations from EQCM (blue line) calculated from ac-electrogravimetry results for individual species (inset) and summed (purple dotted line) as a function of the potential.
Figure 1:

(a) Image of a material surface with a scale bar of 1 µm and a smaller inset showing 5 mm.

(b) Graph showing current (µA) and mass variations (ng) vs. potential (V) relative to Ag/Ag+ with lines for different materials and variations.
c)
Figure 2:

(a) $\text{Im}(\Delta m/\Delta E) \times 10^{-7} \text{g V}^{-1} \text{cm}^{-2}$

(b) $\text{Re}(\Delta m/\Delta E) \times 10^{-7} \text{g V}^{-1} \text{cm}^{-2}$

(c) Cation-Solvent

(d) Anion-Solvent

(e) Kinetic parameters $K_i \times 10^{-3} \text{cm s}^{-1}$

(f) Transfer resistance $R_i \Omega \text{cm}^2$
Figure 3:

(a) Concentration (mmol cm$^{-3}$) vs Potential vs Ag/Ag+ (V)

(b) Mass intake (ng) vs Potential vs Ag/Ag+ (V)
Graphical Abstract
Highlights

- The mass of ions at the graphene surface is precisely measured in a varying potential
- BF$_4^-$ anions exhibit a higher mobility than cations and are the main exchanged species
- Cyclic voltammetry mass variations were reconstructed using ac-Electrogravimetry