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Abstract: In addition to traditional tasks such as prediction, classification and translation, deep learning
is receiving growing attention as an approach for music generation, as witnessed by recent research groups such
as Magenta at Google and CTRL (Creator Technology Research Lab) at Spotify. The motivation is in using
the capacity of deep learning architectures and training techniques to automatically learn musical styles from
arbitrary musical corpora and then to generate samples from the estimated distribution. However, a direct
application of deep learning to generate content rapidly reaches limits as the generated content tends to mimic
the training set without exhibiting true creativity. Moreover, deep learning architectures do not offer direct
ways for controlling generation (e.g., imposing some tonality or other arbitrary constraints). Furthermore, deep
learning architectures alone are autistic automata which generate music autonomously without human user
interaction, far from the objective of interactively assisting musicians to compose and refine music. Issues such
as: control, structure, creativity and interactivity are the focus of our analysis. In this paper, we select some
limitations of a direct application of deep learning to music generation, analyze why the issues are not fulfilled
and how to address them by possible approaches. Various examples of recent systems are cited as examples of
promising directions.

1 Introduction

1.1 Deep Learning

Deep learning has become a fast growing domain and is now used routinely for classification and prediction
tasks, such as image and voice recognition, as well as translation. It emerged about 10 years ago, when a
deep learning architecture significantly outperformed standard techniques using handcrafted features on an
image classification task [HOTO06]. We may explain this success and reemergence of artificial neural networks
architectures and techniques by the combination of:

1. technical progress, such as: convolutions, which provide motif translation invariance [CB98|, and LSTM
(Long Short-Term Memory), which resolved inefficient training of recurrent neural networks [HS97];

2. availability of multiple data sets;

3. availability of efficient and cheap computing power, e.g., offered by graphics processing units (GPU).

There is no consensual definition of deep learning. It is a repertoire of machine learning (ML) techniques,
based on artificial neural networkeﬂ The common ground is the term deep, which means that there are multiple
layers processing multiple levels of abstractions, which are automatically extracted from data, as a way to
express complex representations in terms of simpler representations.

Main applications of deep learning are within the two traditional machine learning tasks of classification
and prediction, as a testimony of the initial DNA of neural networks: logistic regression and linear regression.
But a growing area of application of deep learning techniques is the gemeration of content: text, images, and
music, the focus of this article.

*To appear in Special Issue on Deep learning for music and audio, Neural Computing & Applications, Springer Nature, 2018.
IWith many variants such as convolutional networks, recurrent networks, autoencoders, restricted Boltzmann machines, etc.
|[GBC16].



1.2 Deep Learning for Music Generation

The motivation for using deep learning, and more generally machine learning techniques, to generate musical
content is its generality. As opposed to handcrafted models for, e.g., grammar-based [Ste84] or rule-based music
generation systems [Ebc88|, a machine-learning-based generation system can automatically learn a model, a
style, from an arbitrary corpus of music. Generation can then take place by using prediction (e.g., to predict
the pitch of the next note of a melody) or classification (e.g., to recognize the chord corresponding to a melody),
based on the distribution and correlations learnt by the deep model which represent the style of the corpus.

As stated by Fiebrink and Caramiaux in [FCI6|, benefits are: 1) it can make creation feasible when the
desired application is too complex to be described by analytical formulations or manual brute force design; 2)
learning algorithms are often less brittle than manually-designed rule sets and learned rules are more likely to
generalize accurately to new contexts in which inputs may change.

1.3 Challenges

A direct application of deep learning architectures and techniques to generation, although it could produce
impressing result{’} suffers from some limitations. We consider herd’}

e (Control, e.g., tonality conformance, maximum number of repeated notes, rhythm, etc.;
e Structure, versus wandering music without a sense of direction;
e ('reativity, versus imitation and risk of plagiarism;

e Interactivity, versus automated single-step generation.

1.4 Related Work

A comprehensive survey and analysis by Briot et al. of deep learning techniques to generate musical content is
available in a book [BHPI1§|. In [HCCI7], Herremans et al. propose a function-oriented taxonomy for various
kinds of music generation systems. Examples of surveys about of Al-based methods for algorithmic music
composition are by Papadopoulos and Wiggins [PW99] and by Ferndndez and Vico [FV13], as well as books by
Cope [Cop00] and by Nierhaus [Nie09]. In [Grald], Graves analyses the application of recurrent neural networks
architectures to generate sequences (text and music). In [FCI6], Fiebrink and Caramiaux address the issue of
using machine learning to generate creative music. We are not aware of a comprehensive analysis dedicated to
deep learning (and artificial neural networks techniques) that systematically analyzes limitations and challenges,
solutions and directions, in other words that is problem-oriented and not just application-oriented.

1.5 Organization

The article is organized as follows. Section (this section) introduces the general context of deep learning-based
music generation and lists some important challenges. It also includes a comparison to some related work. The
following sections analyze each challenge and some solutions, while illustrating through examples of actual
systems: control/section [2] structure/section [3] creativity /section [4] and interactivity /section

2 Control

Musicians usually want to adapt ideas and patterns borrowed from other contexts to their own objective, e.g.,
transposition to another key, minimizing the number of notes. In practice this means the ability to control
generation by a deep learning architecture.

2.1 Dimensions of control strategies

Such arbitrary control is actually a difficult issue for current deep learning architectures and techniques, because
standard neural networks are not designed to be controlled. As opposed to Markov models which have an
operational model where one can attach constraints onto their internal operational structure in order to control
the generatiorﬂ neural networks do not offer such an operational entry point. Moreover, the distributed nature
of their representation does not provide a direct correspondence to the structure of the content generated. As
a result, strategies for controlling deep learning generation that we will analyze have to rely on some external
intervention at various entry points (hooks), such as:

2Music difficult to distinguish from the original corpus.
3 Additional challenges are analyzed in [BHP18].
4Two examples are Markov constraints [PRB11] and factor graphs [PPR17].



e Input;
e Output;

e Encapsulation/reformulation.

2.2 Sampling

Sampling a modeEI to generate content may be an entry point for control if we introduce constraints on the
output generation (this is called constraint sampling). This is usually implemented by a generate-and-test
approach, where valid solutions are picked from a set of generated random samples from the modeﬂ As we
will see, a key issue is how to guide the sampling process in order to fulfill the objectives (constraints), thus
sampling will be often combined with other strategies.

2.3 Conditioning

The strategy of conditioning (sometimes also named conditional architecture) is to condition the architecture on
some extra conditioning information, which could be arbitrary, e.g., a class label or data from other modalities.
Examples are:

e a bass line or a beat structure, in the rhythm generation system [MKPKKI1T7];
e a chord progression, in the MidiNet architecture [YCYT7];
e a musical genre or an instrument, in the WaveNet architecture [vdODZ"16];

e a set of positional constraints, in the Anticipation-RNN architecture [HN17].

In practice, the conditioning information is usually fed into the architecture as an additional input layer.
Conditioning is a way to have some degree of parameterized control over the generation process.

2.3.1 Example 1: WaveNet Audio Speech and Music Generation

The WaveNet architecture by van der Oord et al. [vdODZ™16] is aimed at generating raw audio waveforms. The
architecture is based on a convolutional feedforward network without pooling layelﬂ It has been experimented
on generation for three audio domains: multi-speaker, text-to-speech (TTS) and music.

The WaveNet architecture uses conditioning as a way to guide the generation, by adding an additional tag
as a conditioning input. Two options are considered: global conditioning or local conditioning, depending if the
conditioning input is shared for all time steps or is specific to each time step.

An example of application of conditioning WaveNet for a text-to-speech application domain is to feed
linguistic features (e.g., North American English or Mandarin Chinese speakers) in order to generate speech
with a better prosody. The authors also report preliminary experiments on conditioning music models to
generate music given a set of tags specifying, e.g., genre or instruments.

2.3.2 Example 2: Anticipation-RNN Bach Melody Generation

Hadjeres and Nielsen propose a system named Anticipation-RNN [HN17] for generating melodies with unary
constraints on notes (to enforce a given note at a given time position to have a given value). The limitation
when using a standard note-to-note iterative strategy for generation by a recurrent network is that enforcing
the constraint at a certain time step may retrospectively invalidate the distribution of the previously generated
items, as shown in [PRBII]. The idea is to condition the recurrent network (RNN) on some information
summarizing the set of further (in time) constraints as a way to anticipate oncoming constraints, in order to
generate notes with a correct distribution.

Therefore, a second RNN z;urchitectureﬁl7 named Constraint-RNN, is used and it functions backward in time
and ts outputs are used as additional inputs of the main RNN (named Token-RNN), resulting in the architecture
shown at Figure [} with:

5The model can be stochastic, such as a restricted Boltzmann machine (RBM) [GBCT6], or deterministic, such as a feedforward
or a recurrent network. In that latter case, it is common practice to sample from the softmax output in order to introduce variability
for the generated content [BHP18].

6Note that this may be a very costly process and moreover with no guarantee to succeed.

7An important specificity of the architecture (not discussed here) is the notion of dilated convolution, where convolution filters
are incrementally dilated in order to provide very large receptive fields with just a few layers, while preserving input resolution and
computational efficiency [vdODZ*16].

8Both are 2-layer LSTMs [HS97].
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Figure 2: Examples of melodies generated by Anticipation-RNN. Reproduced from [HNI17] with permission of
the authors

e ¢; is a positional constraint;

e 0; is the output at index i (after ¢ iterations) of Constraint-RNN — it summarizes constraint informations
from step 4 to final step (end of the sequence) N. It will be concatenated (@) to input s;—1 of Token-RNN
in order to predict next item s;.

The architecture has been tested on a corpus of melodies taken from J. S. Bach chorales. Three examples of
melodies generated with the same set of positional constraints (indicated with notes in green within a rectangle)
are shown at Figure[2] The model is indeed able to anticipate each positional constraint by adjusting its direction
towards the target (lower-pitched or higher-pitched note).

2.4 Input Manipulation

The strategy of input manipulation has been pioneered for images by DeepDream [MOTI5]. The idea is that
the initial input content, or a brand new (randomly generated) input content, is incrementally manipulated in
order to match a target property. Note that control of the generation is indirect, as it is not being applied to
the output but to the input, before generation. Examples are:

e mazimizing the activation of a specific unit, to eraggerate some visual element specific to this unit, in
DeepDream [MOTI5];

e maximizing the similarity to a given target, to create a consonant melody, in DeepHear [Sunl7];

e mazimizing both the content similarity to some initial image and the style similarity to a reference style
image, to perform style transfer [GEB15];

e mazimizing the similarity of structure to some reference music, to perform style imposition [LGWI6].

Interestingly, this is done by reusing standard training mechanisms, namely back-propagation to compute
the gradients, as well as gradient descent to minimize the cost.
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Figure 3: Generation in DeepHear. Extension of a figure reproduced from [SunI7] with permission of the author

2.4.1 Example 1: DeepHear Ragtime Melody Accompaniment Generation

The DeepHear architecture by Sun [Sunl7] is aimed at generating ragtime jazz melodies. The architecture is a
4-layer stacked autoencoders (that is 4 hierarchically nested autoencoders), with a decreasing number of hidden
units, down to 16 units.

At first, the model is traine(ﬂ on a corpus of 600 measures of Scott Joplin’s ragtime music, split into 4-
measure long segments. Generation is performed by inputing random data as the seed into the 16 bottleneck
hidden layer units and then by feedforwarding it into the chain of decoders to produce an output (in the same
4-measure long format of the training examples), as shown at Figure

In addition to the generation of new melodies, DeepHear is used with a different objective: to harmonize a
melody, while using the same architecture as well as what has already been learnﬂ The idea is to find a label
instance of the set of features i.e. a set of values for the 16 units of the bottleneck hidden layer of the stacked
autoencoders which will result in some decoded output matching as much as possible a given melody. A simple
distance function is defined to represent the dissimilarity between two melodies (in practice, the number of
not matched notes). Then a gradient descent is conducted onto the variables of the embedding, guided by the
gradients corresponding to the distance function until finding a sufficiently similar decoded melody. Although
this is not a real counterpoint but rather the generation of a similar (consonant) melody, the results do produce
some naive counterpoint with a ragtime flavor.

2.4.2 Example 2: VRAE Video Game Melody Generation

Note that input manipulation of the hidden layer units of an autoencoder (or stacked autoencoders) bears some
analogy with variational autoencoders*E|7 such as for instance the VRAE (Variational Recurrent Auto-Encoder)
architecture of Fabius and van Amersfoort [FvATH]. Indeed in both cases, there is some exploration of possible
values for the hidden units (latent variables) in order to generate variations of musical content by the decoder (or
the chain of decoders). The important difference is that in the case of variational autoencoders, the exploration
of values is user-directed, although it could be guided by some principle, for example an interpolation to create
a medley of two songs, or the addition or subtraction of an attribute vector capturing a given characteristic
(e.g., high density of notes as in Figure [4). In the case of input manipulation, the exploration of values is
automatically guided by the gradient following mechanism, the user having priorly specified a cost function to
be minimized or an objective to be maximized.

2.4.3 Example 3: Image and Audio Style Transfer

Style transfer has been pioneered by Gatys et al. for images. The idea, summarized at Figure |5} is to
use a deep learning architecture to independently capture:

e the features of a first image (named the content),

9 Autoencoders are trained with the same data as input and output and therefore have to discover significative features in order
to be able to reconstruct the compressed data.

10Note that this is a simple example of transfer learning [GBCI16|, with a same domain and a same training, but for a different
task.

1A variational autoencoder (VAE) [KWT4] is an autoencoder with the added constraint that the encoded representation (its
latent variables) follows some prior probability distribution (usually a Gaussian distribution). Therefore, a variational autoencoder
is able to learn a “smooth” latent space mapping to realistic examples.
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Figure 4: Example of melody generated (bottom) by MusicVAE by adding a “high note density” attribute
vector to the latent space of an existing melody (top). Reproduced from |[RERT18a] with permission of the
authors

e and the style (the correlations between features) of a second image (named the style),

e and then, to use gradient following to guide the incremental modification of an initially random third
image, with the double objective of matching both the content and the style description@

Transposing this style transfer technique to music was a natural direction and it has been experimented
independently for audio, e.g., in [ULI6] and [FYRI16], both using a spectrogram (and not a direct wave signal)
as input. The result is effective, but not as interesting as in the case of painting style transfer, being somehow
more similar to a sound merging of the style and of the content. We believe that this is because of the
anisotmpﬂ of global music content representation.

2.4.4 Example 4: C-RBM Mozart Sonata Generation

The C-RBM architecture proposed by Lattner et al. [LGWI6] uses a restricted Boltzmann machine (RBM) to
learn the local structure, seen as the musical texture, of a corpus of musical pieces (in practice, Mozart sonatas).
The architecture is convolutional (only) on the time dimension, in order to model temporally invariant motives,
but not pitch invariant motives which would break the notion of tonality. The main idea is in imposing by
constraints onto the generated piece some more global structure (form, e.g., AABA, as well as tonality), seen as a
structural template inspired from the reference of an existing musical piece. This is called structure impositio
also coined as templagiarism (short for template plagiarism) by Hofstadter [Hof01].

Generation is done by sampling from the RBM with three types of constraints:

o Self-similarity, to specify a global structure (e.g., AABA) in the generated music piece. This is modeled by
minimizing the distance between the self-similarity matrices of the reference target and of the intermediate
solution;

e Tonality constraint, to specify a key (tonality). To estimate the key in a given temporal window, the
distribution of pitch classes is compared with the key profiles of the reference;

e Meter constraint, to impose a specific meter (also named a time signature, e.g., 4/4) and its related
rhythmic pattern (e.g., accent on the third beat). The relative occurrence of note onsets within a measure
is constrained to follow that of the reference.

12Note that one may balance between content and style objectives through some o and 8 parameters in the L;0:q; combined loss
function shown at top of Figure

131n the case of an image, the correlations between visual elements (pixels) are equivalent whatever the direction (horizontal axis,
vertical axis, diagonal axis or any arbitrary direction), in other words correlations are isotropic. In the case of a global representation
of musical content (see, e.g., Figure , where the horizontal dimension represents time and the vertical dimension represents the
notes, horizontal correlations represent temporal correlations and vertical correlations represent harmonic correlations, which have
very different nature.

14Note that this also some kind of style transfer [DZX18], although of a high-level structure and not a low-level timbre as in

Section
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Figure 5: Style transfer full architecture/process. Reproduced with permission of the authors

Generation is performed via constrained sampling, a mechanism to restrict the set of possible solutions in
the sampling process according to some pre-defined constraints. The principle of the process (illustrated at
Figure @ is as follows. At first, a sample is randomly initialized, following the standard uniform distribution.
A step of constrained sampling is composed of n runs of gradient descent to impose the high-level structure,
followed by p runs of selective Gibbs sampling to selectively realign the sample onto the learnt distribution. A
simulated annealing algorithm is applied in order to decrease exploration in relation to a decrease of variance
over solutions.

Results are quite convincing. However, as discussed by the authors, their approach is not exact, as for
instance by the Markov constraints approach proposed in [PRBTI].

2.5 Reinforcement

The strategy of reinforcement is to reformulate the generation of musical content as a reinforcement learn-
ing problem, while using the output of a trained recurrent network as an objective and adding user defined
constraints, e.g., some tonality rules according to music theory, as an additional objective.

Let us at first quickly remind the basic concepts of reinforcement learning, illustrated at Figure [7}

e An agent sequentially selects and performs actions within an environment,
e Each action performed brings it to a new state,

e with the feedback (by the environment) of a reward (reinforcement signal), which represents some adequa-
tion of the action to the environment (the situation).

e The objective of reinforcement learning is for the agent to learn a near optimal policy (sequence of actions)
in order to maximize its cumulated rewards (named its gain).

Generation of a melody may be formulated as follows (as in Figure : the state s represents the musical
content (a partial melody) generated so far and the action a represents the selection of next note to be generated.
2.5.1 Example: RL-Tuner Melody Generation

The reinforcement strategy has been pioneered by the RL-Tuner architecture by Jaques et al. [JGTELG]. The
architecture, illustrated at Figure[§] consists in two reinforcement learning architectures, named Q Network and
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Target Q Networkﬁ and two recurrent network (RNN) architectures, named Note RNN and Reward RNN.
After training Note RNN on the corpus, a fixed copy named Reward RNN is used as a reference for the
reinforcement learning architecture. The reward r of Q Network is defined as a combination of two objectives:

e Adherence to what has been learnt, by measuring the similarity of the action selected (next note to be
generated) to the note predicted by Reward RNN in a similar state (partial melody generated so far);

e Adherence to user-defined constraints (e.g., consistency with current tonality, avoidance of excessive rep-
etitions. .. ), by measuring how well they are fulfilled.

Although preliminary, results are convincing. Note that this strategy has the potential for adaptive genera-
tion by incorporating feedback from the user.

2.6 Unit Selection

The unit selection strategy relies in querying successive musical units (e.g., a melody within a measure) from a
data base and in concatenating them in order to generate some sequence according to some user characteristics.

2.6.1 Example: Unit Selection and Concatenation Melody Generation

This strategy has been pioneered by Bretan et al. and is actually inspired by a technique commonly
used in text-to-speech (TTS) systems and adapted in order to generate melodies (the corpus used is diverse and
includes jazz, folk and rock). The key process here is unit selection (in general each unit is one measure long),
based on two criteria: semantic relevance and concatenation cost. The architecture includes one autoencoder
and two LSTM recurrent networks.

The first preparation phase is feature extraction of musical units. 10 manually handcrafted features are
considered, following a bag-of-words (BOW) approach (e.g., counts of a certain pitch class, counts of a certain
pitch class rhythm tuple, if first note is tied to previous measure, etc.), resulting in 9,675 actual features.

The key of the generation is the process of selection of a best (or at least, very good) successor candidate to
a given musical unit. Two criteria are considered:

o Successor semantic relevance — It is based on a model of transition between units, as learnt by a LSTM
recurrent network. In other words, that relevance is based on the distance to the (ideal) next unit as
predicted by the model;

e Concatenation cost — It is based on another model of transition®} this time between the last note of the
unit and the first note of the next unit, as learnt by another LSTM recurrent network.

The combination of the two criteria (illustrated at Figure@ is handled by a heuristic-based dynamic ranking
process. As for a recurrent network, generation is iterated in order to create, unit by unit (measure by measure),
an arbitrary length melody.

15They use a deep learning implementation of the Q-learning algorithm. Q Network is trained in parallel to Target Q Network
which estimates the value of the gain) [VHGSTH].
16 At a more fine-grained level, note-to-note level, than the previous one.
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Note that the unit selection strategy actually provides entry points for control, as one may extend the
selection framework based on two criteria: successor semantic relevance and concatenation cost with user
defined constraints/criteria.

3 Structure

Another challenge is that most existing systems have a tendency to generate music with “no sense of direction”.
In other words, although the style of the generated music corresponds to the corpus learnt, the music lacks
some structure and appears to wander without some higher organization, as opposed to human composed music
which usually exhibits some global organization (usually named a form) and identified components, such as:

e Overture, Allegro, Adagio or Finale for classical music;
e AABA or AAB in Jazz;

e Refrain, Verse or Bridge for songs.

Note that there are various possible levels of structure. For instance, an example of finer grain structure is
at the level of melodic patterns that can be repeated, often transposed in order to adapt to a new harmonic
structure.

Reinforcement (as used by RL-Tuner at Section and structure imposition (as used by C-RBM at
Section are approaches to enforce some constraints, possibly high-level, onto the generation. An alternative
top-down approach is followed by the unit selection strategy (see Section , by incrementally generating an
abstract sequence structure and filling it with musical units, although the structure is currently flat. Therefore,
a natural direction is to explicitly consider and process different levels (hierarchies) of temporality and of
structure.

3.1 Example: MusicVAE Multivoice Generation

Roberts et al. propose a hierarchical architecture named MusicVAE ﬂm following the principles of a
variational autoencoder encapsulating recurrent networks (RNNs, in practice LSTMs) such as VRAE introduced
at Section 2:4.2] with two differences:

e the encoder is a bidirectional RNN;

e the decoder is a hierarchical 2-level RNN composed of:

10
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— a high-level RNN named the Conductor producing a sequence of embeddings;

— a bottom-layer RNN using each embedding as an initial statdﬂ and also as an additional input
concatenated to its previously generated token to produce each subsequence.

The resulting architecture is illustrated at Figure The authors report that an equivalent “flat” (with-
out hierarchy) architecture, although accurate in modeling the style in the case of 2-measure long examples,
turned out inaccurate in the case of 16-measure long examples, with a 27% error increase for the autoencoder
reconstruction. Some preliminary evaluation has also been conducted with a comparison by listeners of three
versions: flat architecture, hierarchical architecture and real music for three types of music: melody, trio and
drums, showing a very significant gain with the hierarchical architecture.

4 Creativity

The issue of the creativity of the music generated is not only an artistic issue but also an economic one, because
it raises a copyright issuﬂ

One approach is a posteriori, by ensuring that the generated music is not too similar (e.g., in not having
recopied a significant amount of notes of a melody) to an existing piece of music. To this aim, existing tools to
detect similarities in texts may be used.

Another approach, more systematic but more challenging, is a priori, by ensuring that the music generated
will not recopy a given portion of music from the training corpuﬂ A solution for music generation from Markov
chains has been proposed [PRP14]. It is based on a variable order Markov model and constraints over the order
of the generation through some min order and max order constraints, in order to attain some sweet spot between
junk and plagiarism. However, there is none yet equivalent solution for deep learning architectures.

17In order to prioritize the Conductor RNN over the bottom layer RNN, its initial state is reinitialized with the decoder generated
embedding for each new subsequence.

180n this issue, see a recent paper [Dell7].

19Note that this addresses the issue of avoiding a significant recopy from the training corpus, but it does not prevent to reinvent
an existing music outside of the training corpus.
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Figure 11: Creative adversarial networks (CAN) architecture

4.1 Conditioning
4.1.1 Example: MidiNet Melody Generation

The MidiNet architecture by Yang et al. [YCY17], inspired by WaveNet (see Section , is based on
generative adversarial networks (GAN) (see Section [4.2). It includes a conditioning mechanism
incorporating history information (melody as well as chords) from previous measures. The authors discuss two
methods to control creativity:

e by restricting the conditioning by inserting the conditioning data only in the intermediate convolution
layers of the generator architecture;

e by decreasing the values of the two control parameters of feature matching regularization, in order to less
enforce the distributions of real and generated data to be close.

These experiments are interesting although the approach remains at the level of some ad hoc tuning of some
hyper-parameters of the architecture.

4.2 Creative Adversarial Networks

Another more systematic and conceptual direction is the concept of creative adversarial networks (CAN) pro-
posed by El Gammal et al. [ELEMI7], as an extension of generative adversarial networks (GAN) architecture,
by Goodfellow et al. [GPAM™14] which trains simultaneously two networks:

e a Generative model (or generator) G, whose objective is to transform random noise vectors into faked
samples, which resemble real samples drawn from a distribution of real images; and

e a Discriminative model (or discriminator) D, that estimates the probability that a sample came from the
training data rather than from G.

The generator is then able to produce user-appealing synthetic samples (e.g., images or music) from noise
vectors. The discriminator may then be discarded.

Elgammal et al. propose in [ELEMI7] to extend a GAN architecture into a creative adversarial networks
(CAN) architecture, shown at Figure where the generator receives from the discriminator not just one but
two signals:

e the first signal, analog to the case of the standard GAN, specifies how the discriminator believes that the
generated item comes from the training dataset of real art pieces;

e the second signal is about how easily the discriminator can classify the generated item into established
styles. If there is some strong ambiguity (i.e., the various classes are equiprobable), this means that the
generated item is difficult to fit within the existing art styles.

These two signals are thus contradictory forces and push the generator to explore the space for generating
items that are at the same time close to the distribution of existing art pieces and with some style originality.
Note that this approach assumes the existence of a prior style classification and it also reduces the idea of
creativity to exploring new styles (which indeed has some grounding in the art history).
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5 Interactivity

In most of existing systems, the generation is automated, with little or no interactivity. As a result, local
modification and regeneration of a musical content is usually not supported, the only available option being a
whole regeneration (and the loss of previous attempt). This is in contrast to the way a musician works, with
successive partial refinement and adaptation of a compositioﬂ Therefore, some requisites for interactivity
are the incrementality and the locality of the generation, i.e. the way the variables of the musical content are
instantiated.

5.1 Instantiation Strategies

Let us consider the example of the generation of a melody. The two most common strategies (illustrated at
Figure [12f°!| for instantiating the notes of the melody are:

e Single-step/Global — A global representation including all time steps is generated in a single step by a
feedforward architecture. An example is DeepHear [Sunl7] at Section [2.4.1]

o [terative/Time-slice — A time slice representation corresponding to a single time step is iteratively gener-
ated by a recurrent architecture (RNN). An example is Anticipation-RNN [HN17] at Section [2.3.2]

Let us now consider an alternative strategy, incremental variable instantiation. It relies on a global represen-
tation including all time steps. But, as opposed to single-step/global generation, generation is done incrementally
by progressively instantiating and refining values of variables (notes), in a non deterministic order. Thus, it is
possible to generate or to regenerate only an arbitrary part of the musical content, for a specific time interval
and/or for a specific subset of voices (shown as selective regeneration in Figure , without regenerating the
whole content.

5.2 Example: DeepBach Chorale Generation

This incremental instantiation strategy has been used by Hadjeres et al. in the DeepBach architecture [HPN17]
for generation of Bach choraleﬂ The architecture, shown at Figure combines two recurrent and two feed-
forward networks. As opposed to standard use of recurrent networks, where a single time direction is considered,
DeepBach architecture considers the two directions forward in time and backwards in time. Therefore, two re-
current networks (more precisely, LSTM) are used, one summing up past information and another summing
up information coming from the future, together with a non recurrent network for notes occurring at the same

20An example of interactive composition environment is FlowComposer [PRP16]. Tt is based on various techniques such as
Markov models, constraint solving and rules.

21The representation shown is of type piano roll with two simultaneous voices (tracks). Parts already processed are in light grey;
parts being currently processed have a thick line and are pointed as “current”; notes to be played are in blue.

22]. S. Bach chose various given melodies for a soprano and composed the three additional ones (for alto, tenor and bass) in a
counterpoint manner.
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Create four lists V' = (Vq; Va; Va; Vy) of length L;

Initialize them with random notes drawn from the ranges of the corresponding voices
for m from 1 to max number of iterations do

Choose voice i uniformly between 1 and 4;

Choose time t uniformly between 1 and L;

Re-sample V{ from p;(V|W; ., 0:)

end for

Figure 14: DeepBach incremental generation/sampling algorithm

time. Their three outputs are merged and passed as the input of a final feedforward neural network. The first
4 lines of the example data on top of the Figure [L3| correspond to the 4 voiceﬂ Actually this architecture is
replicated 4 times, one for each voice (4 in a chorale).

Training, as well as generation, is not done in the conventional way for neural networks. The objective is to
predict the value of current note for a a given voice (shown with a red ? on top center of Figure|13)), using as
information surrounding contextual notes. The training set is formed on-line by repeatedly randomly selecting
a note in a voice from an example of the corpus and its surrounding context. Generation is done by sampling,
using a pseudo-Gibbs sampling incremental and iterative algorithm (shown in Figure[I4] see details in [HPN17])
to produce a set of values (each note) of a polyphony, following the distribution that the network has learnt.

The advantage of this method is that generation may be tailored. For example, if the user changes only
one or two measures of the soprano voice, he can resample only the corresponding counterpoint voices for these
measures.

The user interface of DeepBach, shown at Figure[I5] allows the user to interactively select and control global
or partial (re)generation of chorales. It opens up new ways of composing Bach-like chorales for non experts in an
interactive manner, similarly to what is proposed by FlowComposer for lead sheets [PRP16]. It is implemented
as a plugin for the MuseScore music editor.

23The two bottom lines correspond to metadata (fermata and beat information), not detailed here.
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6 Conclusion

The use of deep learning architectures and techniques for the generation of music (as well as other artistic
content) is a growing area of research. However, there remain open challenges such as control, structure,
creativity and interactivity, that standard techniques do not directly address. In this article, we have discussed
a list of challenges, introduced some strategies to address them and have illustrated them through examples of
actual architectureﬂ We hope that the analysis presented in this article will help at a better understanding of
issues and possible solutions and therefore may contribute to the general research agenda of deep learning-based
music generation.
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