V. P. Akhil, M. Lengaigne, F. Durand, J. Vialard, A. V. Chaitanya et al., , p.932

J. Gopalakrishna, C. Boutin, and . De-boyer-montégut, Assessment of seasonal and 933 year-to-year surface salinity signals retrieved from SMOS and Aquarius missions in the Bay 934 of Bengal, International Journal of Remote Sensing, vol.37, issue.5, pp.1089-1114, 2016.

G. Alory, T. Delcroix, P. Téchiné, D. Diverrès, D. Varillon et al., , p.937

S. Grelet, E. Jacquin, C. Kestenare, R. Maes, J. Morrow et al., , p.938

. Roubaud, The French contribution to the Voluntary Observing Ships network of Sea 939, 2015.

, Surface Salinity. Deep Sea Res, vol.105, pp.1-18

E. Anterrieu, M. Suess, F. Cabot, P. Spurgeon, and A. Khazâal, An Additive Mask 941 Correction Approach for Reducing the Systematic Floor Error in Imaging Radiometry by 942, 2015.

, Aperture Synthesis, IEEE Geoscience and Remote Sensing Letters, pp.943-1441

M. Arias, S. Expert, and S. , , 2016.

J. Boutin, J. L. Vergely, and S. Marchand, SMOS SSS L3 debias v2 maps generated by 949 CATDS CEC LOCEAN, 2017.

F. P. Bretherton, R. E. Davis, and C. B. Fandry, Technique for Objective Analysis and 951 Design of Oceanographic Experiments Applied to Mode-73. Deep-Sea Research, pp.559-582, 1976.

M. J. Brodzik, B. Billingsley, T. Haran, B. Raup, M. H. Savoiecnes et al., EASE-Grid 2.0: 953 Incremental but Significant Improvements for Earth-Gridded Data Sets CATDS-PDC L3OS 2P -Daily valid ocean salinity values product from 956 SMOS satellite, ISPRS International 954 Journal of Geo-Information CATDS-PDC L3OS 3P mixed -Average 10 days & monthly salinity field 959 product from SMOS satellite, pp.32-45, 2012.

, CATDS-PDC L3OS 3Q mixed -Debiased average 10 days & monthly 962 salinity field product from SMOS satellite (mixed orbits) CATDS (CNES, IFREMER, 963 LOCEAN, ACRI), CATDS, pp.0-02, 2017.

A. V. Chaittanya, M. Lengaigne, J. Vialard, V. V. Gopalakrishna, and F. Durand, , p.965

V. Krantikumar, F. Suneel, M. Papa, and . Ravichandran, Fishermen-operated salinity 966 measurements reveal a " river in the sea " flowing along the east coast of India, pp.1897-1908, 2014.

T. Delcroix, M. Mcphaden, A. Dessier, and Y. Gouriou, Time and space scales for 969 sea surface salinity in the tropical oceans, Deep Sea. Res, vol.525, pp.787-813, 2005.

P. J. Durack, S. E. Wijffels, and R. J. Matear, Ocean salinities reveal strong global 972 water cycle intensification during, Science, issue.6080, pp.336-455, 1950.

J. Font, A. Camps, A. Borges, M. Martin-neira, J. Boutin et al., SMOS: The Challenging Sea Surface Salinity Measurement From Space, Proceedings of the IEEE, pp.649-665, 2010.
DOI : 10.1109/JPROC.2009.2033096

URL : https://hal.archives-ouvertes.fr/ird-00685317

A. G. Fore, S. H. Yueh, W. Tang, B. W. Stiles, and A. K. Hayashi, Combined 977 active/passive retrievals of ocean vector wind and sea surface salinity with SMAP, IEEE, vol.978, 2016.

, Trans. Geosci. Remote Sens, vol.54, issue.12, pp.7396-7404, 0979.

A. Fore, S. Yueh, W. Tang, and A. Hayashi, SMAP Salinity and Wind Speed Data 980

, User's Guide Version 3.0, JPL, 2016.

S. Fournier, J. T. Reager, T. Lee, J. Vazquez-cuervo, C. H. David et al., SMAP observes flooding from land to sea: The Texas event of 2015, Geophysical Research Letters, vol.51, issue.9, p.983, 2016.
DOI : 10.1109/TGRS.2013.2266915

. Lett, , pp.338-1010, 2016070821.

S. Fournier, J. Vialard, M. Lengaigne, T. Lee, and M. M. Gierach, Modulation of the Ganges-Brahmaputra river plume by the Indian Ocean dipole and 986 eddies inferred from satellite observations, A. V. S. Journal of Geophysical Research: Oceans, vol.985, issue.122, pp.987-9591, 2017.

F. Gaillard, ISAS-13 temperature and salinity gridded fields, SEANOE, vol.989, 2015.

F. Gaillard, T. Reynaud, V. Thierry, N. Kolodziejczyk, and K. Von-schuckmann, In Situ???Based Reanalysis of the Global Ocean Temperature and Salinity with ISAS: Variability of the Heat Content and Steric Height, Journal of Climate, vol.29, issue.4, pp.1305-1323, 2016.
DOI : 10.1175/JCLI-D-15-0028.1

S. A. Grodsky, N. Reul, B. Chapron, J. A. Carton, and F. O. Bryan, Interannual surface salinity on Northwest Atlantic shelf, Interannual 995 surface salinity on Northwest Atlantic shelf, pp.3638-3659, 2017.
DOI : 10.1175/2007JCLI1714.1

A. Hasson, T. Delcroix, J. Boutin, R. Dussin, and J. Ballabrera-poy, Analyzing the 2010-2011 La Ni??a signature in the tropical Pacific sea surface salinity using in situ data, SMOS observations, and a numerical simulation, Journal of Geophysical Research: Oceans, vol.6, issue.3, pp.3855-386710, 1000.
DOI : 10.1109/JSTARS.2013.2252602

A. Hasson, M. Puy, J. Boutin, and E. Guilyardi, Northward Propagation across the 1002 Tropical North Pacific Ocean Revealed by Surface Salinity: How El Nino Anomalies Reach 1003, 2018.

. Hawaii, Journal of Geophys. Res

O. Hernandez, J. Boutin, N. Kolodziejczyk, G. Reverdin, N. Martin et al., SMOS salinity in the subtropical North Atlantic salinity maximum: 1. Comparison with Aquarius and in situ salinity, Journal of Geophysical Research: Oceans, vol.46, issue.3, pp.8878-8896, 1005.
DOI : 10.1109/TGRS.2008.915543

URL : https://hal.archives-ouvertes.fr/hal-01131556

Y. H. Kerr, The SMOS Mission: New Tool for Monitoring Key Elements of the 1009 Global Water Cycle, Proceedings of the IEEE, pp.666-687, 2010.

N. Kolodziejczyk, O. Hernandez, J. Boutin, and G. Reverdin, SMOS salinity in the subtropical North Atlantic salinity maximum: 2. Two-dimensional horizontal thermohaline variability, Journal of Geophysical Research: Oceans, vol.24, issue.5, pp.972-98710, 1013.
DOI : 10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2

N. Kolodziejczyk, G. Reverdin, J. Boutin, and O. Hernandez, Observation of the surface horizontal thermohaline variability at mesoscale to submesoscale in the north-eastern subtropical Atlantic Ocean, Journal of Geophysical Research: Oceans, vol.24, issue.1, pp.2588-2600, 2015.
DOI : 10.1175/1520-0485(1994)024<1812:TSMLA>2.0.CO;2

URL : https://hal.archives-ouvertes.fr/hal-01233659

N. Kolodziejczyk, J. Boutin, J. L. Vergely, S. Marchand, N. Martin et al., , 2016.

, Mitigation of systematic errors in SMOS sea surface salinity. Remote Sensing of 1019 Environment, pp.164-177

G. Lagerloef, The Aquarius/SAC-D mission: Designed to meet the salinity 1021 remote sensing challenge Oceanography, pp.68-81, 2008.

G. Lagerloef, Satellite mission monitors ocean surface salinity, Eos Transactions of 1023 the AGU, pp.233-234, 2012.

T. Meissner and F. J. Wentz, Remote Sensing Systems SMAP Ocean Surface 1025 Salinities [Level 2C, Level 3 Running 8-day, Level 3 Monthly], Version 2.0 validated 1026 release. Remote Sensing Systems, pp.20-23, 2016.

P. N. Mohammed, M. Aksoy, J. R. Piepmeier, J. T. Johnson, and A. Bringer, SMAP L-Band Microwave Radiometer: RFI Mitigation Prelaunch Analysis and First Year On-Orbit Observations, IEEE Transactions on Geoscience and Remote Sensing, vol.54, issue.10, pp.6035-6047, 2016.
DOI : 10.1109/TGRS.2016.2580459

R. Oliva, E. Daganzo-eusebio, Y. Kerr, S. Mecklenburg, S. Nieto et al., SMOS Radio frequency interference scenario: status and actions taken to improve 1033 the RFI environment in the 1400?1427-MHz passive band, IEEE Trans. Geosci. Remote, 1032.

, Sens, vol.50, issue.5, pp.1427-1440

E. Olmedo, J. Martínez, A. Turiel, J. Ballabrera-poy, and M. Portabella, Debiased 1036 non-Bayesian retrieval: A novel approach to SMOS Sea Surface Salinity, pp.103-126, 2017.

J. Picaut, M. Ioualalen, T. Delcroix, F. Masia, R. Murtugudde et al., The 1039 oceanic zone of convergence on the eastern edge of the Pacific warm pool: A synthesis of 1040 results and implications for ENSO and biogeochemical phenomena, J. Geophys. Res, vol.106, pp.1041-2363, 2001.

J. R. Piepmeier, SMAP L-Band Microwave Radiometer: Instrument Design and 1043 First Year on Orbit, IEEE Transactions on Geoscience and Remote Sensing, pp.1954-1966, 2017.

N. Reul and C. , Sea Surface Salinity Observations from Space with the 1046 SMOS Satellite: A New Means to Monitor the Marine Branch of the Water Cycle, pp.681-722, 2014.

N. Reul, B. Chapron, T. Lee, C. Donlon, J. Boutin et al., Sea surface 1049 salinity structure of the meandering Gulf Stream revealed by SMOS sensor, Geophysical 1050 Research Letters, pp.3141-314810, 1051.

S. S. Shenoi and D. Shankar, Differences in heat budgets of the near-surface Arabian 1052 Sea and Bay of Bengal: Implications for the summer monsoon, 1053 doi:10.1029 1054 SMOS-Ocean Expert Support Laboratories SMOS L2 OS Algorithm Theoretical 1055, 2002.

B. Document and S. , , 1056.

, ATBD_v3.11_140905.pdf

A. Sommer, G. Reverdin, N. Kolodziejczyk, and J. Boutin, Sea Surface Salinity and 1059 Temperature Budgets in the North Atlantic Subtropical Gyre during SPURS Experiment, p.1060, 2015.

, Frontiers in Marine Science, vol.2, p.107, 2012.

S. Spurgeon and . Expert, SO-RP-ARG-GS-0109, available on 1063 https://earth.esa.int/documents, L2OS v662 Reprocessing 1062 ReportSMOS-Level-2-Ocean-Salinity-v662- 1064 Reprocessing-Report, pp.3587-3607, 2017.

A. Supply, J. Boutin, J. Vergely, N. Martin, A. Hasson et al., Precipitation Estimates from SMOS Sea Surface Salinity, 2017.

W. Tang, A. Fore, S. Yueh, T. Lee, A. Hayashi et al., , p.1069

J. Baranowski and . Martinez, Validating SMAP SSS with in-situ measurements. 1070 Remote Sensing Environ, 2017.

B. Vergely, SMOS OS level 3: the Algorithm Theoretical Basis Document 1072 (v300, 1073.

J. Vialard and P. Delecluse, An OGCM Study for the TOGA Decade. Part I: Role of Salinity in the Physics of the Western Pacific Fresh Pool, Journal of Physical Oceanography, vol.28, issue.6, pp.1071-1088, 1077.
DOI : 10.1175/1520-0485(1998)028<1071:AOSFTT>2.0.CO;2

X. Yin, J. Boutin, and P. Spurgeon, First assessment of SMOS data over open ocean, p.1079, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00756492

, Part I; Pacific Ocean, IEEE Transactions on Geoscience and Remote Sensing, vol.50, issue.5, pp.1648-1080

X. Yin, J. Boutin, and P. Spurgeon, Biases Between Measured and Simulated SMOS Brightness 1082 Temperatures Over Ocean, IEEE Journal of Selected Topics, 1083.

, Applied Earth Observations and Remote Sensing

S. Zine, J. Boutin, J. Font, N. Reul, P. Waldteufel et al., Overview of the SMOS Sea Surface Salinity Prototype Processor, IEEE Transactions on Geoscience and Remote Sensing, vol.46, issue.3, pp.621-645, 1085.
DOI : 10.1109/TGRS.2008.915543

URL : https://hal.archives-ouvertes.fr/hal-00260144

, List of Figure Captions, p.1089

, Figure 1 : Satellite SSS: SMOS SSS corrected according to (a, d, g, j) K2016 methodology, p.1090

, the method described in this paper (CEC); (c, f, i, l) SMAP SSS. 4 case study areas, p.1091

. Bengal-, (d, e, f) : Gulf of Mexico ? August18 th 2015 ; (g, h, i) : Eastern Tropical 1092, 2015.

, Amazon plume SMOS and 1093 SMAP SSS are averaged over respectively a SMOS repetitive orbit sub-cycle (18 days) and two 1094 SMAP repetitive orbit cycles (16 days) Striking fresh SSS features in better agreement with SMOS 1095 (new version) and SMAP are indicated with black arrows, Atlantic Freshwater Pools, 2015.

, latitudinal profiles of mean SSS (a; b) and of the 1097 standard deviation of the 2011-2016 monthly differences between SMOS SSS and ISAS SSS 1098 (c; d) The latitudinal means and standard deviations are computed over the Pacific Ocean 1099 further than 1200 km from any coast: green: ISAS, blue: SMOS ascending orbits; red: SMOS 1100 descending orbits: a;c) November; middle of the swath (0-50 km from the center of the 1101 swath), Figure, vol.2, 2011.

, SSS variability (?SSSnat) derived from 7 years of SMOS filtered and corrected 1104 SSS (after debiasing and filtering): large values are observed in river plumes and in rainy 1105 areas (ITCZ, SPCZ. b) Minimum and c) maximum of the SSS as derived from 18-day CEC 1106 LOCEAN that are used in the mapping of debiased near-real time products (see section 3, Figure, vol.34

, Figure 4: Monthly SMOS SSS compared to monthly ISAS SSS from, 2010.

L. Smos and S. Sss, Standard Number of 1109 months with differences between L3P and L3Q SMOS SSS greater than 0.2pss. d) Frequency with 1110 which corrections identified on Figure c) correspond to decreased bias with respect to ISAS (i.e. L3Q 1111 SMOS SSS closer to ISAS SSS than L3P SMOS SSS): red color means that the correction improves 1112 most of the time; blue color means that the correction degrades most of the time. Blank colors in 1113 figures c) and d) mean no change above the 0

S. Smos and . Sss, b, e, h) standard 1116 deviation of the differences, (c, f, i) number of pixels used in the comparisons, day L3P SMOS SSS, pp.10-1117, 1118.

, Same indicators but when considering only the pixels available in the four products are 1119 presented in Appendix A2, p.1120

, Scatter plots of SMOS corrected fields versus SMAP SSS on the 4 regions and 1121 fresh events periods illustrated on Figure 1: first line: Bay of Bengal, Figure, vol.6, issue.2

. Mexico, Eastern Tropical Atlantic Freshwater Pools; 4th line : Amazon plume. First 1123 column: SMOS K2016 SSS; second column: SMOS 18-day CEC SSS; last column: SMOS 9- 1124 day CEC SSS, p.1125

, Time series of statistical parameters computed over the Bay of Bengal case study 1126 area: a) mean SSS; b) SSS standard deviation; c) square of the 1127, Figure, vol.7, 2015.

C. Pearson-correlation, between SMOS and SMAP SSS; d) Standard deviation of 1128 the SMOS minus SMAP SSS differences (plain line) using L1 norm (dotted line). 'Weekly' 1129 SMOS CEC(blue), 'bi-weekly' SMOS CEC (green), 'bi-weekly' SMOS K2016 (red), p.1130

, Figure 8: Time series of statistical parameters computed over the Gulf of Mexico case study area, p.1132

, a) mean SSS; b) SSS standard deviation; c) square of the Pearson 1133 correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS 1134 minus SMAP SSS differences (plain line) using L1 norm (dotted line). 'Weekly' SMOS CEC(blue), 1135 'bi-weekly' SMOS CEC (green), bi-weekly' SMOS K2016 (red), 'weekly' SMAP (black), 2015.

, Time series of statistical parameters computed over the Eastern Tropical Atlantic Freshwater 1137 Pools case study area: a) mean SSS; b) SSS standard deviation, Figure, vol.9, p.1138, 2015.

, Pearson correlation coefficient (r2) between SMOS and SMAP SSS; d) Standard 1139 deviation of the SMOS minus SMAP SSS differences (plain line) using L1 norm

. Weekly-'smos and . Cec, bi-weekly' SMOS CEC (green), 'bi-weekly' SMOS K2016 (red), 1141 'weekly' SMAP (black)

, Time series of statistical parameters over the Amazon plume case study area, Figure, vol.10, 1143.

, a) mean SSS; b) SSS standard deviation; c) square of the Pearson correlation 1144 coefficient (r2) between SMOS and SMAP SSS; d) Standard deviation of the SMOS minus SMAP 1145 SSS differences (plain line) using L1 norm (dotted line). 'Weekly' SMOS CEC(blue), 'bi-weekly' 1146 SMOS CEC (green), bi-weekly' SMOS K2016 (red), 'weekly' SMAP (black), 2016.

, Density spectra Bottom: Coherence between ship SSS and SMOS or ISAS SSS. The 1148 spatial frequency (1/wavelength (km)) is indicated below the bottom plot, whereas the corresponding 1149 wavelengths (km) are indicated above the top plot. Vertical dashed lines correspond to spatial 1150 frequencies regularly spaced in logarithmic coordinates. Northern subtropical Atlantic (see box on the 1151 color map) in 2013. Ship SSS measured on regular merchant ships transects (14 regular transects, ISAS SSS (green), pp.10-13, 1152.

, Statistics of ship comparisons) binned as a function of 1155 the distance from the nearest coast: top) mean difference; middle) standard deviation of the 1156 differences; the black line indicates the standard deviation of ship SSS in each class, Figure, vol.12, p.1157, 2010.

, Left: considering only the SMOS pixels common 1158 to all versions; right: considering all pixels available in each version. Ship and SMOS SSS 1159 are integrated over 100 km. Orange: monthly SMOS L3P ; pink : monthly SMOS L3Q, number of pixels used in the comparisons, pp.18-1161, 1160.

, Examples of comparisons between ship SSS (black stars line) and SMOS SSS: orange: non 1162 corrected (L3P), purple: monthly L3Q corrected, light blue :18-day CEC corrected, Figure, vol.13

, Left) from 2014-08-21 to 2014-09-03, Matisse ship. Right) from, 1164.

C. Ship, All SSS products have been smoothed over +/-50 km

, Standard deviation of 'weekly' satellite SSS minus ISAS SSS between 47°N and 1166 47°S, over the year 2016. a) SMOS CEC, b) SMAP CAP, Figure, vol.14, p.1167

, 2012 (top right), 2013 (bottom 1168 left), 2014 (bottom right) in the Atlantic Ocean (1200 km from continents)-SMOS ascending 1169 orbits (blue), descending orbits (red, ISAS(green), 2011.

, SSS latitudinal profiles, Figure, vol.15, pp.2012-2013, 2011.

, 1196 (bottom right) in the Atlantic Ocean (1200 km from continents)-SMOS ascending orbits (blue), descending 1197 orbits (red), ISAS(green)

, SSS latitudinal profiles, Figure, vol.16, pp.2012-2013, 2011.

, 1200 (bottom right) in the Pacific Ocean (1200 km from continents)-SMOS ascending orbits (blue), descending 1201 orbits (red), ISAS(green)

, reference xswath are 1204 chosen as the ones having relatively weak and stable (from one year to another) SMOS minus 1205 ISAS SSS differences (DIFF) over the 45°S-45°N latitudinal range. We did not define a 1206 quantitative criterion for this selection because the patterns of DIFF strongly vary from one 1207 month to another, from ascending to descending orbits and as a function of latitude (not 1208 shown) During most months, reference xswath are located on ascending orbits only. We 1209 illustrate the location of the reference xswath with respect to the median of SMOS minus ISAS 1210 SSS absolute differences for the months of The 1211 locations of all the selected reference xswath are reported in Table 4, Over the 2011-2016 period, p.1212

, Median of SMOS minus ISAS SSS absolute differences as a function of dwell line location 1213 and year, for the month of January (left), May (middle) and September (right), for ascending (top) and 1214 descending (bottom) orbits. The black lines indicate the range of selected xswath, Figure, vol.17

, Table 4: Reference xswath locations 1217 Ascending orbits Descending orbits

A. , , 200250.

, SMOS-SMAP SSS comparison considering only pixels common 1220 to all SSS fields, Appendix, vol.2, p.1221

, Weekly' comparison of SMOS and SMAP SSS: (a, c, e) square of the Pearson 1222 correlation coefficient (r 2 ) , (b, d, f) standard deviation of the difference, L3Q SMOS SSS, (e, f) CEC SMOS SSS. Only pixels common to the four 1224 products are considered in the comparisons, pp.3-1223