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Abstract

Several models estimating the strength of the interaction between proteins in a complex have been

proposed. By exploring the geometry of contact distribution at protein-protein interfaces, we provide an

improved model of binding energy. Local Interaction Signal Analysis (LISA) is a radial function based

on terms describing favorable and non-favorable contacts obtained by Density Functional Theory, the

Support-Core-Rim interface residue distribution, non-interacting charged residues and secondary struc-

tures contribution. The three-dimensional organisation of the contacts and their contribution on localised

hot-sites over the entire interaction surface were numerically evaluated. LISA achieves a correlation of 0.81

(and RMSE of 2.35±0.38 kcal/mol) when tested on 125 complexes for which experimental measurements

were realised. LISA’s performance is stable for subsets defined by functional composition and extent

of conformational changes upon complex formation. A large-scale comparison with 17 other functions

demonstrated the power of the geometrical model in the understanding of complex binding.

Software availability: LISA package is freely available at http://www.lcqb.upmc.fr/LISA/ under the

CeCILL licence.

Key words: binding affinity, buried surface area, non-interacting surface, atom-atom contact, non-covalent

interaction, favorable contact, non-favorable contact, protein contact, protein-protein complex, protein-

protein interaction, electron density, reduced density gradient, secondary structure, protein-protein inter-

face, interface geometry, contact distribution, Density Functional Theory.
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Introduction

Proteins communicate by physical interactions. Understanding the way a protein interacts with its

partners (Jones & Thornton 1996, Nooren & Thornton 2003, Ubbink 2009, Perkins et al. 2010) and its

natural preference to associate to other proteins (Sacquin-Mora et al. 2008, McGuffee & Elcock 2010, Lopes

et al. 2013, Laine & Carbone 2016), that is its binding affinity, is of fundamental importance to describe

its behaviour, its function, and more generally, its network of protein-protein interactions (PPIs) (Hakes

et al. 2008). This means to learn the general principles of protein-protein interface contacts, the favorable

signals supporting the affinity of the interaction and the location of favorable contacts at the interface

(Chen et al. 2013, Erijman et al. 2014). Since PPIs alterations are often the cause of cell disfunctioning,

this understanding is expected to have immediate implications on disease research (Keskin et al. 2005,

Aloy & Russell 2006, Beltrao et al. 2007, Kiel et al. 2008, Dell’Orco 2009), drug design (Hartwell et al.

1999, Zhao & Chmielewski 2005, Betzi et al. 2007), computational mutagenesis (Ben-Shimon & Eisenstein

2010) and protein engineering (Kortemme et al. 2004, Sharabi et al. 2011).

Binding affinity defines whether or not complex formation occurs and it is described through the

equilibrium dissociation constant Kd, or equivalently the Gibbs free energy (∆G = RT lnKd). Because

expensive and time-costly techniques are required to experimentally measure the value Kd, various com-

putational methods aimed at predicting binding affinity have been developed. Among them free energy

perturbation and thermodynamic integration techniques are applicable to only a few complexes because of

their high computational cost. More efficient approaches exploiting only the three-dimensional structure

of the complex have been proposed for the past two decades. They estimate the binding affinity by using

force-field potentials, statistical potentials, and docking scores (Horton & Lewis 1992, Moal et al. 2011,

Jiang et al. 2002, Ma et al. 2002, Audie & Scarlata 2007, Zeng & Li 2008, Su et al. 2009, Bai et al.

2011, Tian et al. 2012, Zhou et al. 2013). Very recently, a strickingly simple method (Vangone & Bonvin

2015), called Prodigy, based on the counting of atom-atom contacts at the interface and on the charge

distribution at the non-interacting surface of the complex, was shown to reach the best correlations with

experimental data.

In parallel to the algorithmic development, an important effort was made to establish a faithful bench-

mark dataset of experimental binding affinity measures that could be used as a reference for a balanced

assessment of the methods (Kastritis & Bonvin 2010, Kastritis et al. 2011, Fleishman et al. 2011). The

last updated version (Vreven et al. 2015) comprises 179 protein-protein complexes whose structures have

been solved at high resolution, as well as those of their unbound components, and for which dissociation

constants have been measured by biophysical methods.

Based on the observation that the number of interatomic contacts at the interface gives a crucial

contribution to binding affinity (Vangone & Bonvin 2015), here, we investigate whether a more sophisti-

cated description of these contacts, based on quantum chemistry, can further improve accuracy in binding

affinity prediction.

Recent developments in quantum chemistry originated from the need of a fast qualitative visualisa-

tion of non-covalent interactions in complex molecular systems. Indeed, non-covalent interactions are

characterised by low electron density and only slight variations of them, challenging their extraction and

characterisation based on the signed electron density and the reduced gradient, two scalar fields derived

from quantum mechanical electron density, the key quantity in Density Functional Theory (DFT). A com-

binatorial algorithm for the automated extraction of these quantities in biological systems of variable size

(from interacting nucleobases and simple dimers to protein-ligand, protein-protein and protein-DNA com-

plexes) was proposed (Johnson et al. 2010). This computationally fast algorithm (based on approximate
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promolecular density) runs with only the molecular geometry (atomic coordinates) of the complex as in-

put. Most importantly, for a ligand-protein interaction, it allows to localise the many small contributions

with a much finer description than the atom-specific description. In fact, van der Waals, dipole-dipole and

hydrophobic interactions are not atom-specific and occupy broader regions in space, that can be computed

as continuous surfaces, more precisely isosurfaces, rather than close contacts between atom pairs.

In this work, our basic idea is that, to evaluate the binding affinity of a ligand to a protein, one should

take into consideration all small non-covalent contributions, and that a spatial analysis of these contribu-

tions on isosurfaces could provide a more realistic model of binding affinity and, a deeper understanding

of protein-protein interactions. To demonstrate this, we introduce an empirical function for the prediction

of binding affinity, LISA (Local Interaction Signal Analysis), based on an original study of the geometrical

distribution of atom-atom contacts, favouring the interaction between two proteins, that is guided by the

analysis of isosurfaces. LISA is a non-linear combination of several terms computed from four main blocks

of analysis. First, quantum mechanical electron density and the two scalar fields derived from it, the

reduced gradient (RDG) and the signed electron density, are used in LISA to simultaneously explore a

wide range of non-covalent interaction types (van de Waals interactions, hydrogen-bonds, dipole-dipole

interactions, steric repulsions, London dispersion (Kollman 1977)) as isosurfaces. Such surfaces allow

us to distinguish favorable from non-favorable contacts, and to take into account only specific regions

in space that contribute to the protein-protein interaction. Second, the geometry of the interaction site

is explicitly considered through its organisation in Support-Core-Rim (SCR) regions (Levy 2010). This

allows us to quantify the spread of the signal on isosurfaces with respect to the SCR structure. Third,

LISA model considers the effect of the non-interacting surface which was shown to contribute significantly

to the binding affinity (Kastritis et al. 2014, Vangone & Bonvin 2015, Marillet et al. 2016). In LISA,

we also tested the implication of secondary structures lying at the interface and we could demonstrate

that regular structural elements also play some role in the interaction. The ten LISA terms were selected

starting from a large set of about 200 features by using objective criteria and a fully automatic selection

procedure.

To train and test LISA, we used the subset of 125 complexes of Affinity Benchmark Version 2 (Vreven

et al. 2015), for which reliable experimental techniques (Vangone & Bonvin 2015) have been used to

measure the binding affinity. It comprises a large variety of complexes with diversified functional activity

and reliable experimental measurements of binding affinity. On it, we compared LISA against a large

number of tools available and demonstrated that LISA is stable for subsets of Affinity Binding 2 defined by

functional composition and extent of conformational changes upon complex formation. LISA outperforms

all existing comparable predictor methods (based on no conformational sampling) (Moal et al. 2011,

Vangone & Bonvin 2015) and applies to a large variety of datasets of complexes resulting in a very stable

behaviour.

LISA model highlights that ‘hot-sites’ presenting medium/strong concentration of (favorable) atom-

atom contacts play a major contribution in binding affinity and that general geometrical principles guide

their distribution at interacting surfaces. These findings open the way to further investigations on the

geometrical characteristics of those regions.

RESULTS

We present an empirical binding affinity function, LISA, based on a fine modelling of atom-atom contacts.

LISA localises the forces at the interface that influence the most the affinity between two proteins and

suggests general principles of the distribution of these forces on interaction surfaces. In LISA, the effect
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of atom-atom contacts on binding affinity is studied through an analysis of the geometry of the atomic

interactions realised at three different levels (local, medium and global) of granularity. First, LISA explores

local interferences among co-localized atom-atom contacts to distinguish favorable from non-favorable

contacts. Second, it investigates hot-sites of interactions by identifying regions in the protein interfaces

with high or medium interaction strength, and high or medium number of contacts. Third, it explores

the global distribution of contacts over the entire interaction surface. The combination of the information

extracted at the three levels allows LISA to outperform over current binding affinity models. We evaluate

LISA on a set of 125 complexes from the structure-based Affinity Benchmark Version 2 (Vreven et al.

2015), which we call AffinityB2 rel, for which experimental measurements of binding affinity have been

realised with reliable techniques (Vangone & Bonvin 2015). We show that LISA sharply improves over

current predictors.

Modeling the spatial distribution of non-covalent atom-atom contacts

Non-covalent interactions are crucial for describing the interplay of structure and reactivity in large

biomolecular systems, and our aim is to define a model describing in the most precise manner general

geometric principles that place hot-sites of medium/high strength contacts in specific regions of the inter-

action surface. Note that here, the term ”hot-site” refers to regions (possibly involving several residues,

and possibly comprising only a portion of the atom-atom contacts within a residue-residue contact) of

the interacting surface, in contrast to the term “hot spot”, generally referring to residues that play a

particular role in the interaction and/or bringing an important energetic contribution to the binding affin-

ity. Hot-site regions present particularly dense concentrations of contacts. We want to verify whether

these hot-sites might be one or several, and where they are preferentially located. This problem is far

from trivial and indeed no geometrical characterisation of interaction signals has been proposed in the

description of binding affinity so far, to the best of our knowledge. One main reason is that the molecular

structure does not easily identify non-covalent interactions and that a fine simultaneous exploration of a

wide range of non-covalent interaction types is necessary (Keinan et al. 2004, Johnson et al. 2010).

In LISA, we exploit the Non-Covalent Interaction (NCI) approach (Johnson et al. 2010), based on elec-

tron density and its derivatives, to reveal the underlying chemistry that complements covalent structure.

NCI uses only knowledge on the atomic coordinates to represent non-bonded interactions as continuous

surfaces rather than close contacts between atom pairs. These surfaces are used to identify the favorable

and non-favorable interactions for a complex and quantify their strength. Namely, low/high electron

density values appear as indicator of weak/strong interaction strengths (Gibbs et al. 2004) and, in turn,

stronger interactions are identified either as stabilising/favorable or de-stabilising/non-favorable interac-

tions by density derivatives. See Figure 1 (and STAR Methods).

To include the information on favorable and non-favorable interactions in our geometrical analysis of

the protein interfaces, we represent the interface in 3 dimensions by an enveloping “cuboid grid” (called

“LISA cuboid grid”; see STAR Methods and Figure 2). The enveloping cube is divided in 125 (53) smaller

“LISA cubes” where the counting of the number of favorable contacts and their strength (corresponding

to % - see STAR Methods) is realised locally. The set of cubes is classified in three subsets depending on

the strength of the contacts localised in them, where cubes with highest strength identify the hot-sites of

the interaction.

Three more characteristics of the interface are explored in our evaluation of potential interactions.

First, we analyse the interaction surfaces of both partners with the Support Core Rim (SCR) model

proposed in (Levy 2010). SCR describes the experimental protein-protein interaction sites as comprising
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three concentric layers: a central layer comprised of mostly buried residues (Support), an intermediate

layer of surface residues that become buried upon association with the partner (Core), and an outer

layer of surface residues remaining partially exposed to the solvent in the complex (Rim). In (Laine &

Carbone 2015), we demonstrated that the three layers satisfy different geometrical, physico-chemical and

evolutionary (conservation) properties, and can be detected with high accuracy towards binding sites

prediction. Taking into consideration the SCR structure of the two binding partners, one can localise

favorable and non-favorable contacts in specific SCR regions. LISA model should confirm whether some

contact class localised in a specific region plays a special role in the prediction of binding affinity.

Second, it has been shown that residues lying on the surface of the complex, and not in the interaction

sites, influence the binding affinity (Kastritis et al. 2014, Marillet et al. 2016). We investigate which

properties of the surface residues are most relevant for the interaction and we explore whether their nature

is polar, apolar or charged. For this, we use the measure of Non-Interacting Surface (NIS) introduced in

(Kastritis et al. 2014).

Third, based on DSSP (Define Secondary Structure of Proteins (Kabsch & Sander 1983a)) analysis, we

investigate whether the presence of specific secondary structure elements at the interface might influence

the binding affinity, and we verify whether there are preferable secondary structure elements lying at the

interaction site.

By coupling the analysis of the distribution of favorable and non-favorable contacts, realised with

NCI (Johnson et al. 2010), in the LISA cuboid grid with the SCR model, the DSSP analysis of the

secondary structures of the interaction surfaces (Kabsch & Sander 1983a), and the NIS analysis of po-

lar/apolar/charged residues lying at the complex surface (Kastritis et al. 2014, Marillet et al. 2016),

LISA model associates to the interaction sites a score that corresponds to a non-linear combination of

10 features (obtained with a feature selection algorithm starting from about 200 features) coming from

the four analyses, NCI, SCR, NIS and DSSP. LISA score is computed with a function issued by Support

Vector Regression (Drucker et al. 1997) (on a radial kernel). The 10 features are the most important ones

characterising protein-protein interaction surfaces and the score estimates the binding affinity of the two

proteins. LISA flow is represented in Figure 2 and LISA model is explained below.

LISA radial model

Based on the four analyses of a complex, NCI, SCR, DSSP and NIS, we defined 179 descriptors of protein-

protein interfaces, including information on the total number of contacts, their strength, their location

with respect to the SCR model, their concentration in hot-sites of high strength, their localisation on

specific secondary structure elements (see STAR Methods). We also added the contribution coming

from polar/apolar/charged surface residues lying outside of the interface. A feature selection algorithm,

applied to a subset of 98 complexes from AffinityB2 rel, which we call Kastritis rel, extracted 16 key

features from the 179 descriptors. We further selected 10 features out of the 16 ones by running a Support

Vector Regression (based on a radial kernel). The Kastritis rel dataset was used as a training set, and the

remaining 27 complexes from AffinityB2 rel were used as testing set, called Vreven rel. 65 535 regression

models were trained and tested. They correspond to all possible combinations of n = 1 . . . 16 of the 16

features. The best feature combination was chosen by maximizing both the correlation with the training

set (Kastritis rel) and the testing set (Vreven rel). (See STAR Methods and Supplemental Figure S3,

top.) We note that the Vreven rel dataset was used only to select the 10 features retained to define

the final model, but it was not used to train the parameters of that model. Moreover, our optimization

strategy for model selection, using both Kastristis rel and Vreven rel datasets, was designed to yield a
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more generic/transferable model than if we were to optimize on Kastristis rel only, and it allows us to

limit overtraining: Supplemental Figure S3, top, illustrates the performance of LISA model compared

to the 100 best ones (see STAR Methods).

The resulting non linear function, called LISA score, is defined on the 10 selected features. An internal

4-fold cross-validation procedure applied to the complexes of the Kastritis rel dataset (see STAR Methods

and Supplemental Table S1) allowed us to estimate a Root Mean Square Error (RMSE) of 2.35± 0.38

kcal/mol. (See STAR Methods.)

The 10 features are reported in Supplemental Table S1. Most of them describe a strong contri-

bution played by core-core contacts and a minor contribution played by support (support-support and

support-rim) contacts. Rim contacts appear to bring a marginal contribution. More precisely, the total

number of core-core contacts (Tot|CC) and the total strength of core-core contacts localised in medium

strength regions (Strength|CC|IS2, where IS2 denotes regions with medium strength, see STAR Methods)

provide a first strong contribution to the interaction. The strength of unfavorable core-core contacts in

weak strength regions (Strengthunfav|CC|IS3, where IS3 denotes regions with weak strength, see STAR

Methods) and, to a minor extent, the concentration of favorable core-core contacts in high strength regions

(Strengthfav|CC|IS1, where IS1 denotes regions with high strength, see STAR Methods) complete the

influence of contacts contribution in core regions. In the support region of the interaction site, two other

features highlight the positive contribution of support-support contacts (Strength|SS|IS2) and favor-

able support-rim contacts (Strengthfav|RS|IS2) localised in medium strength regions. One more feature

highlights the presence of 310-helix structural elements at the interface. Among the features that are anti-

correlated with binding affinity, identifying characteristics that tend to be avoided by high affinity com-

plexes, we find the α-helix structural element, a high strength of RR favorable contacts (Strengthfav|RR),

and, especially, a high percentage of charged residues lying at the complex surface (NIScharged) negatively

contribute to binding affinity.

All our analyses, NCI, SCR, NIS and DSSP, contribute to the 10 features.

An important outcome of this geometrical analysis of protein interfaces concerns the distribution of

interaction signals in interaction surfaces. A schema suggesting the tendency for (favorable) contacts to

be distributed on specific regions of the protein interaction surface is given in Figure 3.

Correlation between LISA and experimental binding affinity

Different experimental methods can be used to determine binding free energy and the results should

be interpreted by taking into account the sensitivity and the strength of the employed experimental

technique. (See Data S1 for the detailed list of techniques.) In fact, as already reported in (Vangone

& Bonvin 2015), the choice of the experimental technique can greatly influence the correlation with the

predictions. LISA records R = 0.74 (p < 1.023e-06) with ITC (32 complexes), R = 0.84 (p < 2.2e-16) with

SPR (60 complexes), R = 0.77 (p = 0.005856) with stopped-flow fluorimetry (11 complexes), and R =

0.75 (p = 6.1e-05) with spectroscopy (22 complexes) measures. It records a correlation R=0.81 (p < 2.2e-

16) with the full set AffinityB2 rel experimental measures (Figure 4, top left, and Supplemental

Table S2, top). Note that the set of complexes measured with techniques considered as non-reliable

such as inhibition assay (see STAR Methods) shows R = 0.20 (p < 0.15, Figure 4, bottom left). The

analysis of all complexes in AffinityB2, experimentally evaluated with reliable and non-reliable techniques,

gives R = 0.66.

When the analysis is realised on the Katristis rel dataset, made of 98 complexes and used to train

LISA, the correlation is R = 0.84 (p < 2.2e-16; Figure 4, top right). A slight improvement of R = 0.86
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(p < 2.2e-16) is obtained on the Katritis81 database used in (Vangone & Bonvin 2015) and made of

81 complexes experimentally studied with reliable experimental techniques. Note that on Katritis81,

LISA records R = 0.75 (p < 1.357e-04) with ITC (20 complexes), R = 0.86 (p < 2.753e-12) with SPR

(39 complexes), R = 0.86 (p = 0.005794) with stopped-flow fluorimetry (8 complexes), and R = 0.86

(p = 6.796e-05) with spectroscopy (14 complexes). See Figure 4, bottom right. For each technique,

note that the correlations obtained by Prodigy (Vangone & Bonvin 2015) on the same complexes are

comparable or lower: R = 0.78 for ITC, R = 0.69 for SPR, R = 0.68 for stopped-flow fluorimetry, and R

= 0.75 for spectroscopic methods.

Comparison between LISA and 17 other predictors. The performance of LISA was com-

pared with 17 state-of-the-art predictors, based on physical potentials and composite scoring functions.

The performance of the four most successful tools (ZAPP, Prodigy, Firedock-EI, INSIDE) on Affini-

tyB2 rel is reported in Figure 5, top, and, for all predictors, in Supplemental Figure S1 (see also

Supplemental Table S2, top). LISA reaches best correlations on experimental binding affinity with

R = 0.84 and 0.67 for Kastritis rel and Vreven rel datasets, while all other approaches reach a correlation

of at most 0.66 and 0.57 respectively, and, in general, much lower values. We note that the Vreven rel

dataset was not used for the training of any of the 17 predictors and that this unbiased evaluation shows

that LISA’s performance is robust on different subsets.

We observe that LISA outperforms all methods behaving consistently well on AffinityB2 rel (R = 0.81)

and its subsets (Figure 5, top). By measuring the amplitude of the conformational changes that take

place upon binding with Interface rmsd (I-rmsd; see STAR Methods), we labelled the AffinityB2 rel

complex interfaces as rigid (I-rmsd < 1Å), medium-rigid (1Å ≤ I − rmsd ≤ 2Å) and flexible (I-rmsd

> 2Å) as in (Vreven et al. 2012) (see STAR Methods) and observed that LISA displays the same behaviour

on rigid and medium-rigid complexes (R = 0.81 and 0.8 respectively), and a highly improved behaviour

on flexible complexes with a correlation R = 0.9 compared to ZAPP, Prodigy, Firedock-EI and INSIDE

scoring correlations ≤ 0.6 (Figure 5, bottom; see Supplemental Table S3). We also compared LISA

performance on Kastritis81 and on AffinityB2 rel* to Prodigy and ConsBind, respectively. On these

subsets, LISA performance remains consistent with the behaviour observed on AffinityB2 rel (Figure 5,

top; see also Supplemental Tables S4, S2 bottom and S3 bottom). We note that on flexible and

rigid complexes in Kastritis81, LISA reaches the very high correlation of R = 0.87.

When evaluated on AffinityB2 rel complex interfaces labelled as rigid (I-rmsd ≤ 1Å) and flexible

(I-rmsd > 1Å) as in (Vangone & Bonvin 2015), LISA behaviour is globally stable, with R = 0.8 and

0.82 on the two sets, respectively. In contrast, the majority of the other 17 predictors display a sharper

difference between rigid and flexible complexes than LISA, with a much lower performance on flexible

ones (Supplemental Figure S1 and Supplemental Tables S5 and S4). This is probably due to the

genericity of the geometric model LISA encodes, which highlights characteristics that may be “universal”

for protein-protein interactions, as argued in the Discussion.

We also evaluated LISA on sets of complexes satisfying different functions. Supplemental Table S6,

top (see also Supplemental Table S6, bottom) reports the correlations between binding energies ob-

tained with different tools and the experimental binding energy associated to different functional classes. It

is interesting to observe that there is no tool that outperforms the others in all classes. LISA performs very

well on membrane receptors (OR, R=0.91), enzyme/regulatory subunits (ER, R=0.99), enzyme/substrates

(ES, R=0.78) and G-protein containing (OG, R=0.88) interactions. It obtains the best performance on

antibody-antigens (A, R=0.51) and others (OX, R=0.75) compared to all other predictors. It does not

perform well on the set of 22 enzyme-inhibitors (EI, R=0.55) nor on the 4 antigen-bound antibodies (AB,
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R=0.63). Overall, LISA outperforms 6 tools on all 8 functional classes, 10 tools on 7 classes and 1 tool

on 6 classes.

Vreven rel is disjoint from Kastritis rel and provides an important reference test where to verify ac-

curacy. In reality, this dataset of 27 complexes has a biased composition towards antibody-antigenes, a

difficult functional class where LISA and all other computational approaches reach the worse performance

(see Supplemental Figure S1 and Supplemental Table S2, top). Moreover, it has no complex from

AB, ES and OG classes, where LISA performs the best. Nevertheless, on this dataset, LISA performs

successfully compared to the other approaches, with an overall correlation R = 0.67. Note that on this

dataset, ZAPP drops to R = 0.36 and Prodigy to R = 0.13.

Evaluation of the four LISA modules. LISA features, based on information coming from the

four different modules of the analysis, NCI, SCR, DSSP and NIS (Figure 2), have been analysed by

discarding each module separately and by evaluating the performance of the resulting “simplified” method.

Correlations of the predictions performed by each “simplified” method with experimental binding energies

of complexes belonging to AffinityB2 rel, Kastritis rel and Vreven rel datasets are reported in Table 1.

From the outcomes, the four modules NCI, SCR, DSSP and NIS play an important role in LISA, with

the best performance reached with the contribution of all modules combined. The NCI module appears

to be the most relevant for the three datasets, followed by SCR. This is especially visible in Vreven rel

analysis, where DSSP seems to play the smaller role. As observed before, the functional composition of

the Vreven rel dataset is biased, and our results suggest that the role of the modules might be dependent

on specific functional classes.

LISA computational time. LISA is scalable and its bottleneck is NCI calculation. NCI analysis

can take advantage of a multithreading computation though, as shown in Supplemental Table S7, and

high performance computing (HPC) can drastically improve computational performance. Note that LISA

was not designed for a large scale treatment of millions of decoys even though HPC can be used for a

reasonably fast treatment of many complex conformations.

Discussion

LISA demonstrates that improvements in binding affinity prediction can be reached by modelling the

geometry of the distribution of contacts at interacting surfaces. Besides considering secondary structures

at the interface (DSSP) and the composition of the non-interacting surface (NIS), used in the past to es-

timate binding affinities, it introduces two features, namely the favorable/unfavorable quality of contacts,

their strength and concentration in specific regions, both inferred from quantum chemistry calculations

(NCI), and the support-core-rim model for protein-protein interfaces (SCR). With only 10 easily inter-

pretable descriptors, LISA final model enables to learn about protein-protein association. It identifies the

properties contributing the most to the binding (see Figure 3 and the associated description) by showing

the importance of the geometrical distribution of contacts and hot-sites at the interacting surface. These

findings were not previously reported. LISA compares favourably to many other state-of-the-art scoring

functions. Its computational bottleneck is NCI which performs the quantum chemistry calculations, but

the computational efficiency of this step could be improved and work on this direction is undergoing.

3D localization of non-covalent interactions. Protein complexes do not easily identify the intricate non-

covalent interactions governing their binding. These interactions occupy broader regions in space than
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close contacts between atom pairs. These regions can be represented by continuous surfaces (Johnson et al.

2010), where the density of the signal and the strength of the interaction can be numerically evaluated

based on the electron density and its derivatives. We demonstrate that this fine description of the interac-

tion, taking into consideration all small non-covalent contributions and their spatial distribution, goes far

beyond the usual residue-residue contacts considered in other computational approaches and leads to de-

fine a more realistic model of binding affinity improving our understanding of protein-protein interactions.

From atom-atom contacts to isosurfaces and back to contacts again. We wish to stress that, in LISA, the

properties assigned to a contact and used to evaluate binding affinity are not intrinsic to the contact itself

but coming from a global analysis of the interaction between the contact and its environment, i.e. the

other contacts around it. This is made possible by NCI analysis which generates isosurfaces representing

the effects of multiple atomic interactions. Each isosurface is a discrete object, namely a region of the NCI

grid. This enables to associate to each interatomic contact the local values of the isosurface it intersects,

corresponding to the closest point in the NCI grid.

Contribution of favorable contacts in binding affinity. LISA demonstrates that by coupling favorable

non-covalent interactions with the geometry of the interface (described by the Support-Core-Rim model

(Levy 2010)) and the residues on the complex surface influencing the interaction turns out to be crucial

to improve previous models of binding affinity.

From the LISA model, we learn that the number and strength of CC contacts are crucial for predicting

binding affinity. In particular, we learn that favorable contacts are more important than generic contacts

and that, in general, some regions where the contacts are highly concentrated (hot-sites), depending on

their localisation at the surface, are more important than others. This is the case for favorable CC, RR

and RS contacts. Noticeably, unfavorable CC contacts concentrated in regions of very weak strength also

play a role in binding. The spread distribution of contacts in the core and of favorable contacts in the

rim regions of the interfaces leads to high binding affinity. A minor role is played by secondary structure

elements with 310-helix motifs favouring the interaction.

LISA model was defined and tested on a broad set of complexes, for which we expect binding be-

haviour to be rather different ensuring genericity of the model. Nevertheless, we can expect that some

variations on the model might take place when the number of experimental complexes will be augmented.

Supplemental Figure S3 highlights that the 100 best scoring models share a number of features. Some

other features are shared by a large proportion of the models and we expect that, with new experimental

measures, some of those features might become preferential. The features, being present in only a few

models may be important to characterize the binding of complexes involved in specific functions.

LISA on flexible complexes. LISA displays a comparable performance on rigid and flexible complexes,

while all other predictors see their performance drop on flexible complexes. This result raises some

questions on the general character of the descriptors used in LISA to predict binding affinity. Indeed, it

suggests that the features used by all other tools are less significant on flexible complexes than on rigid

ones, while, in contrast, LISA properties appear to be more “universal”.

The adaptability of LISA interface descriptors to complexes formed by proteins displaying different

conformational adjustments and possibly large conformational changes upon binding together, suggest

that these features might be driving the conformational change and it could be of interest to use them for

studying the dynamics of complex formation.
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Improving LISA model. One might wonder how we can improve further LISA model. Certainly, sol-

vatation is a missing component of the LISA model, and one should consider the role of solvent as a

mediator of the interactions at the interface. Since water molecules can realise bridges between residues,

an explicit inclusion of them in the model could improve it. More generally, one can expect that more

reliable experimental measures on new complexes will enable to improve model fitting and validation.

Can binding affinity play a role in discriminating partners? With LISA, we analysed the distribution of

geometrical features of atom-atom contacts in a complex interface and demonstrated that specific charac-

teristics of this distribution become helpful to estimate the binding energy. In this respect, it is important

to notice that the geometrical distribution of interaction signals seems to provide more insights on true

partners than the binding energy itself. Indeed, molecular docking highlighted that the binding energy

alone is not sufficient to discriminate true partners from false ones but that knowing the precise location

of the binding site helps to discriminate partners (Sacquin-Mora et al. 2008, Lopes et al. 2013). Also,

docking procedures highlighted that there is a tendency for partners and non-partners to preferably dock

the same sites (Fernandez-Recio et al. 2004, Sacquin-Mora et al. 2008, Martin & Lavery 2012, Lopes et al.

2013, Laine & Carbone 2016, Vamparys et al. 2016). These two observations lead to draw a special at-

tention on the way atom-atom contacts are established between real partners compared to non-real ones.

Indeed, given the same interaction site, one expects contact distributions to be different for distinguished

partners and among different conformations of the same partners. In the future, we wish to show that

LISA model, based on a geometrical distribution of specific favorable contacts at the interface, could be

included in interaction indices to better discriminate partners from non-partners.

A direction of investigation for design. In (Johnson et al. 2010), surfaces describing non-covalent interac-

tions are proposed as offering rich insight into the design of improved ligands. Here, in a similar manner,

we propose to take into account all the small contributions justifying the ligand fit on the specific binding

site for evaluating their binding affinity. Further investigations of the geometry of the isosurfaces will

likely offer insights on our understanding of molecular interactions.
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Main figures titles and legends

Figure 1. Analysis of atom-atom contacts in non-covalent interactions. Images are realised with

NCIPLOT (Johnson et al. 2010). A. NCI grid representing the contact surface between two proteins (pdb

1E6E). (The NCI grid is defined with no filter on RDG values.) B. Isosurfaces characterising regions with

lowest density gradient, s ≤ 1, within the contact surface in A. C. Analysis of favorable vs non-favorable

contact regions. Gradient isosurfaces in B are coloured on a blue-green scale according to the value of

sign(λ2)× ρ: blue indicates favorable interactions (% ≤ 0) and green indicates unfavourable ones (% > 0).

Atom-atom contacts intersecting favorable and non-favorable contact regions are colored red.

Figure 2. LISA flow. LISA flow is constructed around four blocks of analysis of the protein complex

detecting different signals: NCI (identification of favorable and non-favorable contacts and their strength),

SCR (positioning of the atom-atom contacts within the geometrical SCR model), DSSP (identification of

the secondary structures at the interaction surface) and NIS (evaluation of the influence of polar/ apolar/

charged residues lying on the complex surface but not belonging to the interface). Signals coming from

NCI, SCR, DSSP and NIS analysis are combined together in a non-linear combination defining a global

score for the interface. LISA geometrically organises all these signals together in a grid (the LISA cuboid

grid) highlighting the hot-sites of the interaction within a complex. The role of each module included in

LISA and making a contribution to the description of the binding affinity is shown in Table 1.

Figure 3. Schema of contact distribution in protein interacting surfaces. Left: The interacting

surface is structured in the three SCR layers: the support (S) is localised in the center (white), the core (C)

is the central concentric layer (light brown) and the rim (R) is the most external layer (dark grey). Contacts

(crosses) and favorable contacts (circles) are shown to distribute mostly on the core region in high (blue)

and medium (green) concentration hot-sites. Medium concentration hot-sites contribute to the binding

from the three (support, core and rim) regions. Unfavorable contacts in the core region play also a role.

Right: atom-atom contacts between two interacting proteins (pdb 3SGB). An interacting protein surface

is represented by sticks (only interacting residues are shown) and the other by balls. Residues (sticks and

balls) are colored in white, light brown and dark grey depending on whether they belong to support, core

or rim. Atom-atom contacts have been colored based on LISA analysis (see contacts details.txt file

generated by LISA): favorable contacts (ρ < 0) in IS1 (IS1=1) are blue, favorable contacts in IS2 (IS2=1)

are green and unfavorable contacts in IS3 (IS1=IS2=2) are black.

Figure 4. Correlation of LISA scores with binding affinities, organised by experimental

techniques. Top left: correlation between LISA scores on the 125 complexes in AffinityB2 rel and their

equilibrium dissociation constant (Vreven et al. 2015) obtained by reliable experimental techniques: ITC,

SPR, spectroscopy and stopped-flow. The associated p-value is also reported: R=0.81 and p < 2.2e-16.

LISA is trained on Kastritis rel, a subset of AffinityB2 rel. See also Supplemental Figure S2 for an

organisation of the complexes on functional classes. Bottom left: correlation computed on complexes

whose experimental measures were obtained with non-reliable experimental techniques: inhibition assays

and others; R=0.20 and p < 0.15. LISA is trained on Kastritis rel. Top right: correlation computed

on complexes whose experimental binding affinity is measured on the Kastritis rel dataset; R=0.84 and

p < 2.2-16. Bottom right: correlation computed on complexes in Kastritis81, the subset of AffinityB2 rel
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studied in (Vangone & Bonvin 2015); R=0.86 and p < 2.2e-16.

Figure 5. LISA performance and comparison with 5 other tools on AffinityB2 rel datasets

and Kastritis81. Top: correlations between the binding affinity predicted by LISA and other tools with

the experimental binding energies reported in (Vreven et al. 2015). LISA, ZAPP (Vreven et al. 2012),

Prodigy (Vangone & Bonvin 2015), FireDock EI (Andrusier et al. 2007) and INSIDE (Andrusier et al.

2007) have been evaluated on AffinityB2 rel, Kastritis rel and Vreven rel datasets (left; Supplemental

Table S2, top). LISA was compared to Prodigy also on Kastritis81 (Vangone & Bonvin 2015) (center;

Supplemental Table S4). The comparison with ConsBind was realised on Vreven rel and the subsets

of AffinityB2 rel, Katritis rel, called AffinityB2 rel* and Kastritis rel*, defined by eliminating complexes

1DE4, 1IQD, 1M10, 1NB5, 1NCA, 1NSN, 1UUG from AffinityB2 rel and Kastritis rel datasets since they

are missed in ConsBind evaluation. Bottom: correlations of scores computed by LISA and other tools

with experimental binding affinities reported in (Vreven et al. 2015). Results are organised according to

flexibility of the complexes for AffinityB2 rel (left; Supplemental Table S3, top), Kastritis81 (center;

Supplemental Table S4) and AffinityB2 rel* (right; Supplemental Table S3, bottom). Kastritis81

and AffinityB2 rel* are described as for the top figure. The subsets rigid (I-rmsd < 1Å), medium-rigid

(1Å≤ I-rmsd ≤ 2Å) and flexible (I-rmsd > 2Å) are labeled ‘*’ for Kastritis81 and ‘**’ for AffinityB2 rel*.

For LISA comparison with 17 tools, see Supplemental Figure S1.

Figure 6. Functional and structural compositions of AffinityB2 rel, Kastritis rel and Vreven rel

datasets. A. Functional composition (in percentages) of the AffinityB2 rel dataset made of 125 protein

complexes (Vreven et al. 2015): antibodies (A), bound antibodies (AB), enzyme/inhibitors (EI), en-

zyme/substrate (ES), enzyme/regulatory subunit (ER), G-protein containing (OG), membrane receptors

(OR), and miscellaneous (OX). B. Classification of AffinityB2 rel complexes in rigid (I-rmsd < 1Å),

medium-rigid (1Å≤ I-rmsd ≤ 2Å) and flexible (I-rmsd > 2Å) structures. The exact proportions and

exact number of complexes for the subsets in A and B are reported in Supplemental Table S8.
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Main tables and legends

LISA/NCI LISA/SCR LISA/DSSP LISA/NIS LISA

NCI - + + + +

SCR + - + + +

DSSP + + - + +

NIS + + + - +

AffinityB2 rel 0.65 0.69 0.75 0.73 0.81

Kastritis rel 0.74 0.75 0.78 0.77 0.84

Vreven rel 0.28 0.40 0.63 0.48 0.67

RMSE 2.20 ± 0.42 2.24 ± 0.41 2.27 ± 0.41 2.35 ± 0.38 2.35 ± 0.38

Table 1. Contribution of the four main block analyses in LISA. The four blocks of analysis constituting

the LISA model (NCI, SCR model, DSSP and NIS) are analysed by dropping them, one by one, from the LISA

model to evaluate their contribution in LISA. The Root Mean Square Error (RMSE) is reported for each analysis of

the Kastritis rel dataset.
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STAR Methods

Datasets. LISA performance was tested on three datasets. We considered the Affinity Benchmark

version 2 (called ‘AffinityB2’ for short) (Vreven et al. 2015) comprising 144 complexes from (Kastritis

et al. 2011) (called ‘Kastritis’) and 35 new complexes from (Vreven et al. 2015) (called ‘Vreven’). The

binding free energy reported in (Vreven et al. 2015) for the 179 complexes in AffinityB2 was estimated

by specific technologies: stopped-flow fluorimetry, surface plasmon resonance/SPR, isothermal titration

calorimetry/ITC, spectroscopy, and others. The full list is given in Data S1 and was created by merging

information from (Kastritis et al. 2011) and (Vreven et al. 2015). (For each complex, it reports the func-

tional class, the experimental technique used to evaluate the binding affinity, the equilibrium dissociation

constant (Kd), the Gibbs free energy (∆G), the I-rmsd, the ∆ASA.) In (Vangone & Bonvin 2015), a num-

ber of these experimental techniques were considered to be non-reliable: inhibition assays and fluorescence

spectrophotometry methods, and all others for which only a few data points were reported (potentiometry,

radioligand, reduction assay, and sedimentation, etc.). Here, as in (Vangone & Bonvin 2015), we define

as reliable: ITC, SPR, spectroscopy and stopped-flow. Therefore, we defined the subset ‘AffinityB2 rel’

to be composed only by the 125 complexes measured with reliable experimental techniques. The cor-

responding subsets ‘Kastritis rel’ and ‘Vreven rel’ contain 98 and 27 complexes respectively. The whole

AffinityB2 rel benchmark spans several biological functional classes: 24 antibody/antigens (A or AB with

bound antibody), 22 enzyme/inhibitors (EI), 8 enzyme/substrates (ES), 8 enzyme/regulatory subunits

(ER), 13 G-protein containing (OG), 17 membrane receptors (OR), and 33 miscellaneous (OX). (The

proportion of these complexes is reported in Figure 6A and in Supplemental Table S8.) We also

named ‘Kastritis81’, the subset of 81 complexes from AffinityB2 rel that was used in (Vangone & Bonvin

2015). For our analysis, we downloaded the 125 X-ray complex structures from the Protein Data Bank

(Berman et al. 2002) without refining them nor discarding the hetero-atoms.

For each complex, experimental binding energy and I-rmsd (Interface rmsd; calculated in (Vreven

et al. 2015) after superimposition of the unbound component proteins onto their bound forms, using

the Cα atoms of the residues that had any atom within 10Å of any atom of the binding partner) were

taken from (Vreven et al. 2015), and the ∆rASA (change in relative accessible surface area, rASA, upon

complex formation (Kastritis et al. 2011)) was computed. Note that the values of binding energy vary

in the range between -18.58 and -4.29 kcal/mol (Kastritis et al. 2011, Vreven et al. 2015). I-rmsd, which

provides an estimation of the amplitude of the conformational changes that take place upon binding

(Vangone & Bonvin 2015), varies between 0.17Å and 4.9Å. Moreover, in the context of affinity prediction,

the complexes with I-rmsd < 1Å were considered as rigid, those corresponding to 1Å ≤ I-rmsd ≤ 2Å

as medium-rigid, and the remaining ones as flexible (Vreven et al. 2012). We also considered a coarser

classification of the complexes into rigid (I-rmsd ≤ 1Å) and flexible (I-rmsd > 1Å) as in (Vangone &

Bonvin 2015).

Interface residues. The relative accessible surface area (rASA) was computed with NACCESS (Hub-

bard & Thornton 1993) using a probe radius of 1.4Å. According to (Levy 2010), the interface is identified

by the residues that lose rASA upon binding. By computing rASA for the (bound form of the) monomers

and for the complex, we define residues lying at the interface of a complex as those whose rASA in the

complex is different than that in the monomer (∆rASA≥ 0).

Support-Core-Rim model of protein interfaces. Interface residues were subdivided in three

classes according to their position at the interface (Levy 2010): ‘support’ residues are buried in unbound

and bound forms (rASAu, rASAb < 0.25), ‘core’ residues become buried upon binding to the partner
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(rASAu ≥ 0.25 and rASAb < 0.25), and ‘rim’ residues are exposed in unbound and bound forms (rASAu,

rASAb ≥ 0.25). We refer to this classification as the ‘SCR model’. For protein-protein interactions these

three regions of the protein interface roughly correspond to three concentric layers, the support defining

the internal layer and the rim the most external one (Levy 2010, Laine & Carbone 2015).

Interface atom-atom contacts. Two residues, respectively belonging to the two proteins in a

complex, are in contact with each other if the distance between their two nearest atoms is ≤ 5.5Å as in

(Vangone & Bonvin 2015).

Favorable and non-favorable contacts. To classify a contact as favorable or non-favorable to

the interaction, we use the quantum mechanical electron density, ρ, the key quantity in density functional

theory (DFT), and two scalar fields derived from it, the reduced gradient (RDG, s) and the signed electron

density (%). With these measures, one can explore a wide range of non-covalent interaction types (van der

Waals interactions, hydrogen-bonds and steric clashes) as surfaces. These measures are fundamental to

the Non-Covalent Interaction (NCI) analysis approach (Johnson et al. 2010, Contreras-Garcia et al. 2011,

Gunther et al. 2014), one of the three main computational modules in LISA.

The electron density ρ describes the relative probability to find electrons in a particular location of a

space Ω. Density values are indicators of the interaction strength.

The reduced density gradient (RDG) s describes the deviation in atomic densities due to non-covalent

interactions (Johnson et al. 2010, Contreras-Garcia et al. 2011, Gunther et al. 2014). It is defined as

s =
1

2(3π2)1/3
|∇ρ|
ρ4/3

(1)

Properties of s have been investigated in the process of developing increasingly accurate functionals

(Hohenberg & Kohn 1964, Becke 1995, Cohen et al. 2008). In the presence of non-covalent interactions, s

reports a strong change in its values in regions of space between interacting atoms. Namely, s shows large

positive values in regions far from other molecules (monomers), in which the density is decaying to zero

exponentially. Conversely, s assumes very small values, approaching zero, for regions of both covalent

bonding and non-covalent interactions (upon dimer/complex formation).

In (Johnson et al. 2010), it was observed that plotting s (RDG) versus ρ (density) reveals the basic

pattern of intra-molecular interactions. Visually, in plots of s versus ρ , “spikes” in the low-density low-

gradient region are indicative of non-covalent interactions. The topological analysis of these signals reveals

interaction sites which enable to focus on locations of space which are relevant for molecular interactions

in chemical systems (Gunther et al. 2014).

Very different types of interactions might appear in the same region of density space and to distinguish

between these them we consider the second eigenvalue, λ2, of the electron density Hessian matrix. See

(Johnson et al. 2010). λ2 can be either positive or negative depending on the type of interaction: while

attractive interactions concentrate electron charge perpendicular to the bond (λ2 ≤ 0), repulsive interac-

tions cause density depletion (λ2 > 0). In contrast to ρ which only assesses the interaction strength of

atoms, the signed electron density, % = sign(λ2)× ρ, additionally enables the differentiation of attracting

and repulsive interactions. Both van der Waals interactions and hydrogen bonds show negative values of

λ2 at critical points (Johnson et al. 2010, Contreras-Garcia et al. 2011, Gunther et al. 2014). Namely, we

define favorable/attractive interactions as non-covalent interaction contacts with s ≤ 1 and % ≤ 0, and

non-favorable/repulsive interactions as non-covalent interaction contacts with s ≤ 1 and % > 0.

In LISA, we use NCIPLOT v3 (Johnson et al. 2010) (http://www.lct.jussieu.fr/pagesperso/

contrera/nciplot.htm), a program that enables the computation and graphical visualization of inter-
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and intra-molecular non-covalent interactions (hydrogen bonds, π-π interactions, Van der Waals forces). It

has been previously applied to systems ranging from small dimers to large biomolecules (Contreras-Garcia

et al. 2011, Johnson et al. 2010). NCIPLOT performs the NCI (Non-Covalent Interaction) analysis, based

on ρ, s, % and λ2. In our analysis, we concentrate only on the interactions concerning complex interfaces.

For this, we apply NCIPLOT (with the ”INCREMENTS” option to set the increments along the x,y,z

directions of the cube - x=y=z=0.45 atomic units - and the ”INTERMOLECULAR” option to analyze

only inter-molecular interactions) to the NCI cube enveloping the protein-protein interface. To restrict

the automatically generated NCI cube into a NCI cube that perfectly envelops the interface, we use the

minimum and maximum atomic coordinates at the interface as boundary points (NCIPLOT option cube).

An extra radial threshold in each direction was added to ensure that the interface atoms were contained

within the cube (2 �A). A NCI grid, describing the interaction isosurface between the two monomers,

was then generated (see Figure 1A) and the ρ, s, % and λ2 values were calculated at each point on the

grid. Note that densities were obtained from promolecular estimates (ρpro) defined as the sum of atomic

densities (ρi
at) ρpro =

∑
i ρi

at, where i varies through all atoms in the NCI grid. Promolecular densities

are computationally very useful for describing large biomolecular systems (Contreras-Garcia et al. 2011).

In LISA, we use NCIPLOT in two different manners. We distinguish favorable from non-favorable

non-covalent interactions on isosurfaces, and we exploit the three-dimensional localisation of molecular

interactions identified in NCIPLOT by recording ρ, s, % and λ2 for each point in the NCI grid (Figure 1A).

To each atom-atom contact at the protein complex interface, we associate the values ρ, s, % and λ2 of

the nearest point in the NCI grid. This allows to determine the position of a contact in the NCI grid, its

strength, and whether it is favorable or not.

Interface geometry and atom-atom contacts. To analyse the distribution of interface atom-

atom contacts and their properties in 3D space, we define, for each complex, a cuboid grid enveloping all

residues involved in the interfaces of the two molecules. (Note that this grid is not the NCI cubic grid.)

To ensure that all interface interactions are included, we used the minimum (Xat
min, Y at

min, Zat
min) and the

maximum (Xat
max, Y at

max, Zat
max) atomic coordinates at the interface. Then, the cube was subdivided in

125 cubic units of identical volume by dividing each axis in five parts such that each edge along the X-,

Y - and Z-axis respectively, has size lx =
Xat

max−X
at
min

5 , ly =
Y at
max−Y

at
min

5 , lz =
Zat

max−Z
at
min

5 , respectively. For

each unit cube, the coordinates of a contact are those coming from the NCI cubic grid. We computed

the total number of atom-atom contacts, the number of favorable and non-favorable contacts, and the

total strength (provided by the absolute value of %) of contacts in the cube. Following the SCR model

(Levy 2010) (see above), we also classified the contacts in six classes depending on whether they belong to

RR: rim-rim, CC: core-core, SS: support-support, RS: rim-support, RC: rim-core, and CS: core-support.

Strictly speaking, residues are classified as belonging to rim, core or support, and here, we consider the

obvious extension to atoms.

Each unit cube belongs to one of the three families, IS1, IS2 and IS3, representing the intensity of

the favorable strength (IS) in the unit cube. Given the total strength of favorable contacts in each cube,

we consider their distribution and rescale it on the interval [0, 1]. Then, we define the families IS1, IS2

and IS3 in such a way that IS1 contains all cubes with normalised favorable strength ≥ 0.6, IS2 contains

all cubes with normalised favorable strength between 0.1 (included) and 0.6 and IS3 contains all cubes

with normalised favorable strength < 0.1. Note that normalisation is used only to classify the cubes in

the families.
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Structural properties and NIS at the interface. Non-interacting surface (NIS) contribution in

protein-protein binding (Kastritis et al. 2014) was analysed by considering distinguished physico-chemical

properties of residues lying on the complex surface: polar (C, H, N, Q, S, T, Y, W; NISpolar), apolar (A,

F, G, I, L, V, M, P; NISapolar) and charged (E, D, K, R; NIScharged). Calculations for NISpolar, NISapolar

and NIScharged were realised with scripts available at http://bonvinlab.org/software. We ran them

with default options and default parameter values.

The secondary structure at the interface was computed by using the DSSP program (Kabsch & Sander

1983b, Joosten et al. 2011), the standard software for the assignment of secondary structure elements in

PDB entries. We exploited the full classification of structural elements used in DSSP: α-helices, 310-helices,

π-helices, B-bridges, β-sheets, turns, bends, loops (Kabsch & Sander 1983a). DSSP was used with default

options and default parameter values; it is accessible at http://swift.cmbi.ru.nl/gv/dssp/.

Local Interaction Signal Analysis (LISA) and the LISA score. LISA aims at determin-

ing geometrical features of atom-atom contact interactions that effectively influence binding energy. To

construct LISA model, we started with 179 descriptors defined by combining properties associated to

either the LISA cube enveloping the interface or the NCI cubic grid. When we consider the LISA cube

enveloping the interface, we highlight 6 main properties: the total number of contacts, the total number

of favorable contacts, the total number of non-favorable contacts, the total strength of the contacts, the

strength obtained by considering only favorable contacts and the strength obtained from non-favorable

contacts. These properties are studied by restricting the contacts to those belonging to SS, CC, RR, SR,

SC and CR residue pairs. This provides 36 more descriptors. When we consider the NCI cubic grid, we

combine the 42 properties with the three families IS1, IS2 and IS3. This makes 126 other descriptors.

We also consider 8 parameters describing the interaction surfaces of both receptor and ligand as secondary

structures. Namely, we count the number of residues in the interface that belong to α-helices, 310-helices,

π-helices, B-bridges, β-sheets, turns, bends, loops. The 3 last descriptors are NISpolar, NISapolar and

NIScharged, describing the proportion of polar (C, H, N, Q, S, T, Y, W), apolar (A, F, G, I, L, V, M, P)

and charged (E, D, K, R) residues that lie at the complex surface and that do not belong to the complex

interface. Notice that all parameters collect values coming from the bound structure. In Data S2, for

each complex, we report the values of the 179 features used to evaluate the models and compute the LISA

score of the complexes.

We used the Akaike’s Information Criterion (AIC) feature stepwise selection approach (backward and

forward) in order to choose a linear regression model identifying the significant features and to avoid

over-training problems due to the presence of more than three variables. The AIC-based linear regression

stepwise procedure used the Kastritis rel dataset as a training set. The chosen model contains 58 features,

associated with coefficients and p-values. The 58 features are then ordered by p-values and the ensemble

is progressively reduced by applying the following procedure: for each feature fe, we remove the features

fi that have a p-value pval(fi) > pval(fe) and that are highly correlated with fe (R > 0.75). We end up

with 21 features. From this ensemble, we remove features with a p-value > 0.1 or a number of null values

> 60 (more than two thirds of the complex set). We end up with 16 features, which are used to perform

a Support Vector Regression (SVR).

Namely, we want to select the best combination of features among the 16 ones, by running SVR

based on a radial kernel, on the Kastritis rel dataset used as a training set. The feature’s selection

is realized by running calculations for all 65 535 combinations of the 16 features on the training set.

Then, each model is used to predict binding affinities for the Vreven rel dataset, that is the testing set,

and the correlations between scores produced by the model and the experimental binding affinities are
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computed on both Kastritis rel and Vreven rel datasets with the Pearson product-moment correlation

coefficient, a widely accepted measure of the relationship between predicted and experimental binding

energy (Moal et al. 2011). The best combination of features is chosen as the one that maximizes the

sum of the correlations obtained with the training set (Kastritis rel) and the testing set (Vreven rel) over

all models. The list of selected features (V46, V69, V106, V107, V114, V154, V202, V207, V208 and

nis2) is described in Supplemental Table S1 and Supplemental Figure S3. Note that the list of

features obtained by optimizing only on Kastritis rel (V43, V46, V69, V97, V107, V123, V202, V207,

V208 and nis2) provides correlation coefficients of 0.87 for Kastristis rel and 0.43 for Vreven rel. Compare

it with 0.84 for Kastristis rel and 0.67 for Vreven rel obtained by LISA model. We stress that our feature

selection procedure is completely automatized and much more exhaustive than what is usually done for

the development of empirical scoring functions. In particular, we have built 65 535 regression models

corresponding to all possible combinations of our 16 pre-selected features. By comparison, for example

in (Vangone & Bonvin 2015), only 6 models were built and the choice of the features in each model was

largely manually driven.

For each combination of n features, to find a radial function of support vectors of dimension n, we

used the SVR included in the package e1071 in R (R Development Core Team 2011), with a radial kernel,

default “cost of constraints violation” and default “epsilon in the insensitive-loss function”. The kernel

function K(x, x′) = exp(−γ ‖ x−x′ ‖2) (where γ = 0.1 by default) is optimized to extract N representative

support vectors that are used for classification. The LISA score is the classification function defined as∑N
i=1 αiK(xi, x

′) + b ≥ 0, where the parameters αi are learned in the SVR training step over the 10

selected features. Notice that there are as many αi parameters as support vectors, in our case N = 84.

The SVR model on 10 features is validated through 100 cycles of 4-fold cross-validation helping to

estimate the Root Mean Square Error (RMSE) between predicted and experimental binding affinity. The

procedure goes as follows: Kastritis rel is split into four equal subsets and we chose one of them as a

testing set, while the other three datasets are used to run a SVR with a radial kernel. This allows us to

find the model best fitting the 75% of the data. Then, this model is used to predict scores for complexes

in the testing set and compute the RMSE between these values and the experimental binding affinity

values. This procedure is repeated for the 4 distinguished subsets and for 100 times on different random

splittings of Kastritis rel. Hence, we generated 4 × 100 models with different parameters and computed

4 × 100 RMSE values, whose distribution allowed us to determine the mean and the standard deviation

representing the quality of the model.

Procedure for the evaluation of LISA modules. For each discarded LISA module, we re-

compute the model anew, starting from those features that characterise the modules. The flow of the

computation remains the same as for LISA, while the set of initial parameters is smaller. The analyses

are realised on the Kastritis rel (used for training) and Vreven rel (used for testing) datasets. The RMSE

has been computed for each model on the Kastritis rel dataset with a 4-fold cross-validation procedure.

Comparison with other tools. We compared LISA with other 17 available tools. In Data S3,

for each complex, we report the LISA score and the Gibbs free energy (∆G). ZAPP (Vreven et al. 2012)

and ConsBind (Moal et al. 2011) correlations were collected from (Vreven et al. 2012, 2015) and (Moal

et al. 2011, Vreven et al. 2015), respectively. Prodigy (Vangone & Bonvin 2015) data were calculated

through the program used with default options and default parameter values. All the results related

to other methods used for comparison were obtained as pre-computed data from the CCharPPI server

(Moal et al. 2015) (https://life.bsc.es/pid/ccharppi/) using external tools in order to calculate
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different descriptors. The descriptors we considered are classified as composite scoring functions (FireDock,

FireDock EI, FireDock AB (Andrusier et al. 2007), ZRANK (Pierce & Weng 2007), ZRANK2 (Pierce &

Weng 2008), RosettaDock (Chaudhury et al. 2010), PyDoc Tot (Grosdidier et al. 2007, Jiménez-Garćıa

et al. 2013), Sipper (Pons et al. 2011), AP Pisa (Viswanath et al. 2013), CP PIE (Ravikant & Elber

2010)), atomic-distance dependent potentials (AP DComplex (Liu et al. 2004), AP dDFire (Yang & Zhou

2008b), AP dDFire2 (Yang & Zhou 2008a)) and miscellaneous (INSIDE (Andrusier et al. 2007)).

The two tools, GA-PLS (Tian et al. 2012) and BioQSAR (Biomacromolecular Quantitative Structure-

Activity Relationship) (Zhou et al. 2013), both based on a QSAR model, could not be considered for

comparison because of software unavailability. Direct enquiry to the authors remained with no answer.

It should be noticed that GA-PLS claims a correlation coefficient of 0.83 and BioQSAR of 0.82-0.88

(with RMSE of 0.8-1.5 kcal/mol) on the 144 complexes of the AffinityB2 dataset, where both tools have

been trained and tested. Since experimental binding affinities for AffinityB2 complexes were measured

by reliable and unreliable experimental techniques, contrary to our choice of considering only reliable

techniques as in (Vangone & Bonvin 2015), we could not directly compare LISA’s performance to GA-

PLS and BioQSAR.

Quantification and statistical analysis. The development of the LISA package is based on Sup-

port Vector Regression, as described above. Comparison with other tools is based on Pearson correlation

coefficients computed with the R package (R Development Core Team 2011).

Software availability. LISA package is freely available for the community at http://www.lcqb.

upmc.fr/LISA/ under the CeCILL licence.
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Description of supplemental files

Supplemental Figures and Tables: supplemental figures and supplemental tables.

Data S1, related to Figures 4 and 6: for each complex, we report the functional class, the experimental

technique used to evaluate the binding affinity, the equilibrium dissociation constant (Kd), the Gibbs free

energy (∆G), the I-rmsd, the ∆ASA.

Data S2, related to Figures 2, 3, 4 and Table 1: for each complex, we report the values of the 179

features used to evaluate the models and compute the LISA score of the complexes.

Data S3, related to Figure 4: for each complex, we report the LISA score and the Gibbs free energy

(∆G).

27



A.

B.

C.



NCI cube NCI grid NCI isosurfaces

NCI detection of favorable
and non-favorable contactsAtom-atom contacts

LISA cuboid grid

SCR model for 
protein interfaces

DSSP secondary 
structure analysis

Charged 
residues

Support
Core

Turn
Alpha-helix

Beta-sheet
310-helix
Bend

Rim

NIS analyses

atom-atom contacts
favorable contacts (RDG ≤ 1, ϱ < 0)
non-favorable contacts (RDG ≤ 1, ϱ ≥ 0)

LISA scoring 

favorable contacts in high strength regions
favorable contacts in medium strength regions
unfavorable contacts in low strength regions



High	strength regions CC/SS/RS	Medium	strength regions +						Contacts ° Favorable	contacts							

Low strength unfavorable regions Unfavorable contacts							

+ +
+ ++ ++

+ +
+ +

+
+
+

+

++

+

+
+
+

+
+

++

+
++

+
+

+

++
+

+
+

+

+
+

++
+
+ +

+
+

+

+

+
+
+

+

+

+ +
+



Affinity B2 - reliable experimental methods Kastritis - reliable experimental methods

Affinity B2 - unreliable experimental methods Kastritis81

R = 0.81
p < 2.2e-16

R = 0.84
p < 2.2e-16

R = 0.20
p < 0.15

R = 0.86
p < 2.2e-16

Experimental ∆G (kcal/mol)

L
IS

A
 s

c
o

re

−4 −6 −8 −10 −12 −14 −16 −18

−
4

−
6

−
8

−
1

0
−

1
2

−
1

4
−

1
6

−
1

8

Experimental ∆G (kcal/mol)

L
IS

A
 s

c
o

re

−4 −6 −8 −10 −12 −14 −16 −18

−
4

−
6

−
8

−
1

0
−

1
2

−
1

4
−

1
6

−
1

8

Experimental ∆G (kcal/mol)

L
IS

A
 s

c
o

re

−4 −6 −8 −10 −12 −14 −16 −18

−
4

−
6

−
8

−
1

0
−

1
2

−
1

4
−

1
6

−
1

8

Experimental ∆G (kcal/mol)

L
IS

A
 s

c
o

re

−4 −6 −8 −10 −12 −14 −16 −18

−
4

−
6

−
8

−
1

0
−

1
2

−
1

4
−

1
6

−
1

8

Inhibition assay ITC Others Spectroscopy SPR Stopped-flow



1.0

0.8

0.6

0.4

0.2

0.0

0.1

0.3

0.5

0.7

0.9

1.0

0.8

0.6

0.4

0.2

0.0

0.1

0.3

0.5

0.7

0.9

Pe
a
rs

o
n

's
 C

o
rr

e
la

ti
o
n

Pe
a
rs

o
n

's
 C

o
rr

e
la

ti
o
n

A
ff

in
it
yB

2_
re

l

Ka
st

ri
ti
s_

re
l

V
re

ve
n_

re
l

Ka
st

ri
ti
s8

1

A
ff

in
it
yB

2_
re

l*
Ka

st
ri
ti
s_

re
l*

V
re

ve
n_

re
l

R
ig

id

M
ed

iu
m

-R
ig

id

Fl
ex

ib
le

R
ig

id
*

M
ed

iu
m

-R
ig

id
*

Fl
ex

ib
le

*

R
ig

id
**

M
ed

iu
m

-R
ig

id
**

Fl
ex

ib
le

**

LISA
ZAPP

Prodigy
FIREDOCK_EI
INSIDE

LISA
ZAPP

Prodigy
FIREDOCK_EI
INSIDE

LISA
Prodigy

LISA
Prodigy

LISA
ConsBind

LISA
ConsBind





SUPPLEMENTARY FIGURES

1.0

0.8

0.6

0.4

0.2

0.0

0.1

0.3

0.5

0.7

0.9

Pe
a
rs

o
n

's
 C

o
rr

e
la

ti
o
n

LI
S
A

IN
SI

D
E

AffinityB2_rel
Rigid

Z
A
PP

FI
R
ED

O
C
K
_E

I
A
P_

D
C
O

M
PL

EX
A
P_

dD
FI

R
E

A
P_

D
FI

R
E2

Z
R
A
N

K
2

R
O

SE
TT

A
D

O
C
K

PY
D

O
C
K
_T

O
T

SI
PP

ER
A
P_

PI
S
A

FI
R
ED

O
C
K

FI
R
ED

O
C
K
_A

B
C
P_

PI
E

Pr
od

ig
y

Z
R
A
N

K

LI
S
A

Pr
od

ig
y

LI
S
A

C
on

sB
in

d

Flexible

Kastritis81
Rigid
Flexible

AffB2_rel*
Rigid
Flexible

Figure S1. LISA performance and comparison with 17 other predictive tools. Performance of LISA and
comparison with other tools on the 125 protein complexes in the AffinityB2 rel dataset. Each comparison provides
correlations on AffinityB2 rel (blue) and on its two complementary subsets characterised by rigid (violet) and flexible
(yellow) complexes (Vangone & Bonvin 2015). ConsBind is applied on the AffinityB2 rel* dataset and its comparison
to LISA is reported on the right plot (green colorscale). In (Vangone & Bonvin 2015), Prodigy has been evaluated on
the Kastritis81 dataset and, here, we report the corresponding comparison to LISA restricted to this subset (central
plot; red colorscale); compare it with the evaluation on AffinityB2 rel, on the left. We recall that LISA is trained on
the Kastritis rel dataset. See Table S7 for the numerical values of the correlations plotted on the left, Table S8 for
the plot on the right and Table S9 for the plot on the center.
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Figure S2. Correlation of LISA scores with binding affinities, organised by functional classes.
Correlation (0.72) between the binding affinity predicted by LISA on the 125 protein complexes in AffinityB2 rel and
their experimental binding energies reported in (Vreven et al. 2015). Complexes are coloured with respect to
functional classes: antibodies (A), bound antibodies (AB), enzyme/inhibitors (EI), enzyme/substrate (ES),
enzyme/regulatory subunit (ER), G-protein containing (OG), membrane receptors (OR), and miscellaneous (OX).
Compare with Figure 4 (top left).
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Figure S3. Analysis of LISA features for the 100 best scoring feature combinations. The 100 feature
combinations providing the best sum of correlations on Kastritis rel and Vreven rel datasets are considered. Top:
each point correspond to a feature combination. Center: each bin reports the number of times a feature belongs to
the 100 best feature combinations. The 16 features selected by the AIC procedure are considered: TOTfav|IS2
(V82), Strength|CC|IS2 (V106), TOT|CC (V46), Strengthfav (V43), TOTfav|RC|IS2 (V97; it does not occur in any
of the best 100 feature combinations), Strengthunfav|CC|IS3 (V202), 310-helix (V208), Strength|SS|IS2 (V107),
Tot|IS1 (V123), Strengthfav|RS|IS2 (V114), TOTfav|RS (V54), Strengthfav|CC|IS1 (V154), TOTfav|RC|IS1

(V139), α-helix (V207), Strengthfav|RR (V69), NIScharged (nis2). Features are ordered with respect to the best
Pearson correlation coefficient R between the feature values and the experimental binding affinities of the
AffinityB2 rel complexes. Dark orange bins correspond to the 10 LISA features. Bottom: distribution of features in
the first 4 (red dots in Top plot; top left), 5 (red and violet dots in Top plot; top right) and 7 (red, violet and blue
dots in Top plot; bottom) best configurations.
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SUPPLEMENTARY TABLES

Feature Description Coef. R

Strength|CC|IS2 Sum of the strengths of all CC contacts1 in IS2 -0.37 -0.48

Tot|CC Total number of CC contacts1 -0.22 -0.45

Strengthunfav|CC|IS3 Sum of the strengths of all unfavorable CC contacts1 in IS3 -0.54 -0.29
310-helix The existence of a 310-helix structure on the interaction surface -0.18 -0.28

Strength|SS|IS2 Sum of the strengths of all SS contacts2 in IS2 2.87 -0.17

Strengthfav|RS|IS2 Sum of the strengths of all favorable RS contacts3 in IS2 0.77 -0.13

Strengthfav|CC|IS1 Sum of the strengths of all favorable CC contacts1 in IS1 -1.45 -0.07
α-helix The existence of a α-helix structure on the interaction surface -0.1 0.02

Strengthfav|RR Sum of the strengths of all favorable RR contacts4 0.88 0.07

NIScharged
Percentage of charged residues not involved in the direct inter-
action between two proteins in a complex

0.22 0.31

1 Contacts between atoms belonging to core residues.
2 Contacts between atoms belonging to support residues.
3 Contacts between atoms belonging to rim and support residues.
4 Contacts between atoms belonging to rim residues.

Table S1. Ten selected features characterising the LISA model. For each feature, we report the coefficient
of the linear regression model computed from the AIC-based feature selection, and the Pearson correlation coefficient
R between the feature values and the experimental binding affinities. Features are ordered with respect to R.
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AffinityB2 rel Kastritis rel Vreven rel

LISA 0.81 0.84 0.67
ZAPP 0.61 0.66 0.36
Prodigy 0.55 0.63 0.13
FIREDOCK EI 0.46 0.47 0.45
INSIDE 0.39 0.35 0.57
—————— — — —
AP DCOMPLEX 0.44 0.46 0.27
AP dDFIRE 0.13 0.14 0.14
AP DFIRE2 0.16 0.17 0.16
ZRANK 0.33 0.34 0.4
ZRANK2 0.38 0.39 0.46
ROSETTADOCK 0.32 0.37 0.04
PYDOCK TOT 0.44 0.46 0.32
SIPPER 0.22 0.18 0.46
AP PISA 0.38 0.39 0.3
FIREDOCK 0.42 0.41 0.45
FIREDOCK AB 0.37 0.37 0.37
CP PIE 0.44 0.45 0.39

Table S2. Correlations on AffinityB2 rel, Kastritis rel and Vreven rel datasets. Correlation values
between experimental and predicted binding energies for all complexes in the AffinityB2 rel, Kastritis rel and
Vreven rel datasets.

I-rmsd range AffinityB2 rel I-rmsd < 1Å 1Å≤ I-rmsd ≤ 2Å I-rmsd > 2Å

LISA 0.81 0.8 0.78 0.9
ZAPP 0.61 0.64 0.63 0.59
Prodigy 0.55 0.65 0.44 0.56
FIREDOCK EI 0.46 0.6 0.3 0.6
INSIDE 0.39 0.55 0.23 0.31
—————— — — — —
AP DCOMPLEX 0.44 0.49 0.39 0.7
AP dDFIRE 0.14 0.3 0.08 0.22
AP DFIRE2 0.17 0.33 0.09 0.26
ZRANK 0.34 0.46 0.26 0.75
ZRANK2 0.39 0.37 0.37 0.7
ROSETTADOCK 0.32 0.34 0.23 0.64
PYDOCK TOT 0.44 0.4 0.47 0.66
SIPPER 0.22 0.28 0.26 0.22
AP PISA 0.38 0.37 0.35 0.72
FIREDOCK 0.42 0.59 0.24 0.74
FIREDOCK AB 0.37 0.5 0.2 0.8
CP PIE 0.44 0.55 0.35 0.53

Table S3. Correlations organised by I-rmsd ranges characterising rigid, medium-rigid and flexible
complexes in AffinityB2 rel. Correlations between experimental binding energy and predictions obtained with
several tools and organised by different I-rmsd intervals on AffinityB2 rel complexes. Recall that complexes with
I-rmsd < 1Å, 1Å≤ I-rmsd ≤ 2Å and I-rmsd > 2Å are classified as rigid, medium-rigid and flexible.
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Intersection Kastritis81 I-rmsd < 1Å 1Å≤ I-rmsd ≤ 2Å I-rmsd > 2Å

LISA 0.86 0.87 0.82 0.98
Prodigy 0.73 0.74 0.68 0.88

Table S4. Correlations organised by I-rmsd ranges characterizing rigid, medium-rigid and flexible
complexes in Kastritis81. Correlations between experimental and predicted binding energies obtained with LISA
and Prodigy and organised by different I-rmsd intervals on Kastritis81 complexes. Recall that complexes with I-rmsd
< 1Å, 1Å≤ I-rmsd ≤ 2Å and I-rmsd > 2Å are classified as rigid, medium-rigid and flexible in (Vreven et al. 2012).

AffinityB2 rel* Kastritis rel* Vreven rel

LISA 0.83 0.87 0.67
ZAPP 0.62 0.67 0.36
Prodigy 0.54 0.62 0.13
FIREDOCK EI 0.46 0.47 0.45
INSIDE 0.4 0.36 0.57
ConsBind 0.56 0.58 0.51
—————— — — —
AP DCOMPLEX 0.45 0.48 0.27
AP dDFIRE 0.14 0.13 0.14
AP DFIRE2 0.17 0.16 0.16
ZRANK 0.33 0.33 0.4
ZRANK2 0.4 0.39 0.46
ROSETTADOCK 0.32 0.36 0.04
PYDOCK TOT 0.42 0.44 0.32
SIPPER 0.21 0.16 0.46
AP PISA 0.35 0.36 0.3
FIREDOCK 0.41 0.4 0.45
FIREDOCK AB 0.36 0.36 0.37
CP PIE 0.44 0.45 0.39

Table S5. Correlations on AffinityB2 rel, Kastritis rel and Vreven rel complexes belonging to the
ConsBind dataset. Correlation values between experimental and predicted binding energies for all complexes in
the intersection between AffinityB2 rel, Kastritis rel, Vreven rel and ConsBind datasets.
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I-rmsd range AffinityB2 rel* I-rmsd < 1Å 1Å≤ I-rmsd ≤ 2Å I-rmsd > 2Å

LISA 0.83 0.84 0.78 0.9
ZAPP 0.62 0.58 0.63 0.75
Prodigy 0.54 0.63 0.44 0.55
FIREDOCK EI 0.46 0.59 0.3 0.6
INSIDE 0.4 0.57 0.23 0.3
ConsBind 0.56 0.64 0.43 0.56
—————— — — — —
AP DCOMPLEX 0.45 0.5 0.39 0.7
AP dDFIRE 0.14 0.29 0.08 0.24
AP DFIRE2 0.17 0.33 0.09 0.27
ZRANK 0.33 0.42 0.26 0.75
ZRANK2 0.4 0.36 0.37 0.71
ROSETTADOCK 0.32 0.32 0.23 0.65
PYDOCK TOT 0.42 0.32 0.47 0.69
SIPPER 0.21 0.25 0.26 0.21
AP PISA 0.35 0.27 0.35 0.72
FIREDOCK 0.41 0.56 0.24 0.74
FIREDOCK AB 0.36 0.47 0.2 0.8
CP PIE 0.44 0.52 0.35 0.57

Table S6. Correlations organised by I-rmsd ranges characterizing rigid, medium-rigid and flexible
complexes in AffinityB2 rel*. Correlations between experimental binding energy and predictions obtained with
several tools and organised by different I-rmsd intervals on AffinityB2* complexes. Recall that complexes with
I-rmsd I-rmsd > 2Å, 1Å≤ I-rmsd ≤ 2Å and I-rmsd < 1Å are classified as flexible, medium-rigid and rigid.

I-rmsd cutoff AffinityB2 rel I-rmsd ≤ 1Å I-rmsd > 1Å

LISA 0.81 0.8 0.82
ZAPP 0.61 0.64 0.6
Prodigy 0.55 0.65 0.47
FIREDOCK EI 0.46 0.6 0.37
INSIDE 0.39 0.55 0.26
—————— — — —
AP DCOMPLEX 0.44 0.49 0.44
AP dDFIRE 0.14 0.3 0.1
AP DFIRE2 0.17 0.33 0.12
ZRANK 0.34 0.46 0.34
ZRANK2 0.39 0.37 0.45
ROSETTADOCK 0.32 0.34 0.32
PYDOCK TOT 0.44 0.4 0.52
SIPPER 0.22 0.28 0.14
AP PISA 0.38 0.37 0.43
FIREDOCK 0.42 0.59 0.35
FIREDOCK AB 0.37 0.5 0.34
CP PIE 0.44 0.55 0.39

Table S7. Correlations organised by I-rmsd ranges characterizing rigid and flexible complexes in
AffinityB2 rel. Correlations between experimental and predicted binding energies obtained with LISA and 17
other tools and organised by different I-rmsd intervals on AffinityB2 rel complexes. Recall that complexes with
I-rmsd ≤ 1Å and I-rmsd > 1Å are classified as rigid and flexible in (Vangone & Bonvin 2015).
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I-rmsd cutoff AffinityB2 rel* I-rmsd ≤ 1Å I-rmsd > 1Å

LISA 0.83 0.84 0.82
ZAPP 0.62 0.58 0.67
Prodigy 0.54 0.63 0.47
FIREDOCK EI 0.46 0.59 0.37
INSIDE 0.4 0.57 0.26
ConsBind 0.56 0.64 0.47
—————— — — —
AP DCOMPLEX 0.45 0.5 0.45
AP dDFIRE 0.14 0.29 0.1
AP DFIRE2 0.17 0.33 0.12
ZRANK 0.33 0.42 0.34
ZRANK2 0.4 0.36 0.45
ROSETTADOCK 0.32 0.32 0.32
PYDOCK TOT 0.42 0.32 0.53
SIPPER 0.21 0.25 0.15
AP PISA 0.35 0.27 0.42
FIREDOCK 0.41 0.56 0.35
FIREDOCK AB 0.36 0.47 0.34
CP PIE 0.44 0.52 0.39

Table S8. Correlations organised by I-rmsd ranges characterizing rigid and flexible complexes in
AffinityB2 rel*. Correlations between experimental and predicted binding energies obtained with LISA and 17
other tools and organised by different I-rmsd intervals on AffinityB2 rel* complexes. Recall that complexes with
I-rmsd ≤ 1Å and I-rmsd > 1Å are classified as rigid and flexible in (Vangone & Bonvin 2015).

Intersection Kastritis81 I-rmsd > 1Å I-rmsd ≤ 1Å

LISA 0.86 0.87 0.87
Prodigy 0.73 0.75 0.74

Table S9. Correlations organised by I-rmsd ranges characterizing rigid and flexible complexes in
Kastritis81. Correlations between experimental and predicted binding energies obtained with LISA and Prodigy
and organised by different I-rmsd intervals on Kastritis81 complexes. Recall that complexes with I-rmsd ≤ 1Å and
I-rmsd > 1Å are classified as rigid and flexible in (Vangone & Bonvin 2015).
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Complex type AffinityB2 rel A AB EI ER ES OG OR OX

LISA 0.81 0.51 0.63 0.55 0.99 0.78 0.88 0.91 0.75
ZAPP 0.61 0.01 0.13 0.63 0 0.29 0.83 0.62 0.3
Prodigy 0.55 0.15 0.56 0.47 0.66 0.92 0.77 0.47 0.39
FIREDOCK EI 0.46 0.05 0.11 0.53 0.81 0.46 0.21 0.65 0.34
INSIDE 0.39 0.32 0.69 0.52 0.76 0.42 0 0.62 0.03
—————— — — — — — — — — —
AP DCOMPLEX 0.44 0.04 0.43 0.21 0.7 0.81 0.62 0.64 0.37
AP dDFIRE 0.14 0.25 0.26 0.26 0.74 0.52 0.44 0.24 0.36
AP DFIRE2 0.17 0.25 0.2 0.25 0.78 0.51 0.65 0.28 0.37
ZRANK 0.34 0.31 0.94 0.24 0.9 0.53 0.87 0.56 0.31
ZRANK2 0.39 0.14 0.35 0.19 0.74 0.3 0.83 0.65 0.28
ROSETTADOCK 0.32 0.02 0.05 0.19 0.02 0.13 0.59 0.61 0.21
PYDOCK TOT 0.44 0.07 0.69 0.38 0.82 0.19 0.84 0.69 0.37
SIPPER 0.22 0 0.53 0.02 0.64 0.48 0.35 0.36 0.14
AP PISA 0.38 0.19 1 0.45 0.61 0.04 0.67 0.56 0.34
FIREDOCK 0.42 0.29 0.81 0.5 0.79 0.45 0.6 0.6 0.38
FIREDOCK AB 0.37 0.27 0.89 0.37 0.75 0.44 0.71 0.58 0.36
CP PIE 0.44 0.22 0.8 0.29 0.73 0.49 0.53 0.63 0.47

Table S10. Correlations organised by functional classes. Correlation values computed for several tools and
for the eight functional classes in AffinityB2 rel: antibody/antigen (A or AB with bound antibody);
enzyme/inhibitors (EI); enzyme/substrate (ES); enzyme/regulatory subunit (ER); G-protein containing (OG);
membrane receptors (OR); and others (OX).

Complex type AffinityB2 rel* A AB EI ER ES OG OR OX

LISA 0.83 0.51 -0.4 0.69 0.99 0.78 0.88 0.91 0.75
ZAPP 0.62 0.01 0.69 0.58 0.09 0.29 0.83 0.62 0.43
Prodigy 0.54 0.15 0.73 0.43 0.67 0.92 0.77 0.47 0.4
FIREDOCK EI 0.46 0.05 1 0.62 0.81 0.46 0.21 0.65 0.34
INSIDE 0.4 0.32 0.88 0.56 0.77 0.42 0 0.62 0.02
ConsBind 0.56 0.3 0.78 0.35 0.84 0.86 0.67 0.61 0.37
—————— — — — — — — — — —
AP DCOMPLEX 0.45 0.04 1 0.27 0.74 0.81 0.62 0.64 0.37
AP dDFIRE 0.14 0.25 0.37 0.25 0.74 0.52 0.44 0.24 0.35
AP DFIRE2 0.17 0.25 0.37 0.25 0.77 0.51 0.65 0.28 0.36
ZRANK 0.33 0.31 0.89 0.22 0.9 0.53 0.87 0.56 0.31
ZRANK2 0.4 0.14 0.44 0.24 0.74 0.3 0.83 0.65 0.27
ROSETTADOCK 0.32 0.02 0.07 0.19 0.02 0.13 0.59 0.61 0.23
PYDOCK TOT 0.42 0.07 0.15 0.31 0.81 0.19 0.84 0.69 0.36
SIPPER 0.21 0 1 0.02 0.9 0.48 0.35 0.36 0.13
AP PISA 0.35 0.19 0.99 0.35 0.58 0.04 0.67 0.56 0.34
FIREDOCK 0.41 0.29 0.14 0.54 0.78 0.45 0.6 0.6 0.38
FIREDOCK AB 0.36 0.27 0.31 0.39 0.73 0.44 0.71 0.58 0.37
CP PIE 0.44 0.22 0.21 0.28 0.75 0.49 0.53 0.63 0.46

Table S11. Correlations organised by functional classes. Correlation values computed for several tools and
for the eight functional classes in the intersection between AffinityB2 rel and ConsBind dataset (AffinityB2 rel*):
antibody/antigen (A or AB with bound antibody); enzyme/inhibitors (EI); enzyme/substrate (ES);
enzyme/regulatory subunit (ER); G-protein containing (OG); membrane receptors (OR); and others (OX).
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One thread Four threads

LISA 9.07 hrs 3.68 hrs
LISA/NCI 13.4 min /
Prodigy 3.58 min /

Table S12. LISA computational time performance. The table shows the performance of LISA compared to
Prodigy on the set of 125 complexes in AffinityB2 rel. Computational performance is computed by using a single
thread or four threads. Note that NCI-PLOT takes advantage of multithreading computation. Prodigy performance
could be compared to LISA because of the available software.

AffinityB2 rel (%) Kastritis rel (%) Vreven rel (%)

A 16 11.22 33.33
AB 3.2 4.08 0
EI 17.6 18.37 14.81
ER 6.4 6.12 7.41
ES 6.4 8.16 0
OG 10.4 13.27 0
OR 13.6 12.24 18.52
OX 26.4 26.53 25.93

—————— — — —
Rigid 52 53.06 48.15

Medium-rigid 36 34.69 40.74
Flexible 12 12.24 11.11

Table S13. Functional and structural composition of AffinityB2 rel, Kastritis rel and Vreven rel
datasets. Subdivisions in functional classes of AffinityB2 rel, Kastritis rel and Vreven rel datasets. Functional
classes are: antibody/antigen (A or AB with bound antibody); enzyme/inhibitors (EI); enzyme/substrate (ES);
enzyme/regulatory subunit (ER); G-protein containing (OG); membrane receptors (OR); and others (OX). The last
three rows in the table show the different composition for AffinityB2 rel, Kastritis rel and Vreven rel following the
rigid (I-rmsd < 1 Å), medium-rigid (1 Å≤ I-rmsd ≤ 2 Å) and flexible (I-rmsd > 2 Å) classification used in (Vreven
et al. 2012).

AffinityB2 rel Kastritis rel Vreven rel

A 20 11 9
AB 4 4 0
EI 22 18 4
ER 8 6 2
ES 8 8 0
OG 13 13 0
OR 17 12 5
OX 33 26 7

—————— ————– ————– ————–
Rigid 65 52 13

Medium-rigid 45 34 11
Flexible 15 12 3

Table S14. Number of complexes organised in functional and structural classes. Complexes in the
AffinityB2 rel, Kastritis rel and Vreven rel datasets are counted with respect to their function and their flexibility.
For the list of functions, see legend of Table S13.
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