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Sorbonne Université, Centre National de la Recherche Scientifique, UMR 7190, Institut
Jean Le Rond D’Alembert, F-75005 Paris, France

Abstract

This paper presents a generalization of an all-Mach formulation for multi-
phase flows accounting for surface tension and viscous forces. The proposed
numerical method is based on the consistent advection of conservative quan-
tities and the advection of the color function used in the Volume of Fluid
method avoiding any numerical diffusion of mass, momentum and energy
across the interface during the advection step. The influence of surface ten-
sion and liquid compressibility on the dynamic response of the bubbles is
discussed by comparing the full 3D solution with the predictions provided
by the Rayleigh–Plesset equation for two relevant problems related to the
dynamic response of bubbles to pressure disturbances: The linear oscillation
of a single bubble in an acoustic field and the Rayleigh collapse problem.
Finally, the problem of the collapse of a bubble close to a wall is compared
with experimental results showing the robustness of the method to simulate
the collapse of air bubbles in liquids in problems where bubbles generate a
high velocity liquid jet.

Keywords: All-Mach formulation, bubble dynamics, multiphase flows,
compressible flows, volume-of-fluid method.

1. Introduction

The simulation of bubbles accounting for compressible effects is a topic of
interest in various applications related to underwater explosions [1, 2], engi-
neering applications [3, 4] or medical treatment such as HIFU or lithotripsy
[5, 6]. In all these processes it is crucial to understand the dynamic response
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of bubbles to pressure waves motivating the development of numerical meth-
ods for the Direct Numerical Simulation of bubbles in slightly compressible
liquids [7].

Despite the development of numerical techniques to solve the Navier-
Stokes equations in the presence of multiple phases [8, 5] there are still nu-
merical difficulties when coupling compressibility, viscous and surface tension
effects [9]. For instance classical solvers for compressible flows based on Rie-
mann solvers rarely take into account surface tension [10]. This is due to the
intrinsic difficulties related to the treatment of sharp interfaces and also how
to deal with the jump of properties across the interface ensuring that surface
tension terms satisfy basic relations such as the balance between pressure
and capillary forces in an equilibrium state [11].

One family of numerical methods capturing compressibility effects resort
to the generalization of numerical schemes developed for incompressible flu-
ids [12, 13, 14, 15, 16, 17]. Among these methods, all-Mach semi-implicit
formulations are especially appealing as they have shown to provide accu-
rate results in different situations ranging from pure incompressible flows to
compressible problems involving the presence of shock waves. One of the
advantage of these methods is that they allow for a natural extension of the
numerical strategies developed for incompressible multiphase flows, which
have been extensively developed and tested in problems where surface ten-
sion forces are relevant. In addition, these methodologies avoid the classical
time step restriction defined by the speed of sound of the least-compressible
fluid, which is convenient for the simulation of subsonic flows that combine
substances with very different compressibility. This is typically the case in
bubbly flows where the gas compressibility is much larger than that of the
liquid, sometimes considered as an incompressible substance.

In this work we present an extension of the all-Mach semi-implicit solver
using the Volume-Of-Fluid (VOF) method including surface tension and vis-
cous forces. The main advantages of VOF methods is that they keep the
representation of the interface sharp, they enforce volume conservation in
the incompressible limit and handle naturally topological changes of the in-
terface. The method takes into account viscous and surface tension effects by
generalizing the classical formulation used in previous incompressible solvers
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[18]. The extended formulation accounts for fluids with arbitrary values of
the thermal dilatation coefficient, which is typically not the case in previous
works. We chose the Basilisk solver [19] as a platform to implement the new
numerical scheme. The methods implemented in the code have been well
validated for the simulation of multiphase flows in various problems involv-
ing interfaces [20]. Moreover, the method has been designed to reduce the
appearance of parasitic currents induced by surface tension forces [18], which
is an appealing characteristic of the numerical scheme if one wants to reduce
any artificial energy dissipation/generation in the system.

The manuscript is structured as follows: The basic equations are pre-
sented first. Then we describe the numerical methods used to solve the
equations. Two numerical tests for single phase flows are introduced to
discuss the properties of the method in two limiting situations: the linear
propagation of pressure waves and the propagation of shock waves. Then,
we quantify the numerical oscillations induced by surface tension forces in an
equilibrium state and the velocity and pressure oscillations generated by the
advection of an interface before discussing various tests proposed to assess
the capability of the method to capture the dynamic response of bubbles to
pressure changes. Finally the problem of the collapse near a wall is used to
show the robustness of the solver before presenting the conclusions.

2. Basic equations

In this work we solve for the Navier–Stokes equations for a mixture of two
immiscible substances where the position is defined by a Heaviside function
H that takes the value of 1 in the reference phase [21]. The interface position
is then given by the solution of an advection equation for H

∂H
∂t

+ u · ∇H = 0. (1)

The continuity and momentum equation for the ith phase are

∂ρi
∂t

+∇ · (ρiui) = 0, (2)

∂ρiui
∂t

+∇ · (ρiuiui) = −∇pi +∇ · τ ′i , (3)
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where ρ is the density, u is the fluid velocity vector, p is the fluid pressure
and τ ′ = µ

(
∇u + (∇u)T

)
− 2

3
µ∇ ·uδ is the viscous stress tensor depending

on the dynamic viscosity µ.

The equations between the two phases can be weighted by the respective
volume fraction and then added to obtain evolution equations for the various
averaged quantities. To do this it is important to account for the relation
between the velocity and pressure established by mass and momentum bal-
ances across a differentially thin interface located at xI . In the absence of
mass transfer the velocity is continuous u1(xI) = u2(xI) and therefore it
is natural to work with a single continuous averaged velocity field u. The
Laplace equation gives the pressure jump at the interface as

p1 − p2 = σκ (4)

where σ is the surface tension coefficient and κ is the curvature of the inter-
face. Note that following classical formulations for incompressible multiphase
flows we have neglected the viscous stress jump across the interface. Apply-
ing these conditions for the cells containing an interface we can write the
momentum equation for the averaged quantities as [22]

∂ρu

∂t
+∇ · (ρuu) = −∇p+∇ · τ ′i + σκ∇c. (5)

When accounting for compressibility we aditionally solve an equation for
the energy. In this paper we restrict ourselves to situations where thermal
diffusion and mass transfer effects are not relevant (e.g. high frequency os-
cillations [23]), so that the total energy equation is

∂ρiei + 1/2ρiu
2
i

∂t
+∇ · (ρieiui + 1/2ρiu

2
i ) = −∇ · (uipi) +∇ · (τ ′iui) , (6)

where e denotes the internal energy. Alternative forms of the energy equa-
tion include the internal energy equation, which in the absence of thermal
diffusion takes the form

ρicp,i
DTi
Dt

= βT,iTi
Dpi
Dt

+ Φv,i, (7)

where T is temperature, cp,i is the specific heat measured at constant pres-
sure, βT,i is the thermal dilatation coefficient and Φv,i = ∇u : τ ′ is the
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viscous dissipation function. To obtain an evolution equation for pressure we
follow the procedure proposed in [24], where the internal energy (Eq. 7) and
the continuity equation (Eq. 2) are combined to express the divergence of
the velocity as a function of pressure. To do that we obtain the differences
between two thermodynamic states as a sum of the changes of density in an
isothermal process plus the density change in an isobaric process

dρ =

(
∂ρ

∂p

)
T

dp+

(
∂ρ

∂T

)
p

dT, (8)

which can be written using the definitions of the speed of sound, polytropic
coefficient and thermal dilatation coefficient as

dρ =
γ

c2
dp− ρβdT. (9)

Using Eqs. 2, 7, 9 we obtain

1

ρc2
eff

Dp

Dt
− βTΦv

ρcp
= −∇ · u, (10)

where
1

ρc2
eff

=

[
γ

ρc2
− β2

TT

ρcp

]
.

For pure substances such as ideal gases (βT ≈ 1/T ) and liquids like water
(γ ≈ 1, βT ≈ 0) the classical approximation 1

ρc2eff
≈ 1

ρc2
is justified if we neglect

viscous dissipation. In problems involving multiple phases, we average Eq.
10 implying that the mixture compressibility is given by the harmonic mean
of the compressibilities

1

ρc2
eff

=
C

ρ1c2
eff,1

+
1− C
ρ2c2

eff,2

. (11)

The system of equations solved is closed by adding an equation of state
(EOS) for each phase that establishes the relation between the various ther-
modynamic variables EOSi(pi,Ti, ρi) = 0. Note that from the state equation
we can obtain various quantities such as the speed of sound, the thermal
dilatation coefficient, etc. In this work we use the general EOS written in
the Mie–Gruneisen form (see for example [25, 26])

ρiei =
pi + ΓiΠi

Γi − 1
(12)
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which defines the sound speed as

c2
i = Γi

pi + Πi

ρi
, (13)

but in principle any other choice of the EOS is possible.

3. Numerical scheme

In this section we present the numerical scheme used to solve the equa-
tions detailed in the previous section using a cell centered formulation for
octree grids [19].

For a two-component mixture, we obtain the evolution of the interface
position (Eq. 1) using the Volume-Of-Fluid (VOF) method that solves the
advection equation for the color function C representing the volume of the
reference phase with respect to the total volume of the grid. This equation
is solved numerically following the split advection method proposed by Wey-
mouth & Yue [27] where the advection equation for the volume fraction is
written as

∂C

∂t
+∇ · (uC) = C∇ · u. (14)

This form of the equation is valid for both compressible and incompressible
substances and has been used in previous schemes based on Riemann solvers
for multiphase flow simulations [26]. In a direction-split advection method
the discretized advection equation for C takes the form

Cn+1 = Cn −
∑
f

FC(uf∆t/∆x,C) + C∗
∑
f

∇fu∆t. (15)

where f denotes the cell face, FC = Cadvuf is related to the flux of C across
the face during ∆t, and Cadv is the fraction of the reference phase crossing
the face during ∆t evaluated geometrically. The right-hand-side of the equa-
tion represents the volume change of the reference phase during ∆t due to
compressibility effects and as explained in [27], C∗ must be held constant for
all sweep directions in order to ensure exact volume (e.g. mass) conservation
in the incompressible limit.
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In the time-split scheme the set of conservative equations is solved in
various steps. The advection step solves for the advection of mass, momen-
tum and energy in each phase separately to obtain provisional values of the
conservative quantities associated with the ith component as

(CiY i)
∗ = (CiY i)

n −
∑
f

F CiY i
(∆tuf/∆x,Ci,Y i) (16)

where Y i = (ρi, ρiu, ρiei + 1/2ρi|u|2)T and F Y i
represents the amount of

mass, momentum or energy transfered across a given computational face
during the time step. Because the transport of the color function C and the
conservative quantity CiY i are obviously linked, the calculation of the flux
terms is expressed as a function of the flux of C obtained geometrically to
solve Eq. 15

F CiY i
(∆tuf/∆x,Ci,Y i) = FC(uf∆t/∆x,Ci)Y i,adv, (17)

where Y i,adv represents the averaged value of the conservative quantity re-
lated to the ith component within the advected volume crossing the face
during the timestep. It is important to remark that by recycling the value
of FC we can freely chose the method to obtain Y i,adv while minimizing the
error coming from inconsistencies between the advection of the color func-
tion and the conservative quantity CiY i in mixed cells during the overall
timestep. To see this, let’s consider a problem where we know the amount
of c crossing a cell face during a given ∆t

Fc1 =

∫
f

c1(t)uf (t)dt. (18)

In this case the corresponding flux of c1y1

Fy1c1 =

∫
f

y1(t)c1(t)uf (t)dt (19)

could be computed using an approximation of the full integral g(t) = y1(t)c1(t)uf (t)
by the Taylor expansion

g(t) = g(t0) +
∂g

∂t

∣∣∣∣
t0

(t− t0) +
1

2

∂2g

∂t2

∣∣∣∣
t0

(t− t0)2 +O(∆t3). (20)

However this approximation does not converge when, as it is the case, g(t) is
a discontinuous function. The problem can be solved if we define a smooth
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approximation of y1 at the nth order as y1 ≈ y1 + O(∆tn). In this case we
can rewrite Eq. 19 as

Fy1c1 = Fc1 (y1 +O(∆tn)) (21)

which is consistent with the calculation of the flux of Ci obtained from Eq.
18 at the order of the approximation used to estimate yi. Following this pro-
cedure, the problem of the transport of a discontinuous function depending
on C is reduced to the problem of obtaining the volume fraction flux (Eq. 18)
naturally handled by the VOF method. For practical purposes we evaluate
Y i,adv using the Bell-Collela-Glaz second-order upwind scheme [28],

Y i,adv =

{
Y i + 1

2
sign(uf) min(1, 1− sign(uf)

uf∆t
∆x

)∂Y i

∂x
∆x, if Ci > 0

0, otherwise,
(22)

where the values of Ci and Y i are upwind cell centered values. The scheme is
adapted to define a smooth function of Y i,adv in regions close to the interface
by obtaining the derivative of Y i in the jth cell as

∂Y i

∂x

∣∣∣∣j =


1

∆x
fL(Y k−1

i ,Y k
i ,Y

k+1
i ), if Ck

i > 0 k = j − 1, j, j + 1
Y k

i−Y
k−1
i

∆x
, if Ck+1

i = 0 ∧ Ck−1
i > 0

Y k+1
i −Y k

i

∆x
, if Ck−1

i = 0 ∧ Ck+1
i > 0

0, otherwise,

(23)

where fL(Y k−1
i ,Y k

i ,Y
k+1
i ) is a function that provides an estimation of the in-

crement of a variable in a given direction. In this work we use the generalized
minmod slope limiter

fL(y−1, y0, y1) =


min(θ(y0 − y−1), y1−y−1

2
, θ(y1 − y0)), if y−1 < y0 < y1

max(θ(y0 − y−1), y1−y−1

2
, θ(y1 − y0)), if y−1 > y0 > y1

0, otherwise,

(24)
where θ is a freely adjustable parameter that allows to recover various clas-
sical slope limiters such as superbee (θ = 2) and minmod (θ = 1). Note that
we use slope limiting rather than flux limiting. The numerical calculations
included in this manuscript show a negligible dependence on the parameter θ.
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The advection scheme proposed presents some interesting properties. First,
by construction, the advection step is fully conservative in the discrete frame-
work. Second, the fluxes obtained for the color function and the conservative
quantities are consistent, significantly reducing errors appearing during the
advection of a discontinuity. Finally, because the advection step is taken for
each phase separately, we avoid any artificial numerical diffusion between the
two immiscible phases. This is important in the case of large density differ-
ences since methods ensuring the conservation of momentum and energy are
known to reduce the appearance of numerical instabilities in the simulation
of multiphase incompressible flow problems [29, 30, 31].

After the advection step the provisional momentum is corrected and vis-
cosity or surface tension effects are taken into account as

(ρu)∗∗ − (ρu)∗

∆t
= ∇ ·

(
µ
(
∇u + (∇u)T

))
− 2

3
∇ · (µ(∇ · u)I) , (25)

(ρu)∗∗∗ − (ρu)∗∗

∆t
= σκ∇C. (26)

The calculation of the surface tension forces is critical for accurate results.
This step is similar to that already described in Popinet [18, 11] and therefore
the reader is referred to these publications for further details.

Finally, in the classical projection step we take the divergence of the
remaining terms in the momentum equation

un+1 − u∗∗∗ = −∆t

ρ
∇p. (27)

The divergence of the velocity at the end of the time step is expressed as a
function of pressure by splitting Eq. 10 in time as

p∗ − pn

∆t
+ u · ∇p = 0, (28)

1

ρc2
e

pn+1 − p∗

∆t
= −∇ · un+1 +

βTΦv

ρcp
. (29)

Replacing Eq. 29 into Eq. 27 we find the following Poisson–Helmhotz equa-
tion for pressure

1

ρc2
eff

pn+1 − p∗

∆t
+∇ · u∗∗∗ − βTΦv

ρcp
= ∇ ·

(
∆t

ρ
∇p
)
, (30)
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where the divergence terms are computed by linear interpolation of the cell
centered values for u∗∗∗, which defines a provisional staggered velocity field.
For the calculations reported in this manuscript we use

1

ρc2
eff

≈
1

γ−1

p
(

1
γ−1

+ 1
)

+ Πγ
γ−1

(31)

where

1

γ − 1
=

C

γ1 − 1
+

1− C
γ2 − 1

(32)

Πγ

γ − 1
= C

Π1γ1

γ1 − 1
+ (1.− C)

Π2γ2

γ2 − 1
(33)

The method followed to solve for Eq. 28 to obtain p∗ significantly in-
fluences the performance of the method. Among the various alternatives
proposed in the literature [13, 14, 15, 16] we chose the solution proposed by
Xiao et al. [15] (also used in [16]) where pressure is computed from the total
energy obtained after the advection step. Thus, although Eq. 10 is sufficient
to close the system of equations because it implicitly contains the energy
equation, we explicitly solve the conservative form of the energy equation in
order to compute the provisional pressure p∗ as

p∗ =
(ρE)∗ − 1

2
ρ|u|2 − Πγ

γ−1

1
γ−1

, (34)

where (ρE)∗ = cρ1e1 +(1− c)ρ2e2 + 1
2
ρ|u|2 is the total energy computed with

the provisional values after the advection step. This step guarantees that the
energy is conserved at the discrete level in the absence of viscous dissipation
and surface tension.

Once the pressure at the end of the timestep has been obtained we update
u at the faces using Eq. 27 and the total momentum defined at the cell center
as

(ρu)n+1 − (ρu)∗∗ = −∆t∇cp, (35)

where ∇cp is obtained as a simple average between the face values of the
pressure gradient. Finally, the total energy for each phase is updated as

(ρiei + 1/2ρiu
2)n+1 = (ρiei + 1/2ρiu

2)∗+ ∆t (−∇ · (upi) +∇ · (τ ′iu)) . (36)
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For the calculation of the divergence terms we use the face velocities already
obtained and the pressure of the ith component at the face. For faces in
contact with two single-component cells we define the pressure at the face as
the average between the two neighboring cells. When the interface is present
we account for the fact that Eq. 30 is indeed solved for the averaged pressure
p = Cp1 + (1 − C)p2, from which we compute the pressure of the ith face
using the Laplace relation

p1 = p+ (1− C)σκ (37)

p2 = p− Cσκ. (38)

The face pressure is finally taken as the cell-centered pressure of the cell that
contains the largest volume fraction between the two neighboring cells. The
full description of the algorithm is resumed in the flow chart 1.

4. Numerical results

4.1. Single phase problems

4.1.1. Propagation of a linear pressure disturbance in a fluid

In order to investigate the numerical properties of the method in the lin-
ear regime we measure the numerical dispersion of a small, one-dimensional
pressure disturbance in an inviscid fluid. The initial condition is given by
the pressure field p(x, t = 0) = p0 [1 + 2∆p exp (−4x2/χ2)] in a fluid at rest
(zero velocity) where the domain of size L0 = 10 is discretized with a regular
cartesian grid of size ∆x/L0 = 1/210. The liquid density and speed of sound
is one and the pressure perturbation is obtained using ∆p = 5 × 10−3 and
χ = 0.1.

In the acoustic limit, ∆p � 1, nonlinear terms are negligible and the
advection step does not impact the results. The pressure pulse splits and
generates two waves propagating in opposite directions. In the absence of
any physical dissipation the frequency content remains unchanged as the
wave propagates at the reference sound speed c0. We obtain the spatial dis-
tribution of pressure at four different instants ( c0t

χ
= 4, 12, 20, 28) and we

perform a Fast Fourier Transform (FFT) to decompose the signal into spa-
tial Fourier modes. For each wavelength we fit the decay rate in time of
the absolute module of the FFT to an exponential decay of the type C0e

−At,
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Algorithm 1 Summary of the full algorithm

Initialization of c1ρ1, c2ρ2, ρu, c1ρ1E1, c2ρ2E2

while t < tend do
Set ∆t
Obtain qi = ciρi

ρu
c1ρ1+c2ρ2

Obtain C∗ = c > 0.5
for each direction x do

Evaluate ∂Y i

∂x
(Eq. 23)

Obtain geometrical VOF fluxes FC
Obtain Y i,adv (Eq. 22)
Obtain fluxes for the conservative variables FCiY i

(Eq. 17)
Update C and CiY i (Eqs. 15-16)

end for
Compute ρu = q1 + q2

if µ > 0 then
Evaluate µ(C)
Obtain provisional velocity u∗ = ρu

c1ρ1+c2ρ2

Solve viscous terms (Eq. 25)
end if
Obtain face velocity uk+1/2 = uk+uk+1

2

if σ > 0 then
Obtain curvature
Update velocity fields (Eq. 26)

end if
Obtain p∗ from provisional values using the EOS
Update p∗ applying the source term appearing in Eq. 28
Evaluate 1

ρc2eff
from provisional values

Solve Eq. 30 for pt+∆t

Update uf (Eq. 27)
Update ρu (Eq. 35)
Update c1ρ1E1 (Eq. 36) using p1 (Eqs. 37)
Update c2ρ2E2 (Eq. 36) using p2 (Eqs. 38)

end while
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where A is directly related to the numerical dissipation at a given length scale.
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Figure 1: Top: Evolution of the pressure pulse shape as a function of time for CFL=0.5.
Bottom: Effective attenuation induced by the numerical scheme as a function of the
wavelength.
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Figure 1 shows the results obtained with CFLac = c0∆t
∆x

= 0.5. The pulse
peak propagates at the correct speed but it is dissipated as a consequence of
the properties of the numerical method. The measurement of the effective
attenuation as a function of wavelength, which is a measure of the discretiza-
tion error, converges to second order. It is important to remark that the
numerical dissipation of the current method is larger than that measured
using a classical second-order Riemann solver. To obtain comparable results
in terms of accuracy between the two methods, one needs to double the res-
olution of the all-Mach formulation.
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Figure 2: Influence of the CFL number on the effective attenuation. The method is shown
to converge with the time-step (CFL) at first order. The cut-off distance below which the
numerical dissipation saturates also depends linearly on the CFL.

Figure 2 shows the impact of the CFL number. As we can see the method
allows for stable solutions for CFLac larger than 0.5 at the expense of increas-
ing the effective attenuation of the wave and increasing the cut-off distance
beyond which attenuation saturates. Defining the critical scale λc as the
minimum length beyond which we do no longer observe convergence, we find
that λc

∆x
= 40 × CFLac, which can be also written as λc

c0∆t
= 40. We can

interpret this as the fact that the proposed scheme neglects compressibility
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effects for wavelengths λ < λc, with λc tending to infinity as we approach
the incompressible limit.

4.1.2. Propagation of a shock wave in an ideal gas

In this problem we solve for a 1D shock wave propagating in an ideal
gas with γ = 1.4 in order to test the scheme in a situation where nonlinear
advection terms are relevant. The Rankine–Hugoniot conditions are used
to initialize the solution defining the right (pre-shocked) and left (shocked)
state as pL = 10, pR = 0.1, ρR = 1. The theoretical shock speed is

s

c0

=

√√√√ γ+1
2

γ
(
pL
pR
− 1
)

+ 1
, (39)

where c0 =
√

γpR
ρR

.

Figure 3 shows the shock wave structure in the frame of reference of
the theoretical front solution, xfront = st. The method is shown to be able
to capture the correct shock speed. The thickness of the shockwave is ap-
proximately three cells. It should be noted that the numerical oscillation
behaves in a way different from the conventional density-based shock cap-
turing schemes. The upwind method minimizes the spurious oscillations at
the expense of a larger error for a given resolution relative to the BCG 2nd-
order advection schemes, which shows an almost negligible influence of the
parameter θ on the solution. Remarkably the overall error computed based
on the L1 norm is indeed smaller in the case of the BCG advection scheme
and first-order convergence is obtained for all cases as expected for a problem
including shocks.

4.2. Two phase problems

4.2.1. Isolated interface problem

In this section we test the full solver for the problem of advection of an
interface between two different ideal gases at uniform velocity and pressure.
This test proposed in [26] quantifies the amplitude of spurious pressure and
velocity oscillations induced by the method when advecting an interface with
different material properties. The interface is initially placed at the middle of
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Figure 3: Structure of the shockwave at t=1 for the Bell–Colella–Glaz (BCG) advection
scheme and a simple 1st-order upwind method.

the domain of length L0 = 2 discretized with 128 cells per direction where pe-
riodic boundary conditions are applied. The left and right states are defined
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Figure 4: Pressure, velocity and density profiles after the advection of an isolated interface
between two ideal gases at uniform pressure and velocity.

as

(ρ, u, p, γ)TL = (1, 0.5, 1/1.4, 1.2)T

(ρ, u, p, γ)TR = (10, 0.5, 1/1.4, 1.4)T

By construction the method is designed to consistently transport the color
function and all the conservative quantities during the advection step lead-
ing to a uniform provisional pressure and velocity that does not need to be
corrected during the projection step. The results summarised in Figure 4
demonstrate that the present method is able to advect the interface between
the two fluids at the theoretical speed without inducing any significant oscil-
lation on the pressure and velocity fields keeping the interface sharp. Discrete
conservation is also observed within round–off error.
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4.2.2. Spurious currents in a static configuration

One common test for multiphase incompressible methods dealing with
surface tension is the measurement of the parasitic currents induced by the
discretization errors on the initialization [18, 11]. In this section we report
the results obtained for a two-dimensional bubble of radius R = 0.4 contain-
ing an ideal gas (Γg = γg = 1.4, Πg = 0) in a slightly compressible liquid
(Γl = 7.14, Πl = 300). The ambient liquid pressure is p0 = 1 and the liquid
and gas density is set to an initial constant value ρl,0 = ρb,0 = 1. The ini-
tial gas pressure is given by the Laplace pressure pg,0 = p0 + σ

R0
, where the

surface tension is set to σ = 1. We test various values of the fluid viscosity
(equal for both substances) in order to modify the Laplace number La = ρD0σ

µ2

that controls the dissipation rate of the fluctuations induced by the initial
discretization error. The grid size is kept constant and equal to R/∆x = 12.8.

As shown in Figure 5, the method reduces the amplitude of the spuri-
ous currents on a time scale proportional to the viscous scale, tvisc ∝ D2/µ
for all the Laplace numbers tested here. Comparing the decaying rate of
the fluctuations with those obtained in [18] in the incompressible limit, sig-
nificant differences are only observed for very large Laplace numbers where
the incompressible version tends to dissipate the spurious currents faster
than the current version of the solver including compressibility effects. Note
that at large Laplace numbers the viscous boundary layer is most likely not
captured by the grid resolution and therefore the observed dissipation rate
is mainly controlled by numerical scheme properties which are different in
the incompressible and compressible framework. In particular the incom-
pressible formulation does not explicitly include any form of energy equation
whereas in the compressible formulation the total energy dissipation is di-
rectly controlled by the explicit calculation of the viscous dissipation and
the discretization errors on the representation of the surface energy included
through the pressure jump across the interface.

Another important difference between the compressible and incompress-
ible formulation is the appearance of high frequency fluctuations that occur
in a time scale much shorter than the viscous time scale. Figure 6 reveals
that indeed these fluctuations occur due to the resonance properties of the

gas bubble whose characteristic time is tres = 1
f0
∝ R0

√
ρl
γgp0

. We can then

conclude that the discretization errors on the surface tension acts as an ini-
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Figure 5: Evolution of the velocity fluctuations of a 2D bubble as a function of the Laplace
number using (a) the nondimensional viscous time for the all–Mach solver and (b) the
incompressible solver of [18].
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Figure 6: Evolution of the velocity fluctuations as a function of the Laplace number using
a nondimensional time defined with the bubble resonance frequency.

tial impulsive force that makes the bubble oscillate mainly at its resonance
frequency.

4.2.3. Linear oscillation of a single bubble

In this section we investigate the three–dimensional problem of the linear
bubble oscillation induced by a sinusoidal acoustic wave of given frequency ω
where surface tension and viscous effects are neglected. Properties are made
dimensionless using the reference pressure and liquid density, p0 = 1, ρl,0 = 1.
We initialize a gas bubble (Γg = γg = 1.4 Πg = 0) of initial radius R0 = 1 and
density ρg,0/ρl,0 = 10−3 at the center of a cubic domain of length L0 = 3λ,
where λ = c0/f is the wavelength of the wave induced in the system. The
EOS of the liquid is defined by Γl = 7.14 and Πl

p0
= 3000 and the initial

velocity field u = (U0, 0, 0) is given by

u(x, 0) =

{
U0 sin (k(x+ 2)) −λ < x+ 2 < 0

0 otherwise,
(40)
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where U0 = 10−3 and k = ω
c0

is the wavenumber that will be varied. The
initial pressure field is given by the linear approximation p(x, 0) = p0 +
ρl,0c0u(x). Each simulation is run for tf = 1. An adaptive grid is used to
refine the region near the bubble but grid is progressively coarsened far from
the domain center.

In the linear regime and in absence of viscous and surface tension ef-
fects the bubble response solely depends on the ratio between the excitation

frequency, ω, and the bubble resonance frequency, ωres = 1
R0

√
3p0γg
ρl

=
√

4.2.

Because in the linear regime non-spherical bubble deformation effects are high
order corrections of the exact solution and therefore negligible, the evolution
of the averaged bubble radius obtained from the solution of the Rayleigh–
Plesset (RP) equation is expected to provide an accurate estimation of the
exact solution

R̈R +
3

2
Ṙ =

1

ρl

(
pb,0

(
R0

R

)3γ

− 4µl
Ṙ

R
− p∞(t)

)
, (41)

where p∞(t) = p0 + ρlc0U0 sin(ωt).

Figure 7 shows the temporal evolution of the bubble volume V as a func-
tion of the grid size for an excitation frequency above and below the bubble
resonance frequency, ω

ωres
= 2, and ω

ωres
= 0.1 respectively. For frequencies

above the bubble natural frequency the method converges accurately to the
solution predicted by the Rayleigh–Plesset model. For frequencies much be-
low the resonance frequency the problem becomes challenging due to the very
different scales between the wavelength and the bubble radius. We observe
the appearance of fluctuations of small amplitude at the bubble resonance
frequency during the initial transient state that are only partially captured
due to the limited resolution of the full three–dimensional simulation and the
sensitivity of these fluctuations to the characteristics of the incoming pres-
sure pulse. These transient, high-frequency fluctuations are indeed damped
by adding a small amount of viscosity to the liquid in the Rayleigh–Plesset
model. From the results of Figure 7 we can then conclude that coarsening
the grid increases the effective damping of the solution obtained which is an
expected behavior of the numerical scheme when the resolution is low. In
any case the agreement between numerical and theoretical solutions is satis-
factory both, above and below the bubble resonance frequency.
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pl,0/pb,0 r m Re We Ma
5 10−3 10−2 10 400 4.3× 10−2

Table 1: Non–dimensional parameters for the collapse of a bubble in a viscous liquid used
in Section 4.2.4.

4.2.4. Weakly non-linear collapse of a single bubble in a viscous fluid

In order to test nonlinear terms in a multiphase flow problem, we consider
the so-called Rayleigh collapse problem [32] where a single bubble with initial
pressure pb,0 is suddenly exposed to a pressure increase in the surrounding
liquid

pl,0
pb,0

> 1. An initially spherical gas bubble (Γg = γg = 1.4, Πg = 0) of

radius R0 = 1 at uniform pressure pb,0 = 100 and density r =
ρb,0
ρl,0

, collapses

in a liquid with density ρl,0 = 1 where the parameters of the EOS for the
liquid are Γl = 7.14 and Πl

pb,0
= 300. Because even the compressible versions

of the Rayleigh–Plesset equation (Keller–Miksis, Gilmore...) are only small
modifications of the solution in the incompressible limit, it is important to
correctly initialize the pressure field around the bubble to reproduce the
conditions modelled in Rayleigh–Plesset models [24]. Given the pressure far
from the bubble pl,0 the analytical pressure field for the Rayleigh collapse
problem in the limit of an incompressible liquid is

p(r, 0) = pl,0 +
(
pIl,0 − pl,0

) R0

r
, (42)

where pIl,0 = pl,0 − 2σ
R0

is the initial liquid pressure at the interface given by
Laplace’s equation (Eq. 4). The cubic domain length is set to L0/R0 = 100
and the initial fluid velocity is set to zero everywhere.

Assuming spherical symmetry the Rayleigh collapse time is tR = 0.915R0

√
ρl

∆p0
,

where ∆p0 = pl,0 − pb,0. In this work we use this time to define the char-
acteristic velocity of the bubble collapse process, Uc = 0.915R0/tR and to
define the main non–dimensional quantities on which the problem depends:
the pressure ratio

pl,0
pb,0

, the Weber number, We = ∆p0R0

σ
the Reynolds number

Re =
√
ρl∆p0R0

µl
. and the Mach number Ma = Uc

cl,0
=
√

∆p0

ρlc
2
l,0

.

We start investigating the collapse of a bubble in a viscous liquid at a
moderate collapse intensity using the non–dimensional values indicated in
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Table 1. Figure 8 shows the grid convergence of the temporal evolution of

the effective radius R =
(
V (t)
4/3π

)1/3

including as reference the solution ob-

tained with a Rayleigh–Plesset model and the corrected solution provided
by the Keller–Miksis equation [33]. Consistent with previous numerical re-
sults [34, 35], the numerical simulations tend to converge to a solution close
to the prediction of the Keller–Miksis model. The collapse time matches
well RP predictions showing very little sensitivity to the grid resolution. On
the contrary, the amplitude of the rebound is significantly influenced by the
grid resolution. Convergence is reached for a grid resolution of 40 points
per bubble radius not only for the averaged bubble radius, but also for the
amplitude of the non-spherical distortion computed from the standard de-
viation of the radial distance to the bubble center xc of the centroid of all
cells containing an interface (Figure 9). As predicted by the Rayleigh–Taylor
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pl,0/pb,0 r Re We Ma
20 10−3 ∞ 1900 2.5× 10−2

Table 2: Non–dimensional paramters for the collapse of a bubble in an inviscid liquid used
in Section 4.2.5.

instability models, the growth of non-spherical modes is promoted during
the compression stage and also during the instants of possitive acceleration
R̈ > 0. These modes are significantly damped during the expansion stage
when deceleration occurs R̈ < 0, when the bubble recovers a nearly spherical
shape at the end of the expansion after the rebound.

4.2.5. Strongly non-linear collapse of a single bubble in an inviscid fluid

In this section we test the solver for a strong collapse characterized
by large values of the Weber and Reynolds numbers. The set of all non–
dimensional parameters is included in Table 2. Figure 10 presents the evolu-
tion of the effective bubble radius compared to the Keller–Miksis equation.
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pl,0/pb,0 r Re We Ma
40 10−3 ∞ 3800 2× 10−2

Table 3: Non–dimensional paramters for the collapse of a bubble close to a wall used in
Section 4.2.6.

In this case viscous effects play a negligible role and liquid compressibility is
the main mechanism responsible for damping and the resulting reduction of
the amplitude of the collapse. The development of non-spherical instabilities
at the interface during the collapse of the bubble is clearly seen in Figure 10
showing a local minimum at the moment of maximum radius during the re-
bound. The agreement with the Keller–Miksis solution is satisfactory during
the overall process except on the amplitude of the rebound. We note that
the Keller–Miksis solution is only an approximation of the full problem and
previous numerical simulations solving the full compressible Navier–Stokes
equations including compressibility effects and imposing spherical symmetry
also show that the Keller–Miksis equation tends to overestimate the ampli-
tude of the rebound [24].

4.2.6. Non-linear collapse of a single bubble near a wall

As a last example we show the collapse of a bubble near a wall. It is well
known that the presence of any source of asymmetry leads to the appearance
of a high speed jet during the collapse of the bubble [36, 37, 38]. The prob-
lem of the collapse near a wall has particular interest in various applications
due to the consequences of jetting on the wall and it has motivated various
experimental and numerical works (see for example [39, 40, 41]). In this work
we consider the collapse of a single bubble placed at a distance d/R0 = 2.
In an attempt to reproduce the experimental results of Yang et al [41], we
use the non–dimensional parameters included in Table 3 where the pressure
ratio is obtained by assuming that the bubble pressure at the instant of max-
imum radius is approximately equal to the vapor pressure. The maximum
resolution used in the region between the bubble and the wall is R0/∆x = 40.

Figure 11 depicts the bubble interface contour during different instants of
the primary collapse with the pressure field in the middle plane and also the
velocity field. The pressure increases during the instants of minimum radius
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(a) t/tR = 0.75 (b) t/tR = 1.00 (c) t/tR = 1.25 (d) t/tR = 1.50
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Figure 10: Bubble collapse problem in the case of a strong collapse: pl,0/pb,0 = 20 and
We = 1900. Top: 3D VOF surface colored as a function of the distance to the bubble center
at t/tR = 0.75, 1.00, 1.25, 1.50. The color scale range is [0 : 1]. Bottom: Temporal evolution
of the bubble radius (red) and standard deviation of the quantity a/R0 = σ(|xI−xc|/R0),
which is a measure of the magnitude of the interface disturbance with respect to the
averaged radius.
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Figure 11: Bubble collapse near a wall (bottom boundary). From top to bottom: t/tR =
0, 0.96, 1.20, 1.40. Top: Bubble interface and pressure colormap (scale p/pb,0 = [1 : 200])
and isocontours on the middle plane. Bottom: Middle plane of the velocity color map
(scale |u|tR/R0 = [0 : 3]) and bubble interface.
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Figure 12: Evolution of the bubble shape and velocity fields for t/tR = 0.96, 1.30, 1.65, 2.20.
Same representation and ranges than those of Figure 11.
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Figure 13: Evolution of the equivalent bubble radius close to a wall (d/R0 = 2) obtained
from a full 3D simulation and comparison with the experimental results of Yang et al [41].

not only in the region surrounding the bubble but also in the wall. We can
observe the generation of a high velocity liquid jet during the bubble collapse
dragging some gas and impacting on the wall after the rebound (Figure 12).
Figure 13 shows the evolution of the averaged bubble radius computed from
the the total gas volume showing excellent agreement with the results re-
ported by Yang et al [41] at an identical stand–off distance. The long term
evolution of the bubble shape in a middle plane (Figure 14) shows similar
features than those experimentally observed during the secondary collapse,
namely the appearance of gas pockets that are left behind the jetting region
due to the asymmetries generated by the presence of the wall, and the large
deformation of the bubble shape for long times.
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Figure 14: Evolution of the gas fraction in a middle plane for different instants during the
collapse and later rebounds. Consistent with the experimental observations of Yang et al
[41] gas pockets are left behind the jet during the secondary collapse and afterwards.
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5. Conclusions

In this manuscript we generalize an all-Mach semi-implicit formulation
for the simulation of compressible multiphase flows including viscous and
surface tension effects that also accounts for arbitrary values of the thermal
dilatation coefficient. One of the particularities of the method is that the
advection of conservative quantities is made consistent with the geometrical
transport of the color function used in Volume-of-Fluid methods, thus avoid-
ing any artificial transport of mass, momentum or energy between species.
The method is fully conservative in the absence of viscous and surface ten-
sion forces which allows for the simulation of both linear wave propagation
problems and problems involving shock waves.

The proposed formulation takes advantage of previous work developed
in the context of incompressible solvers devoted to reducing the impact of
spurious currents induced by surface tension forces and shows similar perfor-
mances.

The method is tested in the context of the simulation of bubble oscilla-
tions in slightly compressible fluids. For linear oscillations, the method is
shown to correctly predict the oscillation of the bubbles above and below
the bubble resonance frequency. The nonlinear effects are discussed in the
context of the Rayleigh collapse problem where we show grid convergence
in a variety of situations involving surface tension and viscous effects. The
results are consistent with the description of the physics of collapsing bub-
bles discussed in the literature. In particular we observe the appearance of
non-spherical modes during the bubble collapse, typically attributed to the
development of Rayleigh–Taylor instabilities, which are then damped during
the bubble expansion .

The problem of the bubble collapse near a wall shows that, consistent
with previous numerical and experimental observations, the method captures
the generation of a high velocity jet that impacts on the wall leading to a
significant bubble fragmentation. The method is shown to be robust even in
the presence of small unresolved structures allowing to investigate the long
term dynamic response of collapsing bubbles.
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