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NEAREST NEIGHBOR BALANCED BLOCK DESIGNS FOR
AUTOREGRESSIVE ERRORS AR(m)

MAMADOU KONÉ AND ANNICK VALIBOUZE

ABSTRACT. The problem of findingneighbor optimal designs for a general correlation
structure is studied. This paper gives optimality universal conditions for incomplete block
designs when observations on the same block are modeled by an autoregressive process
AR(m) of an arbitrary order m. It extends and generalizes existing results for models
AR(1) and AR(2) as in such as those of Grondona and Cressie (1993) for AR(2) and those
of Gill and Shukla (1985) and Kunert (1987) for AR(1).

Key words: block design, autoregressive model, nearest-neighbor balanced, generalized
least squares estimation, universally optimal.

1. INTRODUCTION

The systematic introduction of statistical methods planning experience is due to the British
statistician R. A. Fisher. In 1925-1937 years in agricultural research station Rothamsted
(UK). In its results of experiments, Fisher began to consider the heterogeneity of the plots
where the experiments take place, by comparing yields of different seed varieties which
there were grown ; he introduced several types of designs including complete block de-
signs (CBD), incomplete block designs and Latin squares.

The classic theory of designs of experiments is based on three principles, namely repe-
tition, randomization and local control. The repetition is intended to allow an estimate
of the residual variability, and increase the accuracy of the experiment. Randomization
allows for unbiased estimators of the residual variability and the influence of treatments.
As repetition, the goal of the local control is to increase the accuracy of the experiments.

Over the decades that followed this initial works, the principles developed by Fisher in
agronomy have been transposed into various other sectors of activity, whose the industry
and services sector. New concepts have been introduced, whose this one of optimal de-
signs of J. Kieffer (1958-1981). At the same time, the use of statistical methods in the
pharmacy and medicine has considerably developed, to the point that this one has came to
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constitute, today, one of the main fields of application of experimental designs.

Recently, there has been considerable interest in the use of certain methods of local con-
trol called spatial or mth order nearest-neighbor, abbreviated by (NN or NNm) where the
integer m > 0 is the distance among neighbours in the model. Kiefer and Wynn (1981)
studied the optimality of block designs under a first order (NN1) neighbor correlation
model, using the ordinary least squares (OLS) estimator. In this context, they have given
sufficient conditions weak universally optimality for the estimation of treatment contrasts.
Morgan and Chakravarti (1988) extend these conditions to the model NN2 and later Koné
and Valibouze (2011) generalized this results to any correlation structure NNm, m > 0.

When the covariance structure is known, it is natural to construct the optimal experimental
designs by making use of the generalized least squares (GLS) estimator. Kiefer and Wynn
(1981) justified the choice of the OLS estimator, rather than the GLS estimator, in showing
that the loss of accuracy relative resulting from the use of this estimator (OLS instead of
the GLS) is quite low for the NN1 correlation models they consider. Among other authors,
Kunert (1985, 1987), Azzalini and Giovagnoli (1987), Gill and Shukla (1985a,b), Martin
and Eccleston (1991), Grondona and Cressie (1993) and Satpati and al. (2007) have used
this approach for the correlation structures AR(1) et AR(2), the autoregressive processes
of first and second order (see Definition in Section 2.2), and also for the model NN1.

The goal of this paper, is to find, for any integer m ≥ 1, conditions of universal optimality
block designs when errors correlation are modeled by an autoregressive AR(m) process
for the estimation of treatment contrasts when generalized leas squares estimation is used, .

Section 2 presents the experimental context : the design and the correlation structure
AR(m). Section 3 is devoted to the presentation of the model describing the correla-
tion structure. Section 4 presents a known result about universally optimal designs due
to Kiefer (1975a) and Section 5 contains the main theorem, the Optimality Theorem 5.1,
which gives sufficient conditions for universal optimality. In Section 6, our Optimality
Theorem is illustrated with the particular designs called semi balanced arrays. Section 7
is devoted to proofs.

2. EXPERIMENTAL CONTEXT

2.1. Designs for the considered experimental situation. We consider experimental sit-
uations in which v ≥ 1 treatments are applied to b ≥ 1 patients during k ≥ 1 distinct
periods. The generic term of period means the distinct unities of times where the treat-
ments are applied. The following figure illustrates a such designs d:
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patients

treatments periods
1 2 . . . ` . . . k

1
...

...
...

i . . . . . . d(i, `) = j
...
b

where d(i, `) = j is one of the v treatments applied to the ith patient in the `th period.

The goal is to construct the best experimental structure, the effectiveness being measured
by optimality criteria evaluating the precision with which one considers the average value
of the effects. The precision is measured by the information matrix of the estimates.

We denote by Ωv,b,k the set of the block designs of this type. More precisely, we will
reason within the framework of an experimental structure in incomplete blocks where a
given patient, represented by a block, receives exactly k distinct treatments distributed
during the various periods. In each one of these periods, the patient receives only one of
the v treatments. This gives a single scalar experimental measurement.

Following the nomenclature of Morgan and Chakravarti (1988) and Grondona and Cressie
(1993), we qualify by NNm-balanced the experimental designs in incomplete block, when
they are balanced for distinct periods in time at mostm units (see lower exact Definition 1).
In medical domain, the temporal balancing procedure can eliminate experimental results
through the resulting effects interactions caused by the proximity in time of the adminis-
tration of certain treatments on the same patient.

Definition 1. For an integer m (m ≥ 1) fixed, a design will by said NNm-balanced (or
a balanced design for nearest-neighbor at distance m) if for any integer δ ∈ [[1,m]], the
number of times that two distinct treatments administered to the same patient are neighbors
at distance δ is independent of the choice of these two treatments; that is to say, this value
depends only on δ and on the design.

Example 2. The design of Table 1 bellow is NN2-balanced. Indeed, here m = 2 and each
pair of distinct treatments appears exactly three times at distance δ = 1 and 2 times at
distance δ = 2.
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TABLE 1. NN2-balanced design

1 2 3 4
3 1 4 2
1 4 3 2
3 1 2 4
1 2 4 3
4 1 3 2

2.2. Autoregressive correlation structure AR(m). Now describe the correlation struc-
ture considered in this paper. We suppose that the correlation between observations carried
out on distinct patients is null.
Let ε = (ε1,1, . . . , ε1,k, . . . , εi,1, . . . , εi,k, . . . , εb,1, . . . , εb,k)

′ be the bk-vector of random er-
rors where εi,` is the process of error obtained at the `th period (` ∈ [[1, k]]) on the ith
patient (i ∈ [[1, b]]) (see the model (6) that we consider). We suppose that εi,` is a partial
realization from a mth order autoregressive process AR(m) characterized by the relations

(1) εi,` −
m∑
r=1

θrεi,`−r = wi,` for ` = 0,±1,±2, . . . ,±∞,

where the θr are the parameters of the model and the wi,` are independently and identi-
cally distributed, null mean random variables with constant variance σ2. The covariance
function γ of a process AR(m) satisfies the difference equation below (see, for example,
Wei (1990)):

(2) γ(s)−
m∑
r=1

θrγ(s− r) =

{
0 for s > 0
σ2 for s = 0.

where for i fixed in [[1, b]] and for all ` ∈ [[1, k]]

(3) γ(s) = Cov(εi,`, εi,`+s) .

In this paper, we will consider the variance-covariance matrix V = Var(εi) where εi =
(εi,1, . . . , εi,k)

′ is the error vector from the ith patient. The matrix V does not depend
on the patient (it is the same for all the patients). The total variance-covariance matrix
V ∗ = Var(ε) is given by:

V ∗ = Ib ⊗ V
where ⊗ is the Kronecker product and Ib is the b× b identity matrix.

3. DESCRIPTION OF THE MODEL

A design d ∈ Ωv,b,k will be defined as a function

d : (i, `) ∈ [[1, b]]× [[1, k]] → d(i, `) ∈ [[1, v]]
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where d(i, `) is the treatment applied to the ith (1 ≤ i ≤ b) patient in the `th (1 ≤ ` ≤ k)
period. This design d is presented by a b× k table of indices of the treatment taken among
the v possible values and applied to the different patients. In this table, the indices of the
lines correspond to the b patients, those columns to the k periods of application and the
treatment d(i, `) is line i, column `.
We adopt the following notations: for a design d, nd,j,i, is the number of times that the
treatment j is applied to the ith patient, rd,j is the number of times the treatment j is repli-
cated in all of the experiment, kd,i is the total number of treatments received by the ith
patient and λd,j,j′ is the number of patients for whom the distinct treatments j and j′ are
both applied. For a fixed design d, the designation of d in those notations would be omit.

If the design d is such that nd,j,i ∈ {0, 1}, rd,j = rd,j′ = r or kd,i = kd,i′ = k it is
respectively called binary, equireplicated and proper. For such designs the following
identity holds

rv = kb(4)

because each member of this equality counts the cardinality of the design d.

Throughout this paper, we restrict Ωv,b,k to the set of binary, proper and equireplicated
block designs. In such designs, each treatment is replicated exactly r = kb

v
times in the

whole design and the ith patient receives k distinct treatments d(i, 1), . . . , d(i, k) succes-
sively applied in the periods 1, . . . , k. Moreover we have:

(5) λd,j,j′ =
b∑
i=1

nd,j,i nd,j′,i .

For optimality criteria we will consider the particular cases of BIBD and CBD defined as
follows:

Definition 3. A binary proper equireplicated block design d such that for each pair of
distinct treatments j, j′ the number λd,j,j′ is a constant λ is called a balanced incomplete
block design, denoted by BIBD(v, b, r, k, λ). If moreover k = v and λ = r, the design is
called a complete block design, denoted by CBD(v, b).

The BIBD have been introduced and studied by Yates during the years 1936 to 1940.

In our study, we consider the following classical linear model:

Yd = µ1bk + (Ib ⊗ 1k)α + Tdβ + ε(6)

where 1a and 1a×a are respectively the a-vector and the (a× a)-matrix composed entirely
of one (for zero, we will adopt the same such notation with 0a)
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- ε is the bk-vector of random errors which follows the AR(m) process, zero mean:
E(ε) = 0 and of variance-covariance matrix Var(ε) = V ∗ (see Section 2.2);

- in Yd = (Y1,1, . . . , Y1,k, . . . , Yi,1, . . . , Yi,`, . . . , Yi,k, . . . , Yb,1, . . . , Yb,k)
′, the element

Yi,` is the response of the ith patient in the `th period;
- µ represents the overall mean;
- α = (α1, . . . , αb)

′ is the vector of patient effects;
- β is the v-vector of (uncorrected) treatment effects;
- the matrix Ib ⊗ 1k is interpreted as the bk × b incidence matrix;
- the bk × v incidence matrix Td of periods-treatments is determined as follows:

Td =

T1...
Tb

 where Ti = (t`,j(i)) 1≤`≤k, 1≤j≤v and t`,j(i) = δj,d(i,`)(7)

(δa,b is the Kronecker symbol).

Example 4. : For v = k = 3 treatments and b = 2 patients, we have:

(Ib ⊗ 1k) =


1 0
0 1
1 0
0 1
1 0
0 1

 and Td =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 .

when the design d is: i

j `
1 2 3

1 1 1 2
2 2 3 3

.

Let M be the (k × k)-matrix σ2V −1 whose general form was given by Wise (1955) and
Siddiqui (1958). Passi (1976) gave another formulation of their result. In the following, we
give a similar formulation that will prove convenient to calculate the information matrix
when estimating a set of treatment contrasts defined in Section 4.

Lemma 5. Let be an integer m ≥ 1 and assume that k > 2m. Put θ0 = −1 and θu = 0
for all u > m. Then the matrix M = (γ`,`′)1≤`,`′≤k = σ2V −1 is given by:

γ`,`′ =
`−1∑
u=0

θuθu+(`′−`) for ` ∈ [[1, k −m]] and `′ ∈ [[`, k]](8)
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More precisely and considering the zero values of the θi = 0, we have:

γ`,`′ :



(i) γ`,` =
`−1∑
u=0

θ2u for ` ∈ [[1,m]]

(ii) γ`,` =
m∑
u=0

θ2u for ` ∈ [[m+ 1, k −m]]

(iii) γ`,`+s =
`−1∑
u=0

θuθu+s for ` ∈ [[1,m− 1]] and s ∈ [[1,m− `]]

(iv) γ`,`+s =
m−s∑
u=0

θuθu+s for ` ∈ [[1, k −m]] and s ∈ [[max(1,m− `+ 1),m]]

(v) γ`,`+s = 0 for ` ∈ [[1, k −m]] and s ∈ [[m+ 1, k − `]].

The other elements not concerned by the formula (8) are determined by:

(9) γ`,`′ = γ`′,` = γk−`+1,k−`′+1 ∀ `, `′ ∈ [[1, k]]

which means that the matrix is symmetrical with respect to its two diagonals.

Example 6. For m = 3 and k > 6 = 2m, the matrix M of lemma 5 is given by

M =



θ20 −θ1 −θ2 −θ3 0 · · · 0 0
−θ1 θ20 + θ21 −θ1 + θ1θ2 −θ2 + θ1θ3 −θ3 · · · 0 0
−θ2 −θ1 + θ1θ2 θ20 + θ21 + θ22 −θ1 + θ1θ2 + θ2θ3 −θ2 + θ1θ3 · · · 0 0
−θ3 −θ2 + θ1θ3 −θ1 + θ1θ2 + θ2θ3 θ20 + θ21 + θ22 + θ23 −θ1 + θ1θ2 + θ2θ3 · · · 0 0

...
...

0 0 0 0 0 · · · θ20 + θ21 −θ1
0 0 0 0 0 · · · −θ1 −θ0

 .

Now we present an essential lemma about the sum of elements of each line of the matrix
M:

Lemma 7. Suppose k > 2m and let ` ∈ [[1, k]]. Put p` =
k∑

`′=1

γ`,`′ , the sum of the elements

of the line ` of the matrix M, a` =
m∑
u=`

θu for ` ≤ m and a` = 0 for ` > m. Then:
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p` = a0(a0 − a`) = (1− θ1 − · · · − θm)(1− θ1 − · · · − θ`−1)(10)

for ` ∈ [[1, k −m]] and, as M is symmetric with respect to its second diagonal, p` =
pk−`+1 for ` ∈ [[k −m, k]]. In particular, p` = pm+1 = a20 for ` ∈ [[m+ 1, k −m]].

Recall that Section 7 is devoted to the proofs.

The expression of p` given in Lemma 7 will be introduce in the proof of expressions
of diagonal and extra-diagonal elements of the information matrix Cd that are given in
Lemma 12; moreover, in this lemma, the coefficient c appearing in the expressions is the
sum of all elements of the matrix M given by:

c = 1′M1 = 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20(11)

because

c =
k∑
`=1

k∑
`′=1

γ`,`′ = 2
m∑
`=1

p` +
k−m∑
`=m+1

p` = 2a0

m∑
`=1

(a0 − a`) +
k−m∑
`=m+1

pm

= 2a0

m∑
`=1

(θ0 + θ1 + · · ·+ θ`−1) + (k − 2m)a20 = 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20 .
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4. ESTIMATION OF THE TREATMENT EFFECTS

In this section, we give the information matrix of a set of contrasts of effects related to the
treatments.

Consider the ith patient, i ∈ [[1, b]], and put Yi = (Yi,1, . . . , Yi,`, . . . , Yi,k)
′, the vector of

the k responses of the ith patient. In the model (6), the GLS estimator β̂ of the v-vector
β of treatment effects satisfies the following reduced normal equations (see Benchekroun
(1993)):

(12) T ′i WTiβ = T ′i WYi where W = V −1 − (1′kV
−11k)−1V −11k1′kV

−1 .

As said before Lemma 5 concerning the matrix M, we are interested in the estimation of
a set of treatment contrasts. Let γ ∈ Rv. A linear combination γ′ · β =

∑v
j=1 γjβj , where

β is a treatment effects, is called a treatment contrast if γ′ · 1v = 0. A block design d is
said to connected if all treatment contrasts are estimable under d. We refer to Dey (2010)
(pages 11 and 12) for the details of connected designs.
In the following, we restrict Ωv,b,k at block designs which are binary, equireplicate, proper
and connected.

As, the vector γ = (βj − 1
v

v∑
j=1

βj)1≤j≤v of corrected treatment effects satisfies the identi-

fiability constraint γ′ · 1v = 0, the optimality results of a design d ∈ Ωv,b,k will be based
on the set of contrasts

(13) γ = (Iv −
1v×v
v

)β .

Observe that a such choice is suitable since u′ · γ = u′ · β for any u ∈ Rv such that
u′ · 1v = 0. Denote by A† the Moore-Penrose inverse of a matrix A and by γ̂ the GLS
estimator of a contrast γ. Then from (12) and (13) (see Grondona and Cressie (1993)):

(14) γ̂ = (Iv −
1v×v
v

)(T ′iWTi)
†T ′iWYi = (T ′iWTi)

†T ′iYi .

From equation (14), for the ith patient, the variance-covariance matrix of γ̂ is given by:
Var(γ̂) = (T ′iWTi)

†. Then, for the ith patient, the information matrix Ci,d(V ) = Var(γ̂)†

of γ̂ satisfies:
Ci,d(V ) = T ′iWTi .

It follows this lemma stated by Kunert (1987) (see detailed proof in Benchekroun (1993)):

Lemma 8. In the covariance structure (1, 2, 3), the information matrix of the estimator γ̂
of treatment contrasts is given by
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(15) Cd(V
∗) =

b∑
i=1

T ′i WTi

where V ∗ = Ib ⊗ V and W = (w`,`′)1≤`,`′≤k = V −1 − (1′kV −11k)−1V −11k1′kV −1.

5. UNIVERSAL OPTIMALITY

The study of the information matrix associated with the estimator γ̂ of treatment contrasts
can build strong optimality criteria.

5.1. Preliminary.

Let V = {Cd : d ∈ Ωv,b,k} be the set of information matrices for the estimators γ̂ of treat-
ment contrasts associated with the design in question. For each design d, the information
matrix Cd is positive semi-definite of dimension v × v and satisfies Identities (see Kiefer
(1975b)):

Cd1v = C
′

d1v = 0v .(16)

which says that Cd has row- and column-zero for all d ∈ Ωv,b,k.

Definition 9. (Kiefer (1975a)) A block design d belonging to Ωv,b,k is said universally
optimal if its information matrix Cd minimizes simultaneously all fonctions ψ : V 7→
]−∞,+∞], called criterions, satisfying the three following conditions:

(i) for each C ∈ V , ψ(C) is invariant under all permutations applied to the rows and
columns of C;

(ii) ψ is convex, i.e. ψ{aC1+(1−a)C2} ≤ aψ(C1)+(1−a)ψ(C2) for all C1,C2 ∈ V
and 0 ≤ a ≤ 1;

(iii) ψ(aC) ≥ ψ(C) for all C ∈ V once 0 < a < 1.

Proposition 10. (Kiefer (1975b)) Suppose that there exists d∗ ∈ Ωv,b,k, such that its infor-
mation matrix Cd∗ has row- and column-zero and verifies: (i) Cd∗ is completely symmetric,
i.e. Cd∗ = αIv − α/v1v×v where α is a scalar and (ii) the trace of Cd∗ is maximum on the
set V . Then the design d∗ is universally optimal in Ωv,b,k.

By Identity (16), we just have to find a design whose the information matrix meets condi-
tions (i) and (ii) of Kiefer’s Theorem 10. We will seek them among the optimal designs.
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5.2. Optimality conditions for the correlation structure AR(m).

Let d be a block design in Ωv,b,k and the integer m > 0 such that k > 2m. We adopt the
following notations which generalize those of Gill and Shukla (1985a) and Grondona and
Cressie (1993) for the respective cases m = 1 and m = 2:

φ`d,j,i is the number of times that the treatment j is applied to the patient i at the period
` or (k − `+ 1) with ` ∈ [[1,m]];

φ`d,j is the number of patients for which the treatment j is applied to the `th or to the (k−
`+ 1)th period when ` ∈ [[1,m]] and to the `th period when ` ∈ [[m+ 1, k −m]];

φ`∗d,j,j′ is the number of times that the treatments j and j′ occur together and j or j′ are
applied to the `th period or the (k− `+ 1)th period for ` ∈ [[1,m]]; (counted twice
if j and j′ are applied to both these periods);

N s
d,j,j′,i is the number of times that the treatments j and j′ are applied to the patient i with

a distance s ∈ [[1, k − 1]]; with N s
d,j,j,i = 0;

N s
d,j,j′ is the number of patients in which treatments j and j′ occur as sth nearest neigh-

bours (i.e. separate by s− 1 period); with N s
d,j,j = 0.

Remark 11. When the design d is binary, we have: φ`d,j,i = δj,d(i,`) + δj,d(i,k−`+1) and

N s
d,j,j′,i =

{
1 if j and j′ are applied with a distance s to the ith patient
0 otherwise

When the design d is equireplicated, for each treatment j ∈ [[1, v]], we have:

rd,j =
k−m∑
`=1

φ`d,j = r(17)

In Example 23, some of this previous quantities are counted in a concret design.

The following lemma generalizes to any m the results (4.8) and (4.9) of Grondona and
Cressie (1993) for m = 2:

Lemma 12. Let be a design d ∈ Ωv,b,k, for an integer k which verifies k > 2m. Then,
for the AR(m) model, the diagonal entries of the matrix Cd is given as follows for each
treatment j ∈ [[1, v]]:

σ2Cd,j,j(V
∗) = s0r − s1φ1

d,j − s2φ2
d,j − · · · − smφmd,j(18)
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and taking j′ 6= j in [[1, v]], the off-diagonal entries are given by:

σ2Cd,j,j′(V
∗) =

m∑
s=1

N s
d,j,j′

m−s∑
u=0

θuθu+s

−
m−1∑
s=1

m−s∑
t=1

m−s∑
u=t

θuθu+s

b∑
i=1

N s
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i)

−c−1a20

{
a20λd,j,j′ − a0

m∑
`=1

a`φ
`∗
d,j,j′ +

m∑
`=1

m∑
`′=1

a`a`′
b∑
i=1

φ`j,iφ
`′

j′,i

}
(19)

where

a` =
m∑
u=`

θu , b` =
m∑
u=`

θ2u ,

c = 1′M1 = 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20 and

s` = b` + c−1a20a`(a` − 2a0) ; in particular, s0 = b0 − c−1a40 .

Remark 13. Consequence of lemma 12

The trace tr(Cd) =
∑v

j=1 Cd,j,j(V ) of the information matrix Cd of γ̂ is independent of
choice of the design in d ∈ Ωv,b,k and is given by the identity

(20) σ2tr(Cd) = s0vr − 2b(s1 + s2 + · · ·+ sm) .

Indeed, following Lemma 12 and identity (21), we have:

σ2tr(Cd) = s0vr − s1
v∑
j=1

φ1
d,j − s2

v∑
j=1

φ2
d,j − · · · − sm

v∑
j=1

φmd,j

= s0vr − 2b(s1 + s2 + · · ·+ sm)

because (Koné and Valibouze, 2011):

(21)
v∑
j=1

φ`d,j = 2b for k > 2m and ` ∈ [[1,m]] .

So all the designs which are potentially optimal in Ωv,b,k have the same trace. It remains to
identify the designs of Ωv,b,k with an information matrix which is completely symmetric,
i.e., the designs which are universally optimal in Ωv,b,k.
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Before the main Theorem, we establish three lemmas concerning terms of expression of
the terms Cd,j,j′ given in Lemma 12. The first one in follows concerns the BIBD designs.

Lemma 14. Assume k ≤ v. For a BIBD(v, b, r, k, λ) design d, the number of times that
two distinct treatments j, j′ are administered to the same patient is a constant λ given by

(i) λ = λd,j,j′ =
bk(k − 1)

v(v − 1)
∀j, j′ ∈ [[1, v]], j 6= j′ .

The second lemma concerns the NNm-balanced designs:

Lemma 15. For a design d NNm-balanced and an integer s ∈ [[1,m]], there exists a
constant N s

d counting the number of times that two distinct treatments are applied to a
same patient at a distance s and this constant is given by:

(ii) N s
d = N s

d,j,j′ =
2b(k − s)
v(v − 1)

∀j, j′ ∈ [[1, v]], j 6= j′ .

The third lemma concerning the square NNm-balanced designs will be use for establishing
Theorem 5.2:

Lemma 16. Assume that the designs are square, i.e. the number k of periods equals the
number v of treatments. Then a design d which is NNm-balanced satisfies not only identity
(ii) of Lemma 15 but also the following:

φ`∗d,j,j′ =
4b

v
and(22)

φ`d,j =
2b

v
(23)

for each j, j′ ∈ [[1, v]] (j 6= j′) and for each ` ∈ [[1,m]].

We can now establish our main Theorem:

Theorem 5.1 (Optimality Theorem). Assume 2m < k < v.
If a NNm-balanced BIBD(v, b, r, k, λ) d ∈ Ωv,b,k for the model AR(m) exists, which also
fulfills the conditions (iii), (iv) and (v) below, for all distinct treatments j and j′ in [[1, v]]
and for `, `′ ∈ [[1,m]], then d is universally optimal over Ωv,b,k;

(iii) φ`∗d,j,j′ = 4b(k−1)
v(v−1) ,

(iv)
b∑
i=1

φ`d,j,iφ
`′

d,j′,i =
2b(2−δ`,`′ )
v(v−1) ,

(v)
b∑
i=1

N
|`−`′|
d,j,j′,i(φ

`
d,j,iφ

`′

d,j′,i + φ`d,j′,iφ
`′

d,j,i) = 4b
v(v−1) when ` 6= `′

where δ`,`′ is the Kronecker symbol.
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When d is an NNm-balanced universally optimal BIBD(v, b, r, k, λ), Optimality Theorem
implies that the off-diagonal entries of the matrix Cd are given by:

σ2Cd,j,j′(V
∗) =

2b(k − s)
v(v − 1)

m∑
s=1

m−s∑
u=0

θuθu+s −
4b

v(v − 1)

m−1∑
s=1

m−s∑
t=1

m−s∑
u=t

θuθu+s

− bc−1a20
v(v − 1)

{
a20k(k − 1)− a04(k − 1)

m∑
`=1

a` +2
m∑
`=1

(a2` + 2a`

m∑
`′=1
`′ 6=`

a`′)

(24)

where j′ 6= j in [[1, v]],

a` =
m∑
u=`

θu and c = 1′M1 = 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20 .

In the case of a complete block design, we obtain the optimality following result:

Theorem 5.2. Suppose k > 2m and the designs are square: the number k of periods
equals the number v of treatments. If a NNm-balanced CBD(v, b) d ∈Ωv,b,k for the AR(m)
model exists then d is universaly optimal over Ωv,b,k if it fulfills the conditions (iv) and (v)
of Theorem 5.1.

Remark 17. A necessary condition for the existence of the designs satisfying the condition
conditions (iii) − (v) of Theorem 5.1 and Theorem 5.2 is then v(v − 1)|2b. A minimal
design corresponds to the minimal value of b for k and v fixed satisfying the associated
optimality conditions. Morgan and Chakravarti (1988) and Koné and Valibouze (2011)
showed that the minimal value of b for wich the existe a NN2-balanced CBD is b =
v(v − 1)/2.

In Lemma 12, Theorem 5.1 and Theorem 5.2, for the value m = 1 we find the results of
Kunert (1987) and for value m = 2 we find the results of Grondona and Cressie (1993) 1.

In the below section, the Optimality Theorem is illustrated with well-known designs called
semi balanced arrays.

1without one error of their paper in one element of the summation (4.9) giving σ2cl,m with l 6= m :
according to their notations the factor 2 in 2(1 − φ1 − φ2)φ2f∗l,m must be removed and, moreover, their
definitions of f∗l,m and e∗l,m must be modified as follows: e∗l,m := φ1∗d,l,m and f∗l,m := φ2∗d,l,m.
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6. OPTIMALITY THEOREM AND SEMI BALANCED ARRAYS

Rao (1946, 1947) introduced the concept of orthogonal arrays denoted by OA. Two vari-
ants of them are defined by Rao (1961): the OA of Type I and the OA of Type II which
are renamed respectively transitive arrays, denoted by TA, and semi balanced arrays, de-
noted by SB. For more details, see Rao (1961, 1973), Morgan and Chakravarti (1988) and
Hedayat, Sloane et Stufken (1999).

Definition 18. A b×k array of v symbols is an SB(b, k, v, t), where t is called its strength,
if in every set of t columns each unordered t-tuples have distinct symbols among v and
appears exactly ω times, where ω ∈ N is called the index of the SB.

To define a TA, it suffices to replace “unordered t-tuples” by “ordered t-tuples” in the
definition of a SB. Clearly, a TA(b, k, v, t) of index ω is an SB(b, k, v, t) of index t!ω.

Remark 19. As the number of unordered t-tuples of symbols is
(
v
t

)
= v!

t!(v−t)! , the index
of an SB(b, k, v, t) verifies ω = b/

(
v
t

)
. By consequence, the existence of an SB(b, k, v, t)

implies that b is the multiple ω
(
v
t

)
of
(
v
t

)
.

Note that in the context of our paper, b is the number of patients, k is the number of
treatments received by patient, and the v symbols represent the indices of the distinct
treatments. We have chosen this context to simplify our explanations.

Many methods for constructing SB and TA exist in the literature (Morgan and Chakravarti
(1988), Mukhopadhyay (1972), Ramanujacharyulu (1966), Stufken (1991), . . .). In con-
text of this section, we will be interested only in the strength t = 2. Rao (1961, 1973)
showed that if a TA(v(v − 1), k, v, 2) exists, then it can be constructed from (k − 1) mu-
tually orthogonal Latin squares of order v, and that if v is an odd prime power or an odd
prime, an SB(v(v − 1)/2, v, v, 2) can be constructed from GF(v), the Galois field with v
elements.

Example 20. Below, the designs have been constructed by Deheuvels and Derzko (1991).

1 3 4 5 2
2 4 5 1 3
3 5 1 2 4
4 1 2 3 5
5 2 3 4 1
1 2 5 3 4
2 3 1 4 5
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3

(a)

1 4 3 2 5
2 5 4 3 1
3 1 5 4 2
4 2 1 5 3
5 3 2 1 4
1 5 2 4 3
2 1 3 5 4
3 2 4 1 5
4 3 5 2 1
5 4 1 3 2

(b)

1 3 4 5 2
2 4 5 1 3
3 5 1 2 4
4 1 2 3 5
5 2 3 4 1

(c)

1 2 5 3 4
2 3 1 4 5
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3

(d)
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The design (a), obtained by superposition of the two quasi-complete Latin squares (c) and
(d), is an SB(10, 5, 5, 2) of index 1. The design (b) is superposition of mirror image of
designs (c) and (d). The design (e) resulting to the superposition of designs (a) and (b)
yields a TA(20, 5, 5, 2) of index 1 or a SB(20, 5, 5, 2) of index 2.

Martin and Eccleston (1991) have introduced SDEN designs (SDEN for strongly direc-
tionally equineighboured) 2. They remark that for k ≥ 3 a SDEN(b, k, v) is equivalent to a
SB(b, k, v, 2) and construct these designs from ω(v − 1) latin squares of order v. The part
(a) of they Theorem 2 implies that for k ≥ 3 if an SB(b, k, v, 2) exists then it is universally
optimal within Ωv,b,k for any variance-covariance matrix V , under GLS.

We have interested to SB’s of strength t = 2 since if an SB(b, k, v, 2) exists then it can be
interpreted as a BIBD(v, b, r, k, λ) (it is well kwown and easily provable). The following
proposition applies Theorem 2 in Martin and Eccleston (1991), most general than AR(m)
for correlations structures but restricted for designs:

Proposition 21. Suppose that there exists an SB(b, k, v, 2) and call it d. Then d is a
BIBD(v, b, r, k, λ) with

λ =
k(k − 1)

2
ω and r =

k(v − 1)

2
ω where ω = b

2

v(v − 1)
(25)

is the index of d and it is NNm-balanced universally optimal for the AR(m) correlation
structure. In particular, for j, j′ ∈ [[1, v]], j 6= j′ and `, `′, s ∈ [[1,m]], d verifies:

N s
d = N s

d,j,j′ = ω(k − s)(26)

φ`∗d,j,j′ = 2ω(k − 1)(27)
b∑
i=1

φ`d,j,iφ
`′

d,j′,i = ω(2− δ`,`′)(28)

b∑
i=1

N
|`−`′|
d,j,j′,i(φ

`
d,j,iφ

`′

d,j′,i + φ`d,j′,iφ
`′

d,j,i) = 2ω when ` 6= `′.(29)

Morgan and Chakravarti (1988) (Theorems 4.1) and Koné and Valibouze (2011) give a
similar result in the case of the weakly universally optimal BIBD for respectively the NN2
and NNm (for all m > 1) correlation structure.

Remark 22. Let j, j′ ∈ [[1, v]], j 6= j′ and m < 2k. Recall that a BIBD(v, b, , k, λ) is
NNm-balanced for the AR(m) model if the quantity N s

d,j,j′ is independent to j and j′ (see

2Deheuvels and Derzko (1991) used the terms totally balanced for SDEN and SB, and universally bal-
anced for TA.
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Lemma 15) and it is universally optimal if moreover the three quantities at left of equalities
(iii), (iv) and (v) of Optimality Theorem 5.1 are independent to j and j′ and it this case
the three equalities hold.

Proof. As it is known that an SB(b, k, v, 2) can be interpreted as a BIBD(v, b, r, k, λ), the
identities in (25) come from Remark (19) and Identities rv = bk in (4) and λ(v − 1) =
r(k − 1) in Lemma 14. Now consider an unordered pair (j, j′) of two distinct treatments.

For allm ∈ [[1, k − 1]], the design d is NNm-balanced becauseN s
d,j,j′ , the number of times

that (j, j′) are applied to a same patient at distance s ∈ [[1,m]], is a constant N s
d . More

precisely, considering the k−s pairs of periods ` and `+swhere ` runs in [[1, k − s]], as the
strength of d is two, we obtain Identity (27): N s

d = N s
d,j,j′ = ω(k−s). As 2b = ωv(v − 1),

N s
d is obviously the same constant as that given in Lemma 15.

To prove the rest of Proposition 21, we apply (a) of Theorem 2 in Martin and Eccleston
(1991) which implies that d is universally optimal and replace 2b by ω v(v−1) in Identities
(iii), (iv) and (v) of Optimality Theorem 5.1 (see Remark 22).

�

We illustrate both our Optimality Theorem 5.1 and Proposition 21 by the following exam-
ple.

Example 23. Verify identities of Proposition 21 on design (a) of Example 20. This de-
sign is an SB(b = 10, k = 5, v = 5, t = 2) of index ω = 1. We consider (a) as a
BIBD(v = 5, b = 10, r = 10, k = 5, λ = 10). On this BIBD, we will consider AR(m)
correlation structures with necessarily 2m < k = 5 (see Section 2.2). We chose m = 2.
Let be two distinct treatments j and j′ in [[1, 5]] = [[1, v]] and `, `′ ∈ [[1, 2]] = [[1,m]].

To verify Identity (26), we have to consider s ∈ [[1, 2]]. For s = 1, we count in (a) that
N1
d,j,j′ = 4 = ω(k − s), the number of times that j and j′ are applied consecutively to the

same patient. For s = 2, we count N2
d,j,j′ = 3 = ω(k− s), the number of time that j and j′

are applied to the same patient at distance s = 2. Hence, as in our proposition, the BIBD
(a) is a NN2-balanced with N s

d,j,j′ = ω(k − s) for each s ∈ [[1,m]].

To verify (27), we have to count the value φ`∗d,j,j′ which is the number of times that the treat-
ments j and j′ occur together and j or j′ are applied to the `th period or the (k − `+ 1)th
period. For example, for ` = 1, we have k − ` + 1 = 5; the treatment j = 2 appears 2
times in the first period (patients i = 2 and i = 7) and also 2 times in the last period. We
find that j appears 4 = ω(k − 1) times in the first or the last period. In the same way, any
treatment j′ appears 4 times in the first or the last period. Then φ1∗

d,j,j′ = 8 = 2ω(k − 1) as
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in (27). We count also that φ2∗
d,j,j′ = 8 and Identity (iii) of Optimality Theorem holds.

Now, for Equality (28), consider the value φ`d,j,i; i.e. the number of times that the treat-
ment j is applied to the patient i at the period ` or (k − ` + 1). When ` = `′, the value∑10

i=1 φ
`
d,j,iφ

`′

d,j′,i is the number of times that j and j′ appear together at the periods ` and
k − ` + 1. By definition of SB of strength 2, this value is the index ω = 1 of (a) (that
we can verify on the design itself). When ` 6= `′, by symmetry, we can chose ` = 1
and `′ = 2. For example, j = 1 and j′ = 5 appear together 2 times in the same line
of (a) with j in period ` = 1 or 5 and j′ is in period `′ = 2 or 4 (patients i = 1 and
i = 9). It is the same for any j, j′ with j 6= j′. Then

∑10
i=1 φ

`
d,j,iφ

`′

d,j′,i = 2 = 2ω and as
in our proposition

∑10
i=1 φ

`
d,j,iφ

`′

d,j′,i = ω(2−δ`,`′). Then (iv) of Optimality Theorem holds.

Two finish with Equality (29), suppose that ` 6= `′. Then necessarily | `− `′ |= 1 and we
can chose ` = 1 and `′ = 2. The value N |`−`

′|
d,j,j′,i = 1 if the treatments j and j′ are applied

consecutively to the patient i and else N |`−`
′|

d,j,j′,i = 0. For example, j = 1 and j′ = 5 appear
ω = 1 times together in periods ` = 1 and `′ = 2 (patient i = 10) and ω = 1 times in
periods k− `+ 1 = 5 and k− `′+ 1 = 4 (patient i = 8). It is the same for any j, j′, j 6= j′.
Then, as in our proposition 21, we obtain

10∑
i=1

N s
d,j,j′,i(φ

`
d,j,iφ

`′

d,j′,i + φ`d,j′,iφ
`′

d,j,i) = 2 = 2ω (`, `′ ∈ [[1, 2]], s =| `− `′ |= 1)

and Identity (v) of Optimality Theorem holds.

In consequence, by applying Optimality Theorem 5.1 or Proposition 21, we can conclude
that the design (a) is universally optimal.

7. PROOFS

7.1. Proof of Lemma 7.

We consider the matrix M = (γ`,`′)1≤`,`′≤k and we search to express the sum p` =∑k
`′=1 γ`,`′ of the elements of the line ` in the form given in the Lemma what we search to

prove. By symmetry of matrix M we can suppose that ` ∈ [[1, k −m]].

We will proceed in two steps. Let us first calculate the portion α` of this sum for `′ ≥ `
and then we calculate the rest β`. With the sum p` = α` + β`, we will find the appropriate
formula.
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First compute α` =
∑k

`′=` γ`,`′ .
From Formula (8) of Lemma 5, we have the following expression of each γ`,`′ for `′ ∈
[[`, k]]:

γ`,`+s =
l−1∑
u=0

θuθu+s for s ∈ [[0, k − `]] .(30)

Then

α` =
k−∑̀
s=0

`−1∑
u=0

θuθu+s =
`−1∑
u=0

θu

k−∑̀
s=0

θu+s =
`−1∑
u=0

θu

k+u−`∑
b=u

θb =
`−1∑
u=0

θu

m∑
b=u

θb .(31)

Because θb = 0 for each b > m and for each u ∈ [[0, `− 1]] we have k + u− ` ≥ k − ` ≥
k − (k −m) = m.

Now Compute β` =
∑`−1

`′=1 γ`,`′ ==
∑`−1

`′=1 γ`′,`, by symmetry. We have:

β` =
`−1∑
`′=1

`′−1∑
u=0

θuθu+(`−`′) =
`−1∑
a=1

θa

a−1∑
b=0

θb .(32)

To see this last identity, the reader can follows this method: write by column each element
θuθu+(`−`′) forming the sum

∑`′−1
u=0 θuθu+(`−`′) = γ`′,`; the first column for `′ = 1, the

second for `′ = 2 and so on; the elements under the diagonal are all zero; then by the
summation of the elements in each same parallel line over the diagonal we find θa

∑a−1
b=0 θb

if the parallel is at distance `−1−a of the diagonal. There are `−2 parallels. By example,
the sum of the elements of the diagonal is θ`−1(θ0 + θ1 + · · ·+ θ`−2) (i.e. a = `−1 and the
distance is 0), the sum of the parallel just over the diagonal is θ`−2(θ0 + θ1 + · · · + θ`−3)
(i.e. v = ` − 2 and the distance is 0); the last parallel is reduced to the only one element
θ1θ0 (i.e. a = 1 and the distance is `− 2).
We have finish because from (31) and (32), we obtain the announced identity in Lemma 7:

p` = α` + β` =
`−1∑
u=0

θu

m∑
b=0

θb = a0(a0 − a`)

with a` =
∑m

b=` θb for ` ∈ [[1,m]] and a` = 0 for ` > m. In particular, for ` ∈
[[m+ 1, k −m]], the identity becomes p` = pm+1 = a20 = (1− θ1 − · · · − θm)2.
For the last lines, as M is symmetric with respect to its second diagonal, p` = pk−`+1 for
` ∈ [[k −m+ 1, k]].
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7.2. Proof of Lemma 12.

We introduce some tools before addressing the proof of Lemma 12. For r ∈ [[1, k]], er =
(er,s)1≤s≤k means the r-th canonical vector of Rk, i.e. er,s = δr,s (where δ is the Kronecker
symbol). Note that each element of a k × k-matrix A is expressed in the form Ar,s =
e′r A es.

For each treatment j ∈ [[1, v]], the jth column vector tj(i) of the matrix Ti defined in (7) is
expressed as follows: for each patient i ∈ [[1, b]], we set

tj(i) =

{
e` if j is applied to i at the `-th period where ` ∈ [[1, k]]
0k otherwise.(33)

Hence, by general notations, for each period ` ∈ [[1, k −m]], we have

φ`d,j =

 #{i : tj(i) ∈ {e`, ek−`+1}} if ` ∈ [[1,m]]

#{i : tj(i) = e`} if ` ∈ [[m+ 1, k −m]].
(34)

Remark 24. Exactly r vectors tj(i) are nonzero because exactly r patients receive the
treatment j.

Remark 25. As the considered designs are proper, each patient i receives at most one time
the same treatment j; by consequence, for each ` ∈ [[1,m]] and because ` 6= k − ` + 1
when k > 2m, we have:

{i : tj(i) = e`} ∩ {i : tj(i) = ek−`+1} = φ.

We fix two distinct treatments j, j′ in [[1, v]] and we seek identities on the elements σ2Cd,j,j
and σ2Cd,j,j′ of the matrix

σ2Cd =
b∑
i=1

T ′i MTi −
b∑
i=1

T ′i (1′kM 1k)−1M 1k1′kMTi(35)

where M = σ2V −1 (see Identity (15)), by considering independently the two terms in the
right side of identity (35) respectively in Sections 7.2.1 and 7.2.2. We will conclude in
Section 7.2.3 Also in the following the reference to the design d in index will be omit.

7.2.1. The term
∑b

i=1 T
′
i MTi where Ti = (t1(i), . . . , tv(i)).

The contribution of
∑b

i=1 T
′
i MTi to the diagonal element σ2Cj,j is the value τ =

∑b
i=1 τi

where τi = t′j(i)M tj(i). From definition (33) of vectors tj(i), we have for each patient i:
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(36) τi =
k∑
`=1

∑
{i : tj(i)=e`}

e′`M e` =
m∑
`=1

φ`j e
′
`M e` +

k−m∑
`=m+1

φ`j e
′
`M e`.

Combining the above identity (36) and Lemma 5 applied to elements γ`,` = e′`M e` of the
matrix M defined in Lemma 5, we obtain (recall that θ0 = −1):

τ =
m∑
`=1

φ`j (θ20 + θ21 · · ·+ θ2`−1) +
k−m∑
`=m+1

φ`j (θ20 + θ21 · · ·+ θ2m)

= φ1
j θ

2
0 + φ2

j (θ20 + θ21) + · · ·+ φmj (θ20 + θ21 + · · ·+ θ2m−1)(37)

+
k−m∑
`=m+1

φ`j(θ
2
0 + θ21 + · · ·+ θ2m)

= θ20

k−m∑
`=1

φ`j + θ21

k−m∑
`=2

φ`j + θ22

k−m∑
`=3

φ`j + · · ·+ θ2m

k−m∑
`=m+1

φ`j .

As
∑k−m

l=1 φ`d,j = r (see Identity (17)), we get:

τ = θ20r + θ21(r − φ1
j) + θ22(r − (φ1

j + φ2
j)) + · · ·+ θ2m(r − (φ1

j + φ2
j + · · ·+ φmj ))

= r
m∑
u=0

θ2u − φ1
j

m∑
u=1

θ2u − φ2
j

m∑
u=2

θ2u − · · · − φ`j
m∑
u=`

θ2u − · · · − φmj θ2m

Finally, the contribution τ of the term
∑b

i=1 T
′
i MTi to the element σ2Cj,j is

τ = rb0 − φ1
jb1 − φ2

jb2 − · · · − φmj bm(38)

with b` =
m∑
u=`

θ2u for ` ∈ [[1,m]], as defined in Lemma 12.

In the same manner of the contribution of the term
∑b

i=1 T
′
i MTi to the diagonal elements,

we now focus us on its contribution µ to the extra-diagonal element σ2Cj,j′ where µ =∑b
i=1 µi with µi = t′j(i)Mtj′(i). For this purpose, we need to introduce the following new

notation: for `, `′ ∈ [[1, k]], we denote by φ`,`
′

j,j′ the number of patients which receive the
distinct treatments j and j′ at the periods `, `′, i.e.

(39) φ`,`
′

j,j′ = #{i ∈ [[1, b]] : tj(i) + tj′(i) = e` + e`′}.
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Note that if `′ = ` then tj(i) + tj′(i) 6= e` + e`′ for each patient i because the distinct
treatments j and j′ can not be applied simultaneously to the same patient i at the same
period `. Hence we can write for s ∈ [[1, k − 1]]:

(40) N s
j,j′ =

∑
φ`,`

′

j,j′

where the sum concerns all the distinct periods `, `′ in [[1, k]] and s = |`− `′| 6= 0.
By definition of vectors tj(i), the value µi can be not equals zero only if tj(i) + tj′(i) =
e` + e`′ for some periods `′, ` which are necessary distinct. Moreover, as the matrix M is
symmetric, when the identity tj(i)+tj′(i) = e`+e`′ holds, we can suppose that tj(i) = e`
and tj′(i) = e`′ with ` < `′.
Hence, by putting uij = tj(i) + tj′(i), u``′ = e` + e`′ and considering the element γ`,`′ =
e′`M e`′ of the matrix M, we obtain:

µ =
∑

1≤`<`′≤k

∑
{i :uij=u``′}

e′`M e`′ =
∑

1≤`<`′≤k

γ`,`′φ
`,`′

j,j′ =
k∑

`′=2

`′−1∑
`=1

γ`,`′φ
`,`′

j,j′ .

For seeking of clarity in the following of this proof, we put φ`,`′ = φ`,`
′

j,j′ . We introduce in
the expression of µ the values of the elements γ`,`′ of the matrix M given in Lemma 5. By
summing the identical factors of each of the respective values θ` and θ`θ`′ , we obtain:

µ = − θ1

(
φ1,2 + · · ·+ φk−1,k

)
− · · · − θs

(
φ`,`+s + φ`+1,`+s+1 + · · ·+ φk−s,k

)
− · · ·

−θm
(
φ1,m+1
j,j′ + · · ·+ φk−m,k

)
+

m−1∑
s=1

θ1θ1+s

(
φ2,2+s + · · ·+ φk−s−1,k−1

)
+

m−2∑
s=1

θ2θ2+s

(
φ3,3+s + · · ·+ φk−s−2,k−2

)
(41)

+ · · ·+
m−u∑
s=1

θuθu+s

(
φu+1,u+1+s + φu+2,u+2+s + · · ·+ φk−s−u,k−u

)
+ · · ·

+
2∑
s=1

θm−2θm−2+s

(
φm−1,m−1+s + · · ·+ φk−s−(m−2),k−(m−2)

)
+ θm−1θm

(
φm,m+1 + · · ·+ φk−m,k−m+1

)
.

Recall that identity (40) says that N s
j,j′ = φ1,1+s + φ2,2+s + · · · + φk−s−1,k−1 + φk−s,k.

Putting
Ut,s = φt,t+s + φk−t−s+1,k−t+1,

for s ∈ [[1,m− 1]] and t ∈ [[1,m− s]], the expression (41) of µ becomes:
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µ =
m∑
s=1

θ0θsN
s
j,j′ +

m−1∑
s=1

θ1θ1+s(N
s
j,j′ − (U1,s))

+
m−2∑
s=1

θ2θ2+s(N
s
j,j′ − (U1,s + U2,s)) + · · ·

+
m−u∑
s=1

θuθu+s(N
s
j,j′ − (U1,s + U2,s + · · ·+ Uu,s)) + · · ·(42)

+
2∑
s=1

θm−2θm−2+s(N
s
j,j′ − (U1,s + U2,s + · · ·+ Um−2,s))

+ θm−1θm(N1
j,j′ − (U1,1 + U2,1 + · · ·+ Um−1,1)) .

Collecting the factors of each N s
j,j′ and the factors of each Ut,s, we obtain:

µ =
m∑
s=1

N s
j,j′

m−s∑
u=0

θuθu+s −
m−1∑
s=1

m−s∑
t=1

Ut,s

m−s∑
u=t

θuθu+s .

Indeed, for each s ∈ [[1,m− 1]] and t ∈ [[1,m− s]], the component βt,s of µwhich collects
the terms Ut,sθa,b is the following:

βt,s = −Ut,s(θtθt+s + θt+1θt+1+s + · · ·+ θm−sθm).

In addition, the double summation
m−1∑
s=1

m−s∑
t=1

βt,s collects all the terms of the form Ut,sθa,b in

the right side of Identity (42). In order to complete the determination of µ, note that:

Remark 26. Considering Identity (39) about φ`,`
′

j,j′ and Remark 11 about the quantitiesN s
j,j′,i

and φ`j,i, we find:

Ut,s = φt,t+sj,j′ + φk−t−s+1,k−t+1
i,j′

= #
{
i : tj(i) + tj′(i) ∈ {et + et+s, ek−t+1 + ek−(t+s)+1}

}
=

b∑
i=1

N s
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ).
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Finally, the contribution µ of the term
∑b

i=1 T
′
i MTi to the element σ2Cj,j′ is:

µ =
m∑
s=1

N s
j,j′

m−s∑
u=0

θuθu+s −

m−1∑
s=1

m−s∑
t=1

(θtθt+s + θt+1θt+1+s + · · ·+ θm−sθm)
b∑
i=1

N s
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ) .(43)

7.2.2. Term
∑b

i=1 T
′
i (1′kM 1k)−1M 1k1′kMTi on the right side of Identity (35).

Note that the constant value c = 1′kM 1k in this summation is the sum of all elements of
M given in Equation (11). So in the sequel we consider the term c−1

∑b
i=1 T

′
i M 1k1′kMTi.

Introduce the following notation for each treatment j1 and each patient i :

kj1,i = t′j1(i)M 1k .

As ki,j1 is a scalar and M = M′ (i.e. M is symmetric), we also have:

kj1,i = 1′kM t′j1(i) .

Then the contribution of c−1
∑b

i=1 T
′
i M 1k1′kMTi to the element σ2Cj1,j2 for two treat-

ments j1, j2 not necessary distincts is

ωj1,j2 = c−1
b∑
i=1

kj1,ikj2,i .(44)

Still with the aim of finding identities on the elements Cd,j,j and Cd,j,j′ of the matrix C,
we must determine the quantity kj,i = t′j(i)M 1.

When the treatment j is not applied to the ith patient, kj,i = 0 because tj(i) = 0k. Other-

wise, it is applied only once, at some `th period and we have kj,i = t′j(i)M1 =
k∑

`′=1

γ`,`′ .

Recall that the sum of elements of the line ` in matrix M is given in Lemma 7: for each

` ∈ [[1, k −m]], the value p` =
k∑

`′=1

γ`,`′ = a0(a0 − a`) (with a` =
m∑
u=`

θu for ` ∈ [[1,m]]

and a` = 0 for ` > m) and p` = pk−`+1 for ` ∈ [[k −m, k]]. Remark that p` = pm+1 = a20
for all ` > m. Thus ∀ ` ∈ [[1,m]] ∪ [[k −m+ 1, k]]:

(45) p` − pm+1 = −a0a` .
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Now, let’s determine the values of nj,i and φ`j,i for all ` ∈ [[1,m]] that we have defined
above. Recall that tj(i) = e` if the treatment j is applied to the patient i at the `-th period
and tj(i) = 0k otherwise.

Case tj(i) = 0k: nj,i = φ1
j,i = · · · = φmj,i = 0 because the patient i does not receive the

treatment j.
Case tj(i) = e` where ` ∈ [[1,m]] ∪ [[k −m+ 1, k]]: nj,i = φ`j,i = 1 and

φ1
j,i = · · · = φ`−1j,i = φ`+1

j,i = · · · = φmj,i = 0.
Case tj(i) = e` where ` ∈ [[m+ 1, k −m]]: nj,i = 1 and φ1

j,i = · · · = φmj,i = 0.

If the treatment j is applied to the patient i at one `th period for ` ∈ [[1, k]] then kj,i = p`.
Otherwise, if the treatment j is not applied to the patient i then kj,i = 0. By consequence,
we can express the quantity kj,i in the following form

kj,i = pm+1nj,i + φ1
j,i(p1 − pm+1) + φ2

j,i(p2 − pm+1) + · · ·
+φmj,i(pm − pm+1).(46)

By Formulas (10) and (45), we deduce that:

kj,i = a0(a0nj,i − a1φ1
j,i − a2φ2

j,i − · · · − amφmj,i)

= a0

(
a0nj,i −

m∑
`=1

a`φ
`
j,i

)
.(47)

Recall that the contribution
∑b

i=1 T
′
i (1′kM 1k)−1M 1k1′kMTi to element σ2Cj,j is ωj,j =

c−1
∑

i k
2
j,i (see (44)). By Identity (47), we have:

k2j,i = a20

{
a20n

2
j,i +

m∑
`=1

a2`φ
`
j,i − 2a0

m∑
`=1

a`nj,iφ
`
j,i

}

because (φ`j,i)
2

= φ`j,i ∀ ` ∈ [[1,m]], and when ` 6= `′, φ`j,iφ
`′
j,i = 0. By the facts

φ`j =
b∑
i=1

φ`j,i =
b∑
i=1

nj,iφ
`
j,i and r =

b∑
i=1

n2
j,i,
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we finally obtain:

cwj,j =
b∑
i=1

k2j,i = a20

{
a20r +

m∑
`=1

a2`φ
`
j − 2a0

m∑
`=1

a`φ
`
j

}

= −a20

{
a0(a0 − 2a0)r −

m∑
`=1

φ`ja`(a` − 2a0)

}
(48)

Now we search to determine the contribution ωj,j′ = c−1
∑b

i=1 kj,ikj′,i, j 6= j′, to the
element σ2Cj,j′ . By Identity (46), we have:

kj,ikj′,i = a20

(
a0nj,i −

m∑
`=1

a`φ
`
j,i

)(
a0nj′,i −

m∑
`′=1

a`′φ
`′

j′,i

)

= a20

{
a20nd,j,inj′,i − a0

(
m∑
`=1

a`nj,iφ
`
j′,i +

m∑
`=1

a`nj′,iφ
`
j,i

)
m∑
`=1

m∑
`′=1

a`a`′φ
`
j,iφ

`′

j′,i

}
.

By the facts λj,j′ =
∑b

i=1 nj,inj′,i and

φ`∗j,j′ =
b∑
i=1

(nj′,iφ
`
j,i + nj,iφ

`
j′,i) for all ` ∈ [[1,m]] ,(49)

we finally obtain:

c ωj,j′ =
b∑
i=1

kj,ikj′,i

= a40λj,j′ − a30
m∑
`=1

a`φ
`∗
j,j′ + a20

m∑
`=1

m∑
`′=1

a`a`′
b∑
i=1

φ`j,iφ
`′

j′,i .(50)

7.2.3. Conclusion of the proof of Lemma 12.

From (35),we have:

Cj,j = τ − ωj,j and Cj,j′ = µ− ωj,j′ .

where τ and µ come from the term
∑b

i=1 T
′
i MTi studied in Section 7.2.1 and ωj,j and ωj,j′

come from the term
∑b

i=1 T
′
i (1′kM 1k)−1M 1k1′kMTi studied in Section 7.2.2.
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It suffice to collect the values of τ , µ, ωj,i and ωj,j′ from Identities (38), (43), (48) and (50)
to conclude that our Lemma 12 is true.

7.3. Proof of Lemma 14.

Firstly, as d is a BIBD, we have β =
∑v

j=1

∑
j′ 6=j λd,j,j′ =

∑v
j=1

∑
j′ 6=j λ = v(v − 1)λ

Secondly, we count β in this different manner:

β =
v∑
j=1

∑
j′ 6=j

λd,j,j′ = bk(k − 1)

because there are b patients and exactly k(k − 1) distinct pairs of treatments by patient
(recall that k ≤ v) The identification of the two expressions of β prove the searched
identity satisfied by λ:

(i) λ = λd,j,j′ =
bk(k − 1)

v(v − 1)
∀j, j′ ∈ [[1, v]], j 6= j′ .

7.4. Proof of Lemma 15.

We suppose that the design d is NNm-balanced. Then N s
d,j,j′ is a constant N s

d that we
intend to establish.

We fix s ∈ [[1,m]]. We compute with to manner the sum α =
∑v

j=1

∑
j′ 6=j N

s
d,j,j′ . Firstly,

as the design is NNm-balanced, each N s
d,j,j′ equals a constant N s

d which does not depend
on the choice j, j′. Then we have:

α =
v∑
j=1

∑
j′ 6=j

N s
d = v(v − 1)N s

d .

Secondly, we fixe one treatment j and suppose that a patient i receives this treatment.
Recall that j is administered no more than once to a same patient. For the patient i, there
exist 2 =

∑
j′ 6=j N

s
d,j,j′,i treatments at distance s to j if j is not applied in the first s or

the last s periods (i.e.when
∑s

`=1 φ
`
d,j,i = 0), otherwise φ`d,j,i = 1 for (only) one period

` ∈ [[1, s]] (i.e.when
∑s

`=1 φ
`
d,j,i = 1) and there exists only 1 =

∑
j′ 6=j N

s
d,j,j′,i treatment at

distance s to j . Then

(51)
∑
j′ 6=j

N s
d,j,j′,i = 2−

s∑
`=1

φ`d,j,i .
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Moreover j appears exactly r times in d. Then by considering firstly all patients i,

(52)
∑
j′ 6=j

N s
d,j,j′ = 2r −

s∑
`=1

φ`d,j

and secondly Identity (21), we obtain the second expression of α:

α =
v∑
j=1

∑
j′ 6=j

N s
d,j,j′ =

v∑
j=1

(2r −
s∑
`=1

φ`d,j) = 2rv − 2bs

As rv = kb (see (4)), the identification of our two expressions of α implies the searched
identity satisfied by N s

d :

(ii) N s
d = N s

d,j,j′ =
2b(k − s)
v(v − 1)

∀j, j′ ∈ [[1, v]], j 6= j′ .

7.5. Proof of Lemma 16.

Let be an NNm-balanced design d with k = v (i.e. the number of periods equals the
number treatments). We have also r = b because rv = kb.
We search to prove that for each ` ∈ [[1,m]] the quantities φ`d,j and φ`∗d,j,j′ are independent
of distinct treatments j, j′ and to express them without j and j′.
Let be s ∈ [[1,m]]. As d is an NNm-balanced design, from (ii) of Lemma 15 the quantity
N s
d,j,j′ is the constant N s

d = 2b(k − s)/v(v − 1) = 2b(v − s)/v(v − 1) since k = v.
From (52) and since N s

d,j,j′ is the constant N s
d for all s ∈ [[1,m]], we have:

(53)
s∑
`=1

φ`d,j = 2r − (v − 1)N s
d .

As r = b, the previus equality becomes
∑s

`=1 φ
`
d,j = 2bs

v
. Then we conclude that for each

s ∈ [[1,m]]:

(54) φsd,j =
s∑
`=1

φ`d,j −
s−1∑
`=1

φ`d,j =
2b

v

which is the identity expected by Lemma 16.
Now since k = v and each treatment is administered at most once for each patient, each
patient i receives each of the v distinct treatments once and only once. That means nd,j,i =
1 for all j ∈ [[1, v]]. Then Identity (49) becomes

(55) φ`∗d,j,j′ = φ`d,j + φ`d,j′ =
4b

v
∀ ` ∈ [[1,m]]

and the Lemma is proved.
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7.6. Proof of Theorem 5.1.

By the consequence of Lemma 12 (see remark 13), all the competitor designs have the
same trace. Hence, by Proposition 10, the universal optimality of a design d for the model
AR(m) is satisfied when the information matrixCd of γ̂ is completely symmetric; that is to
say that its extra-diagonal elements Cd,j,j′ are all independent of j, j′ (j 6= j′) because the
sum by line (and by column) of Cd is null (see (16)). According to hypothesis of Theorem
5.1, we will prove that each of the five terms of Cd,j,j′ in Lemma 12 is independent to j, j′.

As the design is NNm-balanced BIBD(v, b, r, k, λ), Identities (i) and (ii) of Lemmas 14
and 15 imply that two of the terms of Cd,j,j′ are independent to j, j′. If Identities (iii), (iv)
and (v) of Theorem 5.1 hold then the three others terms of Cd,j,j′ are independent to j and
j′.

Remark 27. Note that, for a better presentation of Identity (v) in Theorem 5.1, we have
replace the values s, t appearing in Cd,j,j′ by the values `, `′. This is possible as explained
below. Suppose that Identity (v) holds for each ` and `′ such that ` 6= `′ ∈ [[1,m]]. Then, by
the symmetry in `, `′ of the expression α`,`′ = N

|`−`′|
j,j′,i (φ`j,iφ

`′

j′,i + φ`j′,iφ
`′
j,i), we can suppose

that ` < `′ and we have α`,`′ = N
|`−`′|
j,j′,i (φ`j,iφ

`+|`−`′|
j′,i + φ`j′,iφ

`+|`−`′|
j,i ). Then

α`,`′ = N s
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i )(56)

with s = |` − `′| ∈ [[1,m− 1]] and ` = t ∈ [[1,m− s]] as expected in the summation
in the expression of Cd,j,j′ . Conversely, let s ∈ [[1,m− 1]] and t ∈ [[1,m− s]] as in the
summation in Cd,j,j′ . Then the two distinct periods ` = t and `′ = t + s in [[1,m]] verify
Identity (56).

In the following, we will prove that Identities (iii), (iv) and (v) of Theorem 5.1 are co-
herent. More precisely, for each identity, we will suppose that the term in the left side is a
constant and we prove that it equals to the right side.

7.6.1. Identity (iii). For each treatment j, we first need to establish the following identity:

(57)
∑
j′ 6=j

φ`∗d,j,j′ = (k − 2)φ`d,j + 2r .

Proof. We develop
∑

j′ 6=j φ
`∗
j,j′:∑

j′ 6=j

φ`∗j,j′ =
∑
j′ 6=j

b∑
i=1

(nj′,iφ
`
j,i + nj,iφ

`
j′,i) =

b∑
i=1

φ`j,i
∑
j′ 6=j

nj′,i +
b∑
i=1

nj,i
∑
j′ 6=j

φ`j′,i
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The first term of the right hand of the previous identity is

α =
b∑
i=1

φ`j,i
∑
j′ 6=j

nj′,i =
b∑
i=1

φ`j,i

v∑
j=1

nj′,i −
b∑
i=1

φ`j,inj,i = φ`jk − φ`j

by definition of φ`j and since each patient i receive k treatments. The second term is

β =
b∑
i=1

nj,i
∑
j′ 6=j

φ`j′,i =
b∑
i=1

nj,i

v∑
j′=1

φ`j′,i −
b∑
i=1

nj,iφ
`
j,i = r × 2− φ`j

because d is equireplicated (i.e. j appears r times in d) and only 2 treatments j′ can be
applied to a same patient i at the `th and the (k − `+ 1)th periods (i.e. φ`j′,i = 1 and not 0
for this two treatments). By the sum of α and β, Identity (57) is proved. �

From Formulas (57) and (21), we obtain finally:

(58)
v∑
j=1

∑
j′ 6=j

φ`∗d,j,j′ = 2b(k − 2) + 2rv = 2b(k − 2) + 2bk = 4b(k − 1)

because rv = bk. Suppose that each φ`∗d,j,j′ is independent to j, j′. Then
∑v

j=1

∑
j′ 6=j

φ`∗d,j,j′ =

v(v − 1)φ`∗dj,i,j′ . Thus from (58), we obtain Identity

(iii) φ`∗d,j,j′ = 4b(k−1)
v(v−1) .

7.6.2. Identity (iv). Consider two distinct periods ` and `′ and set a patient i. Four distinct
treatments j1, . . . , j4 are applied to this patient at the respective periods `, k− `+ 1, `′, k−
`′ + 1. Then φ`d,j1,i = φ`d,j2,i = φ`

′

d,j3,i
= φ`

′

d,j4,i
= 1 and the other values are zero; by

consequence:

v∑
j=1

∑
j′ 6=j

φ`d,j,iφ
`′

d,j′,i = φ`d,j1,i(φ
`′

d,j3,i
+ φ`

′

d,j4,i
) + φ`d,j2,i(φ

`′

d,j3,i
+ φ`

′

d,j4,i
) = 4 .

and
v∑
j=1

∑
j′ 6=j

φ`d,j,iφ
`
d,j′,i = φ`d,j1,iφ

`
d,j2,i

+ φ`d,j2,iφ
`
d,j1,i

= 2 .
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If the quantity
b∑
i=1

φ`d,j,iφ
`′

d,j′,i is independent of j, j′ then, by the same reasoning as for

(iii), we find:

(iv)
b∑
i=1

φ`d,j,iφ
`′

d,j′,i =
b(2 + 2(1− δ`,`′))

v(v − 1)
for all `, `′ ∈ [[1,m]]

where δ`,`′ is the Kronecker symbol.

7.6.3. Identity (v). We fix s ∈ [[1,m− 1]] and t ∈ [[1,m− s]]. By the same reasoning
as above, for a patient i, four distinct treatments j1, . . . , j4 are applied at the respective
distinct periods t, k − t+ 1, t+ s, k − (t+ s) + 1. Then

βt,s =
v∑
j=1

∑
j′ 6=j

(φtd,j,iφ
t+s
d,j′,i + φvd,j′,iφ

t+s
d,j,i) =

v∑
j=1

φtd,j,i
∑
j′ 6=j

φt+sd,j′,i +
v∑
j=1

φt+sd,j,i

∑
j′ 6=j

φtd,j′,i

= 2(φtd,j1,i + φtd,j2,i)(φ
t+s
d,j3,i

+ φt+sd,j4,i
)

= 8 .

But, in this sum, we have count 4 situations in which two treatments among j1, . . . , j4 are
applied at distance s and 4 situations in which two treatments among j1, . . . , j4 are applied
at distance ≥ m > s because k > 2m. For the firsts 4 situations, we have N s

d,j,j′,i = 1 for
the 4 others we have N s

d,j,j′,i = 0. Then

v∑
j=1

∑
j′ 6=j

N s
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i) =

v∑
j=1

∑
j′ 6=j

N s
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i)

=
1

2
βt,s = 4 .

Hence, if each quantity
∑b

i=1N
s
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i) is independent to j, j′ (j 6=

j′), the following identity holds:

(v)
b∑
i=1

N s
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i) =

4b

v(v − 1)
.

7.7. Proof of Theorem 5.2.

From Theorem 5.1 and Lemma 16 our Theorem is proved
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Ser. A, pp. 283–286.

Rao, C. R., 1973. Some combinatorial problems of arrays and applications to design of
experiments. In: Survey of combinatorial theory (Proc. Internat. Sympos., Colorado
State Univ., Ft. Collins, Colo., 1971), North-Holland, Amsterdam, pp. 349–359.

Satpati, S. K. and Parsad, R., 2004. Construction and cataloguing of nested partially
balanced incomplete block designs. Ars Combin., 73, 299–309.

Satpati, S. K., Parsad, R. and Gupta, V. K., 2007. Efficient block designs for depen-
dent observations—a computer-aided search. Comm. Statist. Theory Methods, 36(5-8),
1187–1223.

Siddiqui, M. M., 1958. On the inversion of the sample covariance matrix in a stationary
autoregressive process. Ann. Math. Statist., 29, 585–588.

Stufken, J., 1991. Some families of optimal and efficient repeated measurements designs.
J. Statist. Plann. Inference., 27, 75-83.

Wei, W. W. S., 1990. Time series analysis. Univariate and multivariate methods. Addison-
Wesley Publishing Company Advanced Book Program, Redwood City, CA.

Wise, J., 1955. The autocorrelation function and the spectral density function. Biometrika,
42, 151–159.



34 MAMADOU KONÉ AND ANNICK VALIBOUZE

MAMADOU KONÉ, UPMC UNIV PARIS 06, CNRS, LABORATOIRE LSTA, F-75005 PARIS, FRANCE.
EMAIL: MADOUSAM.KONE@GMAIL.COM

ANNICK VALIBOUZE, SORBONNE UNIVERSITÉ, CNRS, LIP6 & LPSM, F-75005 PARIS, FRANCE
EMAIL: ANNICK.VALIBOUZE@SORBONNE-UNIVERSITE.FR


	1. Introduction
	2. Experimental context
	2.1. Designs for the considered experimental situation
	2.2. Autoregressive correlation structure AR(m)

	3. Description of the model
	4. Estimation of the treatment effects
	5. Universal optimality
	5.1. Preliminary
	5.2. Optimality conditions for the correlation structure AR(m)

	6. Optimality Theorem and Semi Balanced arrays
	7. Proofs
	7.1. Proof of Lemma 7
	7.2. Proof of Lemma 12
	7.3. Proof of Lemma 14
	7.4. Proof of Lemma 15
	7.5. Proof of Lemma 16
	7.6. Proof of Theorem 5.1
	7.7. Proof of Theorem 5.2

	References

