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Nearest neighbor balanced block designs for autoregressive
errors

Mamadou Koné · Annick Valibouze

September 8, 2021

Abstract In this paper we study the problem of finding neighbor optimal designs for
a general correlation structure. We give universal optimality conditions for nearest-
neighbor (NN) balanced block designs when observations on the same block are mod-
eled by an autoregressive AR(m) process with arbitrary order m. The cases m = 1, 2
have been studied by Grondona and Cressie (1993) for AR(2) and by Gill and Shukla
(1985) and Kunert (1987) for AR(1); we extend these results to the cases m ≥ 3.

Keywords Autoregressive model · Block design · Generalized least squares
estimation · Nearest-neighbor balanced · Universally optimal

1 Introduction

The systematic introduction of statistical designs is due to the British statistician R.
A. Fisher (in the years 1925-1937) when he was appointed by Rothamsted Experi-
mental Station to apply new statistical methods to the analysis of the accumulated
results of the Rothamsted long-term agricultural experiments (Yates 1964). In these
experimental results, Fisher began to consider the heterogeneity of the plots (consid-
ered as periods in our context) where the experiments take place, by comparing yields
of different seed varieties; he introduced several types of designs including complete
block designs (CBD), incomplete block designs (IBD) and Latin squares.

The classical theory of experimental designs is based on three principles, namely
repetition, randomization and local control. Repetition is intended to estimate the
residual variability and to increase the accuracy of the experiment. The purpose of
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randomization is to remove bias and other sources of extraneous variation, which are
uncontrollable. Local control aims to increase the accuracy of the experiments.

Over the decades that followed this initial work, the principles developed by
Fisher in agronomy have been transposed to many other sectors of activity such as
industry and services. Among the new concepts that have been introduced, we men-
tion the concept of optimal design due to J. Kiefer (1958-1981). At the same time,
the use of statistical methods in pharmacy and medicine has developed to the point
that today these sectors are the main areas of application of experimental designs.

Recently, there has been considerable interest in the use of some particular meth-
ods of local control called spatial or mth order nearest-neighbor, abbreviated NN
or NNm, where the integer m > 0 is the distance among neighbours in the model.
Kiefer and Wynn (1981) studied the optimality of block designs under a first order
(NN1) neighbor correlation model, using the ordinary least squares (OLS) estima-
tor. In this context, they gave sufficient conditions of weak universal optimality for
the estimation of treatment contrasts. Morgan and Chakravarti (1988) extended these
conditions to the model NN2 and then these results were generalized to any correla-
tion structure NNm, m > 2 (Koné and Valibouze 2011).

When the covariance structure is known, it is natural to construct the optimal
experimental designs by making use of the generalized least squares (GLS) estima-
tor. Several authors have used this approach for the correlation structures AR(1) and
AR(2), the autoregressive processes of first and second order (Azzalini and Gio-
vagnoli 1987; Gill and Shukla 1985a,b; Grondona and Cressie 1993; Kunert 1985,
1987; Martin and Eccleston 1991; Satpati, Parsad and Gupta 2007). Kiefer and Wynn
(1981) justified the choice of the OLS estimator, rather than the GLS estimator, by
showing that the loss of relative accuracy is lower with the use of OLS for the NN1
correlation model.

The NN methods can be refined by the concept of balancing. According to the
nomenclature of Gill and Shukla (1985a) and Grondona and Cressie (1993) we qual-
ify as NNm-balanced the experimental designs in incomplete blocks when these are
balanced for the periods distant in time of m units, or less (see Definition 2).

In a context of medical experimentation such as clinical trial, time balancing pro-
cedure allows to remove from the experimental results the biases related to effects of
interactions due to the proximity over time of the administration of certain treatments
at a same patient.

The goal of this paper is to find, for any integer m ≥ 1, conditions of univer-
sal optimality for NNm-balanced block designs when the correlation of the errors is
modeled by an autoregressive AR(m) process for the estimation of treatment con-
trasts when GLS estimator is used.

This paper is organized as follows: Section 2 presents the designs and the cor-
relation structure AR(m) that we consider. It also contains some results about them.
Section 3 discusses the linear model that describes the correlation structure and then
deals the information matrix Cd(V ∗). This section ends with Proposition 3 which
expresses the entries of Cd(V ∗) for the AR(m) model. Section 4 recalls a fondamen-
tal result due to Kiefer (1975a) on the information matrices for universally optimal
designs (see Proposition 4). Then this section states the main theorems, Optimality
Theorem 1 and Theorem 2, which give sufficient conditions for universal optimality
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for AR(m) model. In Section 5, Theorems 1 and 2 are illustrated with the particular
designs called semi balanced arrays. This section also contains examples of designs
that illustrate our theorems. Section 6 is devoted to proofs.

2 Experimental context

2.1 Designs for the considered experimental situation

We consider experimental situations in which v ≥ 2 treatments can be applied to b ≥
1 patients during k ≥ 2 distinct periods which are the distinct unities of time when
the treatments are applied. In each period, the patient receives only one treatment
which provides a single scalar experimental measurement. Assume that k ≤ v. The
number ω = 2b

v(v−1) will be involved in many identities and will play a particular role
in the case of semi balanced arrays in Section 5. We will reason within the framework
of an experimental design in incomplete blocks where a given patient, represented by
a block, receives exactly k (among v possible) distinct treatments. More precisely,
such a block design d is defined as the following application:

d : (i, `) ∈ [[1, b]]× [[1, k]] → d(i, `) ∈ [[1, v]]

where d(i, `) is the treatment applied to the ith patient (i ∈ [[1, b]]) at period ` (` ∈
[[1, k]]). The following figure illustrates the design d:

patients

treatments periods

1 2 . . . ` . . . k

1

.

.

.

.

.

.

.

.

.
i . . . . . . d(i, `) = j

.

.

.
b

We adopt the following first notations for the design d for all j, j′ ∈ [[1, v]]: nd,j,i
is the number of times that the treatment j is applied to the ith patient, rd,j is the
number of times that the treatment j is replicated in all of the experiment, λd,j,j′ , j 6=
j′, is the number of patients receiving both the two distinct treatments j and j′, and
Ns
d,j,j′ (s ∈ [[1, k − 1]]) is the number of patients in which j and j′ are administered

and are neighbors at distance s; that is, are separated by s − 1 periods; Ns
d,j,j = 0.

When d is fixed, the reference to d in these notations may be omitted. A design d
is said binary if nd,j,i ∈ {0, 1} and equireplicated if rd,j = rd,j′ = r. A binary
equireplicated design d satisfies the following identities:

rv = kb and (1)

λd,j,j′ =

b∑
i=1

nd,j,i nd,j′,i . (2)

We denote by Ωv,b,k the set of incomplete blocks designs which are both binary and
equireplicated.
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Let us now define the specific plans called BIBD and CBD that were introduced
by Yates during the years 1936 to 1940:

Definition 1 Let d ∈ Ωv,b,k. If for all distinct treatments j, j′ the number λd,j,j′
is a constant λ then d is called a balanced incomplete block design, denoted by
BIBD(v, b, r, k, λ). If moreover k = v, the design is called a complete block design,
denoted by CBD(v, b).

A necessary condition for d in Ωv,b,k to be a BIBD(v, b, r, k, λ) or a CBD(v, b) is:

λ = λd,j,j′ = ω
k(k − 1)

2
∀j, j′ ∈ [[1, v]], j 6= j′ ; (3)

recall that ω = 2b
v(v−1) ; for a CBD(v, b), we have λ = b = r. Section 5 contains an

example with a BIBD and another with a CBD. Now introduce the NNm-balanced
experimental designs that we will study among the BIBDs and the CBDs:

Definition 2 Let d ∈ Ωv,b,k. Let m ∈ [[1, k − 1]]. The design d is said balanced for
nearest-neighbor at distance m, or NNm-balanced, if for any integer s ∈ [[1,m]] and
for any two distinct treatments j, j′ in [[1, v]], the value Ns

d,j,j′ does not depend on
j, j′ and it is the denoted by Ns

d .

Let m ∈ [[1, k − 1]]. A necessary condition for d in Ωv,b,k to be a NNm-balanced
design is:

Ns
d = Ns

d,j,j′ = ω(k − s) ∀s ∈ [[1,m]] and ∀j, j′ ∈ [[1, v]], j 6= j′ . (4)

When a NNm-balanced design is square (i.e. k = v), it must also satisfy the two
identities (19) and (20) which will depend on new notations introduced in Section
3.3.

Example 1 Let d be the design in Table 1. Here k = v = 4, b = 6 and ω = 1.
The design d belongs to Ω4,6,4; in particular, it is binary and equireplicated. Let’s see
why it is NN2-balanced (i.e. m = 2): each pair of distinct treatments appears exactly
N1
d = (k − 1) = 3 times at distance s = 1 and N2

d = (k − 2) = 2 times at distance
s = m = 2. More precisely, the treatments 2 and 3 appear at distance s = 1 in the
three lines 1, 3 and 6 and they appear at distance s = 2 in the two lines 4 and 5. It
is the same for this others sets of treatments {1, 2}, {1, 3}, {1, 4}, {2, 4} and {3, 4}.
Note that d is also NN3-balanced.

Example 2 In Table 2, the design belongs to Ω5,10,4 and is NN3-balanced.

1 2 3 4
3 1 4 2
1 4 3 2
3 1 2 4
1 2 4 3
4 1 3 2

Table 1

1 2 3 4
2 3 4 5
3 4 5 1
4 5 1 2
5 1 2 3
1 3 5 2
2 4 1 3
3 5 2 4
4 1 3 5
5 2 4 1

Table 2



Nearest neighbor balanced block designs for autoregressive errors 5

2.2 Autoregressive correlation structure AR(m)

We now describe the correlation structure considered in this paper. We suppose that
the correlation between observations carried out on distinct patients equals zero.

Let ε = (ε1,1, . . . , ε1,k, . . . , εi,1, . . . , εi,k, . . . , εb,1, . . . , εb,k)
′ be the bk-vector of

random errors where εi,` is the process of the error obtained at the `th period (` ∈
[[1, k]]) on the ith patient (i ∈ [[1, b]]) (see below (10), the model that we consider). We
suppose that εi,` is a partial realization of a mth order autoregressive process AR(m)
characterized by the relations

εi,` −
m∑
r=1

θrεi,`−r = wi,` for ` = 0,±1,±2, . . . ,±min{k,m}, (5)

where the θr are the parameters of the model and the wi,` are independent random
variables, identically distributed, with zero mean and constant variance σ2. Recall
that the covariance function γ of a process AR(m) satisfies the following difference
equation (see, for instance, Wei 1990):

γ(s)−
m∑
r=1

θrγ(s− r) =
{
0 for s > 0
σ2 for s = 0

(6)

where for all i in [[1, b]] and for all ` ∈ [[1, k]]

γ(s) = Cov(εi,`, εi,`+s) . (7)

If we note εi the error vector (εi,1, . . . , εi,k)′ from the ith patient, then the variance-
covariance matrix V = Var(εi) does not depend on the ith patient (it is the same for
all the patients). The total variance-covariance matrix V ∗ = Var(ε) is given by:

V ∗ = Ib ⊗ V

where ⊗ is the Kronecker product and Ib is the b× b identity matrix.

Let M be the (k × k)-matrix σ2V −1, where σ2 and V are defined above. The
entries of M has been explicitly given by Wise (1955) and Siddiqui (1958). These
entries are expressed in another way by Passi (1976). In the following, we express the
entries of M in a form similar to those of Passi. This formulation will be convenient
to calculate the information matrix Cd(V ∗) defined in Section 3.

Proposition 1 Assume k ≥ 3. Let m > 0 be an integer such that 2m < k. Put θ0 =
−1 and θu = 0 for all u > m. Then the entries of the matrix M = (γ`,`′)1≤`,`′≤k =
σ2V −1 are given by:

γ`,`′ =

`−1∑
u=0

θuθu+(`′−`) for ` ∈ [[1, k −m]] and `′ ∈ [[`, k]] ; (8)
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more precisely, considering the zero values of the θi, the previous γ`,`′ are given by:

(i) γ`,` =

`−1∑
u=0

θ2u for ` ∈ [[1,m]]

(ii) γ`,` =

m∑
u=0

θ2u for ` ∈ [[m+ 1, k −m]]

(iii) γ`,`+s =

`−1∑
u=0

θuθu+s for ` ∈ [[1,m− 1]], s ∈ [[1,m− `]]

(iv) γ`,`+s =

m−s∑
u=0

θuθu+s for ` ∈ [[1, k −m]], s ∈ [[max(1,m− `+ 1),m]]

(v) γ`,`+s = 0 for ` ∈ [[1, k −m]], s ∈ [[m+ 1, k − `]].

The other entries not covered by (8) can be deduced from these identities:

γ`,`′ = γ`′,` = γk−`+1,k−`′+1 ∀ `, `′ ∈ [[1, k]] (9)

which means that the matrix is symmetrical with respect to its two diagonals.

A formula on the sum c of the entries of M will be given in Proposition 3.

Example 3 For m = 3 and k > 6 = 2m, the matrix M is


θ20 −θ1 −θ2 −θ3 0 · · · 0 0
−θ1 θ20 + θ21 −θ1 + θ1θ2 −θ2 + θ1θ3 −θ3 · · · 0 0
−θ2 −θ1 + θ1θ2 θ20 + θ21 + θ22 −θ1 + θ1θ2 + θ2θ3 −θ2 + θ1θ3 · · · 0 0
−θ3 −θ2 + θ1θ3 −θ1 + θ1θ2 + θ2θ3 θ20 + θ21 + θ22 + θ23 −θ1 + θ1θ2 + θ2θ3 · · · 0 0

...
...

0 0 0 0 0 · · · θ20 + θ21 −θ1
0 0 0 0 0 · · · −θ1 θ20



3 Information matrix

3.1 Description of the model

In our study, we consider the following classical linear model for a design d:

Yd = µ1bk + (Ib ⊗ 1k)α+ Tdβ + ε (10)

where, for a non-zero integer a, 1a denotes the vector of length a filled with ones and
where
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- ε is the bk-vector of random errors which follows the AR(m) process with E(ε) =
0 and Var(ε) = V ∗ (see Section 2.2);

- µ represents the overall mean, α = (α1, . . . , αb)
′ is the vector of patient effects,

β is the v-vector of (uncorrected) treatment effects;
- in Yd = (Y1,1, . . . , Y1,k, . . . , Yi,1, . . . , Yi,`, . . . , Yi,k, . . . , Yb,1, . . . , Yb,k)

′, the el-
ement Yi,` is the response of the ith patient at period `;

- the matrix Ib ⊗ 1k is interpreted as the bk × b incidence matrix;
- the bk × v incidence matrix Td of periods-treatments is determined as follows:

Td =

T1...
Tb

 where Ti = (t`,j(i))1≤`≤k
1≤j≤v

and t`,j(i) = δj,d(i,`) (11)

(δa,b denotes the Kronecker symbol). The entry t`,j(i) of the submatrix Ti indicates
when treatment j is or is not administered to the patient i at period `.

Example 4 : For the design d: i

j `
1 2 3

1 1 1 2
2 2 3 3

, we have v = k = 3, b = 2 and:

(Ib ⊗ 1k) =


1 0
0 1
1 0
0 1
1 0
0 1

 and Td =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 .

3.2 Information matrix

Consider the ith patient, i ∈ [[1, b]], and let Yi = (Yi,1, . . . , Yi,`, . . . , Yi,k)
′ be the

vector of the k responses of the ith patient. In the linear model (10), the GLS esti-
mator β̂ of the v-vector β of treatment effects satisfies the following reduced normal
equations (Grondona and Cressie 1993):

T ′i WTiβ = T ′i WYi where W = V −1−(1′kV −11k)−1V −11k1′kV
−1 . (12)

Hence σ2W = M− c−1M1k1′kM where c = 1′kM1k is the sum of entries of M.

Let γ ∈ Rv and β be a treatment effects; the linear combination γ′ · β =∑v
j=1 γjβj is called a treatment contrast if γ′ · 1v = 0. A block design d is said

to be connected if all treatment contrasts are estimable under d. We refer to Dey
(2010, pages 11 and 12) for details about connected designs.
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In the following, the set Ωv,b,k is restricted to connected designs.

The vector γ = (βj − 1
v

v∑
j=1

βj)1≤j≤v of corrected treatment effects is also written:

γ = (Iv −
1v×v
v

)β (13)

where 1v×v denotes the matrix of dimension v × v filled with ones; this vector γ
satisfies the identifiability constraint γ′ · 1v = 0 and if u ∈ Rv such that u′ · 1v = 0
then u′ · γ = u′ · β. Denote by A† the Moore-Penrose inverse of a matrix A and by γ̂
the GLS estimator of a contrast γ. Then from (12) and (13):

γ̂ = (Iv −
1v×v
v

)(T ′iWTi)
†T ′iWYi = (T ′iWTi)

†T ′iYi . (14)

From equation (14), for the ith patient, the variance-covariance matrix of γ̂ is given
by: Var(γ̂) = (T ′iWTi)

†. Then we deduce the following known result used in Kunert
(1987) and Grondona and Cressie (1993) (see Benchekroun (1993) for a proof):

Proposition 2 Let V ∗ = Ib ⊗ V . In the covariance structure (5), (6), (7), the infor-
mation matrix of the estimator γ̂ of treatment contrasts for the ith patient is given
by Ci,d(V ) = Var(γ̂)† = T ′iWTi and, for all the patients, the information matrix
Cd(V ∗) of dimension v × v is given by:

σ2Cd(V ∗) =
b∑
i=1

σ2Ci,d(V ) =

b∑
i=1

T ′i MTi − c−1
b∑
i=1

T ′i M1k1′kMTi (15)

where c = 1′kM1k is the sum of entries of M.

3.3 Coefficients of the information matrix in our experimental context

In this section we consider a (connected) block design d belonging to Ωv,b,k with
k ≥ 3 and a strictly positive integer m such that 2m < k. We will generalize the
result of Grondona and Cressie (1993) which expresses for m = 2 the coefficients of
the information matrix Cd(V ∗) according to certain entities. We need some additional
notations that generalize theirs for all j, j′ ∈ [[1, v]]:

φ`d,j,i is the number of times that treatment j is applied to the ith patient at either
period ` or period (k − `+ 1) with ` ∈ [[1,m]];

φ`d,j is the number of patients receiving treatment j at periods ` or (k− `+ 1) when
` ∈ [[1,m]] and at the period ` when ` ∈ [[m+ 1, k −m]];

φ`∗d,j,j′ is the number of times that treatments j and j′ occur to the same patient and
for which at least one of j and j′ is applied at period ` or at period (k − ` + 1)
with ` ∈ [[1,m]] (counted twice if j and j′ are applied to both these periods);

Ns
d,j,j′,i is the number of times that j and j′ are applied to the ith patient with a

distance s ∈ [[1, k − 1]]; with Ns
d,j,j,i = 0; we have Ns

d,j,j′,i ∈ {0, 1}.
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As an illustration, in Section 5, we will calculate the above quantities for explicit
designs. We state below some results on these entities, sometimes immediate, that
will be used later in the paper; the first one is due to Koné and Valibouze (2011), the
second one comes from d equireplicated and the last comes from d binary:

v∑
j=1

φ`d,j = 2b for ` ∈ [[1,m]] , (16)

r = rd,j =

k−m∑
`=1

φ`d,j ∀j ∈ [[1, v]] and (17)

φ`d,j,i = δj,d(i,`) + δj,d(i,k−`+1) . (18)

A square NNm-balanced design d inΩv,b,v must satisfies the two identities below
for all j, j′ ∈ [[1, v]] (j 6= j′) and for each ` ∈ [[1,m]]:

φ`d,j =
2b

v
= ω(v − 1) and (19)

φ`∗d,j,j′ =
4b

v
= 2ω(v − 1) . (20)

The two above identities proved in Section 6.6 apply to CBDs. The following propo-
sition generalizes to any m ≥ 3 the result for m = 2 of Grondona and Cressie (1993)
on the information matrix:

Proposition 3 Let v, k and m be integers such that 2 ≤ 2m < k ≤ v and let d be a
design belonging to Ωv,b,k. Let’s put

a` =

m∑
u=`

θu , b` =
m∑
u=`

θ2u and Θt,s = θtθt+s + θt+1θt+1+s + · · ·+ θm−sθm .

Then, for the AR(m) model, the entries of the information matrix Cd := Cd(V ∗) are
given by the following formulas:

- on the diagonal, for each treatment j ∈ [[1, v]]:

σ2Cd,j,j = s0r − s1φ1d,j − s2φ2d,j − · · · − smφmd,j (21)

where s` = b` + c−1a20a`(a` − 2a0); in particular, s0 = b0 − c−1a40 ;

- out of the diagonal, for two distinct treatments j′ 6= j in [[1, v]]:

σ2Cd,j,j′ =
m∑
s=1

Ns
d,j,j′Θ0,s

−
m−1∑
s=1

m−s∑
t=1

Θt,s

b∑
i=1

Ns
d,j,j′,i(φ

t
d,j,iφ

t+s
d,j′,i + φtd,j′,iφ

t+s
d,j,i) (22)

−c−1a20

{
a20λd,j,j′ − a0

m∑
`=1

a`φ
`∗
d,j,j′ +

m∑
`=1

m∑
`′=1

a`a`′
b∑
i=1

φ`d,j,iφ
`′

d,j′,i

}
.
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Moreover, the sum c of the entries of the matrix M = σ2V −1 is given by:

c = 1′kM1k = 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20 . (23)

Remark 1 Consequence of Proposition 3.
From Identity (16) and Proposition 3, the trace of the information matrix Cd

tr(Cd) =
v∑
j=1

Cd,j,j =
s0vr −

∑m
u=1 su

∑v
j=1 φ

u
d,j

σ2

does not depend on the design d ∈ Ωv,b,k and is given by the following identity:

σ2tr(Cd) = s0vr − 2b(s1 + s2 + · · ·+ sm) . (24)

4 Universal optimality

To obtain strong optimality criteria we will study the information matrix Cd =
Cd(V ∗) of the estimator γ̂.

4.1 Preliminary

Let V = {Cd : d ∈ Ωv,b,k} be the set of information matrices of the estimator γ̂
for each design in Ωv,b,k. For each design d ∈ Ωv,b,k, the information matrix Cd is
positive semi-definite of dimension v×v and satisfies these identities (Kiefer 1975b):

Cd1v = C
′

d1v = 0v (25)

where, for a non-zero integer a, 0a denotes the vector of length a filled with zeros;
that is to say: in Cd the row and column sums are zero.

Definition 3 (Kiefer 1975a) A block design d belonging to Ωv,b,k is said universally
optimal if its information matrix Cd minimizes simultaneously all functions ψ : V 7→
[−∞,+∞], called criterions, satisfying the three following conditions:

(i) for each C ∈ V , ψ(C) is invariant under all permutations applied to the rows and
columns of C;

(ii) ψ is convex, i.e.ψ{aC1+(1−a)C2} ≤ aψ(C1)+(1−a)ψ(C2) for all C1,C2 ∈ V
and 0 ≤ a ≤ 1;

(iii) ψ(aC) ≥ ψ(C) for all C ∈ V and 0 < a < 1.

Proposition 4 (Kiefer 1975b) Suppose that there exists d∗ ∈ Ωv,b,k, such that its
information matrix Cd∗ satisfies (25) and verifies:

(i) Cd∗ is completely symmetric, i.e. Cd∗ = αIv − α
v 1v×v where α is a scalar;

(ii) the trace of Cd∗ is maximal on the set V .

Then the design d∗ is universally optimal in Ωv,b,k.

By Identity (25), we just have to find a design whose information matrix meets con-
ditions (i) and (ii) of Kiefer’s Proposition 4.
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4.2 Optimality conditions for the correlation structure AR(m)

We consider the (binary, equireplicated, connected) block designs in Ωv,b,k with 3 ≤
k ≤ v and an integer m > 0 such that 2m < k. We want to establish universal
optimal conditions for the NNm-balanced BIBDs (resp. CBDs) existing in Ωv,b,k.

If no design d in Ωv,b,k satisfies both Identities (3) and (4) then there is no NNm-
balanced BIBD(v, b, r, k, λ) inΩv,b,k because these are necessary conditions for that.
It is similar for the CBD: a NNm-balanced CBD(v, b) inΩv,b,v must satisfy λ = b =
r and Identities (4) (with k = v), (19) and (20).

Proposition 4 of Kiefer gives two sufficient conditions for a design to be univer-
sally optimal. Since all the designs in Ωv,b,k have the same trace (see Remark 1),
the condition (ii) of this Proposition is automatically satisfied. It is then enough to
search for designs in Ωv,b,k whose information matrix is completely symmetric. We
can now establish our main Theorem:

Theorem 1 (Optimality Theorem) Let v, k,m and b > 0 be integers. Assume that
2 ≤ 2m < k < v and let’s put ω = 2b

v(v−1) . If for the AR(m) model there exists
a NNm-balanced BIBD(v, b, r, k, λ) design d in Ωv,b,k, which also fulfills, for all
distinct treatments j, j′ in [[1, v]] and, for all `, `′ ∈ [[1,m]], the following conditions:

(i) φ`∗d,j,j′ = 2ω(k − 1) ,

(ii)

b∑
i=1

φ`d,j,iφ
`′

d,j′,i = ω(2− δ`,`′) ,

(iii)

b∑
i=1

N
|`−`′|
d,j,j′,i(φ

`
d,j,iφ

`′

d,j′,i + φ`d,j′,iφ
`′

d,j,i) = 2ω when ` 6= `′

then d is universally optimal over Ωv,b,k. (δ`,`′ denotes the Kronecker symbol.)

Note that when d is a NNm-balanced universally optimal BIBD(v, b, r, k, λ),
Identities (3) and (4) must also be satisfied by d. Then, when d is universally op-
timal, Theorem 1 and Proposition 3 imply that the off-diagonal entries (for j′ 6= j in
[[1, v]]) of the information matrix Cd are given by:

σ2

ω
Cd,j,j′ = (k − s)

m∑
s=1

Θ0,s − 2

m−1∑
s=1

m−s∑
t=1

Θt,s

−c
−1a20
2

{
a20k(k − 1)− 4a0(k − 1)

m∑
`=1

a` +2

m∑
`=1

(a2` + 2a`

m∑
`′=1
`′ 6=`

a`′)

 .

(26)

When v = k, Condition (i) of Theorem 1 becomes Identity (20) which is al-
ways satisfied for a CBD(v, b). Then, in case of complete block designs, we obtain
following theorem with one condition less:

Theorem 2 Assume that b, v andm are strictly positive integers such that 2 ≤ 2m <
v. If for the AR(m) model there exists a (square) design d in Ωv,b,v which is a NNm-
balanced CBD(v, b) then d is universally optimal over Ωv,b,v if it fulfills Conditions
(ii) and (iii) of Theorem 1.
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Remark 2 A necessary condition for the existence of designs satisfying Conditions
(ii) of Theorem 1 is that ω = 2b

v(v−1) is an integer and therefore v(v − 1) divides
2b. A design is said minimal if the value of b is minimal for k and v fixed and if the
design satisfies the associated optimality conditions. In Koné and Valibouze (2011)
and Morgan and Chakravarti (1988), the authors showed that the minimal value b for
which there exists a NN2-balanced CBD(v, b) is when ω = 1; i.e. 2b = v(v − 1).

As for Proposition 3, Theorems 1 and 2 imply the results of Kunert (1987), for
m = 1, and the results of Grondona and Cressie (1993), for m = 2 1.

5 Optimality Theorem and Semi-Balanced arrays

We will illustrate Optimality Theorems with designs called semi-balanced arrays.
The concept of orthogonal arrays (OA) has been introduced in Rao (1946, 1947);
later, in Rao (1961), appeared two variants called OA of Type I and OA of Type II;
these two variants have been renamed respectively transitive arrays (TA) and semi-
balanced arrays (SB) (for details, see also Hedayat, Sloane and Stufken 1999; Mor-
gan and Chakravarti 1988; Rao 1973).

Definition 4 A b × k array of v symbols is an SB(b, k, v, t), where t is called the
strength, if for any selection of t columns each unordered t-tuple has distinct symbols
among v and appears exactly ωt times, where ωt ∈ N is called the index of the array.

To define a transitive array, it is sufficient to replace “unordered t-tuples” by “or-
dered t-tuples” in the definition of an SB. Clearly, a TA(b, k, v, t) of index ω∗t is an
SB(b, k, v, t) of index ωt = t! ω∗t .

Remark 3 As the number of unordered t-tuples of symbols is
(
v
t

)
= v!

t!(v−t)! , the
index of an SB(b, k, v, t) verifies ωt = b/

(
v
t

)
. Consequently, the existence of an

SB(b, k, v, t) implies that b is a multiple of
(
v
t

)
. Note that for t = 2, the index ω2 is

the entity ω = 2b
v(v−1) of Theorem 1.

In the context of our paper, b is the number of patients, k is the number of treat-
ments received by each patient, and the v symbols represent the indices of the distinct
treatments. We have chosen this particular context to clarify our explanations.

There exist many different methods to construct SBs and TAs designs (Morgan
and Chakravarti 1988; Mukhopadhyay 1972; Ramanujacharyulu 1966; Stufken 1991,
. . .). In the context of this section, we will be interested only in the strength t = 2
and then the index is ω. In Rao (1961, 1973), the author showed that if a TA(v(v −
1), k, v, 2) exists, then it can be constructed from (k − 1) mutually orthogonal latin
squares of order v, and that if v is an odd prime power or an odd prime, an SB(v(v−
1)/2, v, v, 2) can be constructed from GF(v), the finite Galois field with v elements.

1 We bring attention on an error of their paper about one term of their formula (4.9) giving σ2cl,m for
l 6= m: in the term 2(1 − φ1 − φ2)φ2f∗l,m of their paper, the factor 2 must be removed. The notations
e∗l,m and f∗l,m of their paper correspond to the notations φ1∗d,l,m and φ2∗d,l,m of our paper.
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Example 5 We built the following designs (ai), i ∈ [[1, 5]], using the cyclic shift
method of Ahmed and Akhtar (2009) to build balanced neighbor designs of all orders.
Their method generalizes that of Iqbal, Aman Ullah and Nasir (2006). The design d
resulting from the superposition of Designs (a1), . . . (a5) is an SB(55, 7, 11, 2) of
index ω = 1.

1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 1
7 8 9 10 11 1 2
8 9 10 11 1 2 3
9 10 11 1 2 3 4
10 11 1 2 3 4 5
11 1 2 3 4 5 6

(a1)

1 3 5 7 9 11 2
2 4 6 8 10 1 3
3 5 7 9 11 2 4
4 6 8 10 1 3 5
5 7 9 11 2 4 6
6 8 10 1 3 5 7
7 9 11 2 4 6 8
8 10 1 3 5 7 9
9 11 2 4 6 8 10
10 1 3 5 7 9 11
11 2 4 6 8 10 1

(a2)
1 4 7 10 2 5 8
2 5 8 11 3 6 9
3 6 9 1 4 7 10
4 7 10 2 5 8 11
5 8 11 3 6 9 1
6 9 1 4 7 10 2
7 10 2 5 8 11 3
8 11 3 6 9 1 4
9 1 4 7 10 2 5
10 2 5 8 11 3 6
11 3 6 9 1 4 7

(a3)

1 5 9 2 6 10 3
2 6 10 3 7 11 4
3 7 11 4 8 1 5
4 8 1 5 9 2 6
5 9 2 6 10 3 7
6 10 3 7 11 4 8
7 11 4 8 1 5 9
8 1 5 9 2 6 10
9 2 6 10 3 7 11
10 3 7 11 4 8 1
11 4 8 1 5 9 2

(a4)
1 6 11 5 10 4 9
2 7 1 6 11 5 10
3 8 2 7 1 6 11
4 9 3 8 2 7 1
5 10 4 9 3 8 2
6 11 5 10 4 9 3
7 1 6 11 5 10 4
8 2 7 1 6 11 5
9 3 8 2 7 1 6
10 4 9 3 8 2 7
11 5 10 4 9 3 8

(a5)

Example 6 The following designs have been constructed by Deheuvels and Derzko
(1991) .

1 3 4 5 2
2 4 5 1 3
3 5 1 2 4
4 1 2 3 5
5 2 3 4 1
1 2 5 3 4
2 3 1 4 5
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3

(a)

1 4 3 2 5
2 5 4 3 1
3 1 5 4 2
4 2 1 5 3
5 3 2 1 4
1 5 2 4 3
2 1 3 5 4
3 2 4 1 5
4 3 5 2 1
5 4 1 3 2

(b)

1 3 4 5 2
2 4 5 1 3
3 5 1 2 4
4 1 2 3 5
5 2 3 4 1

(c)

1 2 5 3 4
2 3 1 4 5
3 4 2 5 1
4 5 3 1 2
5 1 4 2 3

(d)

Design (a), resulting from the superposition of the two quasi-complete Latin squares
(c) and (d), is an SB(10, 5, 5, 2) of index ω = 1. Design (b) results from the su-
perposition of the mirror images of designs (c) and (d). Design (e), resulting from
the superposition of designs (a) and (b), yields a TA(20, 5, 5, 2) of index 1 or an
SB(20, 5, 5, 2) of index 2.
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Martin and Eccleston (1991) have introduced the concept of strongly directionally
equineighboured designs (SDEN)2. They remarked that for k ≥ 3 an SDEN(b, k, v)
is equivalent to an SB(b, k, v, 2) and they constructed these designs from ω(v − 1)
latin squares of order v. The part (a) of their Theorem 2 implies that, for k ≥ 3, if
an SB(b, k, v, 2) exists then it is universally optimal within Ωv,b,k for any variance-
covariance matrix V , under GLS.

We are interested in SBs of strength t = 2 since if an SB(b, k, v, 2) exists then
it can be interpreted as a BIBD(v, b, r, k, λ) (it is well kwown and easily provable).
The following proposition applies Theorem 2 in Martin and Eccleston (1991). The
correlation model that these authors use is broader than AR(m), but it applies only
(for optimality) to a subset of designs among those we study in this article. Notice
that this theorem also applies to non-binary designs, but we do not consider them
here.

Proposition 5 Let k and v be two integers such that 3 ≤ k ≤ v. Suppose there exists
a design d which is an SB(b, k, v, 2). Then for k < v (resp. k = v), the design d is a
BIBD(v, b, r, k, λ) (resp. a CBD(v, b)) and it satisfies Identity (3) for λ and

r =
k(v − 1)

2
ω (27)

where ω = 2b
v(v−1) is the index of d. Moreover, for an integer m > 0 such that

2m < k, the design d is NNm-balanced universally optimal for the AR(m) correla-
tion structure. In particular, for j, j′ ∈ [[1, v]], j 6= j′ and `, `′, s ∈ [[1,m]], d satisfies
Identity (4) on Ns

d and Identities (i),(ii) and (iii) of Optimality Theorems 1.

A similar result about weakly universally optimal BIBDs is given in Morgan and
Chakravarti (1988) (Theorem 4.1) for the NN2 correlation structure and in Koné and
Valibouze (2011) for the NNm (m > 1) correlation structures.

To illustrate Proposition 5 and Optimality Theorems 1 and 2, we end with two ex-
amples with SBs of strength 2: the first one is the simplest case with a CBD (Theorem
2) and the second one is with a BIBD (Theorem 1).

Example 7 Let us consider the design (a) of Example 6. This design is an SB(b =
10, k = 5, v = 5, t = 2) of index ω = 1. Following Proposition 5, it is a CBD(v =
5, b = 10) with r = b = λ = 10 and k = v = 5. On this CBD, we consider an AR(m)
correlation structure with 2m < k = 5. We chose m = 2. Let `, `′ ∈ [[1, 2]] = [[1,m]]
and let j, j′ ∈ [[1, 5]] = [[1, v]] be two distinct treatments.

To check Identity (4), we have to consider s ∈ [[1, 2]] = [[1,m]]. For s = 1, we
count in the design d =(a) the number of times that j and j′ are applied consecutively
to the same patient; we find N1

d,j,j′ = 4 and we check that N1
d,j,j′ = ω(k − s). For

s = 2, the number of times that j and j′ are applied to the same patient at distance
s = 2 is found to be N2

d,j,j′ = 3 = ω(k − s). Hence, Identity (4) is satisfied.

2 Deheuvels and Derzo coined the terms totally balanced for SDEN and SB, and universally balanced
for TA.
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Now, to check Identity (ii) of Theorem 1, consider the value φ`d,j,i, the number of
times that the treatment j is applied to the ith patient at period ` or (k− `+1). When
` = `′, the value

∑10
i=1 φ

`
d,j,iφ

`′

d,j′,i is the number of times that j and j′ are applied to
the same patient at the periods ` and k − ` + 1. By the definition of SBs of strength
2, this value is the index ω = 1 of Design (a) (that we can verify on the design itself).
When ` 6= `′, by symmetry, we can chose ` = 1 and `′ = 2. For example, j = 1 and
j′ = 5 appear 2 times on the same row (patients i = 1 and i = 8) with j at period
` = 1 or k− `+ 1 = 5 and j′ is at period `′ = 2 or k− `′ + 1 = 4. In the same way,
we could check

∑10
i=1 φ

`
d,j,iφ

`′

d,j′,i = 2 = 2ω for any j, j′ with j 6= j′. Then Identity
(ii) holds.

To finish our example, for Identity (iii) of Theorem 1, suppose that ` 6= `′. Then
necessarily | `−`′ |= 1 and we can chose ` = 1 and `′ = 2. The valueN |`−`

′|
d,j,j′,i equals

1 if the treatments j and j′ are applied consecutively to the ith patient; otherwise
N
|`−`′|
d,j,j′,i = 0. For example, j = 1 and j′ = 5 appear ω = 1 time together at periods

` = 1 and `′ = 2 (patient i = 10) and ω = 1 time in periods k − ` + 1 = 5 and
k− `′+1 = 4 (patient i = 8). This could be checked for any j, j′ with j 6= j′. Then,
as stated in the Proposition 5, we obtain Identity (iii):

10∑
i=1

Ns
d,j,j′,i(φ

`
d,j,iφ

`′

d,j′,i+φ
`
d,j′,iφ

`′

d,j,i) = 2 = 2ω , `, `′ ∈ [[1, 2]], s =| `−`′ |= 1 .

In the same way, we can check that Identity (iii) holds for each couple (j, j′) where
j 6= j′. Consequently, from Theorem 2, Design (a) is universally optimal.

Example 8 Let us consider the design d constructed in Example 5 with index ω = 1.
By Proposition 5, d is also a BIBD(11, 55, 35, 7, 21). We have r = 7× 5 = 35 since
each treatment appears once and only once in each column of each design (ai). The
number λ of times any one pair of distinct treatments is applied to the same patient
is 21 which is actually the value ω k(k−1)2 expected in Identity (3). We let the reader
check Identities (4), then (ii) and (iii) of Theorem 1 for m = 3; we check only
Identity (i). Let ` ∈ [[1, 3]] and let j, j′ ∈ [[1, 11]] be two distinct treatments. We have
to count φ`∗d,j,j′ , the number of times that j and j′ occur to the same patient and for
which at least one of j and j′ is applied at period ` or at period (k − `+ 1) (counted
twice if j and j′ are applied to both these periods). We find indeed Identity (i):

φ`∗d,j,j′ =

5∑
u=1

φ`∗(au),j,j′ = 12 = 2ω(k − 1) .

For example, for ` = 1 and k − `+ 1 = 7, we observe the first and the last columns.
Let (j, j′) = (1, 3). For u = 1, the treatment j = 1 appears in the first column of line
i = 1 with treatment 3 in the same line and it appears also in the last column of the
line i = 6 without the treatment 3 in the same line; the treatment j′ = 3 appears in
the first column of line i = 3 without the treatment 1 in the same line and it appears
on the last column of the line i = 8 with the treatment 1 in the same line. Then
φ1∗(a1),1,3 = 2. We count also φ1∗(a2),1,3 = φ1∗(a3),1,3 = φ1∗(a5),1,3 = 2 and φ1∗(a2),1,3 = 4.
Then φ1∗d,1,3 = 12. In the same way, φ2∗d,1,3 = φ3∗d,1,3 = 12. Consequently, applying
Optimality Theorem 1, we conclude that Design d is universally optimal.
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6 Appendix. Proofs

This appendix begins by the proof of formula (23) on c = 1′kM1k in Proposition 3.
To establish this formula we need the (essential) technical Lemma 1 on the sums of
entries of a row of matrix M which is in Section 6.1 too. It is probably the difficulty
in establishing this lemma that has long prevented the generalization to any m of the
optimal conditions for the AR(m) process. The next four sections are devoted to the
respective proofs of Propositions 3, Theorems 1 and 2 and Proposition 5. We will end
in Section 6.6 with the proofs of Identities (3), (4), (19) and (20).

6.1 Sum c of entries of matrix M, Identity (23)

We want establish the formula (23) of Proposition 3. This formula on c, the sum of
entries of M, is essentially based on Lemma 1 which gives the sum p` of entries of
row ` ∈ [[1, k]]; it will be also used to establish Identity (44) in the proof of Proposition
3. We first prove Identity (23) using Lemma 1 that will come after.
By definition, c = 1′kM1k =

∑k
`=1

∑k
`′=1 γ`,`′ = 2

∑m
`=1 p` +

∑k−m
`=m+1 p`. After

that, from Formula p` = a0(a0 − a`) of Lemma 1, we find:

c = 2a0

m∑
`=1

(a0 − a`) +
k−m∑
`=m+1

a20 = 2a0

m∑
`=1

(θ0 + · · ·+ θ`−1) + (k − 2m)a20

= 2a0

m−1∑
`=0

(m− `)θ` + (k − 2m)a20

because in the sum
∑m
`=1(θ0 + · · · + θ`−1) we count m times θ0, m − 1 times θ1,

and so on until only once θm−1. Thus Formula (23) is proved ut

Lemma 1 Assume k > 2m ≥ 2. Let p` =
k∑

`′=1

γ`,`′ be the sum of the entries of row

` ∈ [[1, k]] of matrix M, a` =
m∑
u=`

θu for ` ≤ m and a` = 0 for ` > m. Then:

p` = a0(a0 − a`) = (1− θ1 − · · · − θm)(1− θ1 − · · · − θ`−1) (28)

for ` ∈ [[1, k −m]] and, as M is symmetric with respect to its second diagonal, p` =
pk−`+1 for ` ∈ [[k −m+ 1, k]].

In particular, p` = pm+1 = a20 for ` ∈ [[m+ 1, k −m]].

Proof We consider the matrix M = (γ`,`′)1≤`,`′≤k and we would like to express
the sum p` =

∑k
`′=1 γ`,`′ of the entries of row ` in the form given in Lemma 1. By

symmetry of M we can suppose that ` ∈ [[1, k −m]]. We write p` = α` + β` where
α` =

∑k
`′=` γ`,`′ and β` =

∑`−1
`′=1 γ`,`′ .
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First we compute α` =
∑k
`′=` γ`,`′ . From Identity (8) of Proposition 1, we have

the following expression of each γ`,`′ for `′ ∈ [[`, k]]:

γ`,`+s =

`−1∑
u=0

θuθu+s for s ∈ [[0, k − `]] . (29)

Then, as α` =
∑k−`
s=0

∑`−1
u=0 θuθu+s, we obtain:

α` =

`−1∑
u=0

(
θu

k−∑̀
s=0

θu+s

)
=

`−1∑
u=0

(
θu

k+u−`∑
b=u

θb

)
=

`−1∑
u=0

(
θu

m∑
b=u

θb

)
(30)

because for each b > m we have θb = 0 and for each u ∈ [[0, `− 1]] we have
k + u− ` ≥ k − ` ≥ k − (k −m) = m.

Now consider β` =
∑`−1
`′=1 γ`,`′ =

∑`−1
`′=1

∑`′−1
u=0 θuθu+(`−`′) and search to es-

tablish this formula:

β` =

`−1∑
a=1

θa

a−1∑
b=0

θb . (31)

The expression β` =
∑`−1
`′=1

∑`′−1
u=0 θuθu+(`−`′) is a double sum and ` is fixed. Let

us consider the square matrix B = (bu,`′) of size ` − 1 indexed by `′ ∈ [[1, `− 1]]
for the columns and by u ∈ [[0, `− 2]] for the rows. We define bu,`′ as follows:
bu,`′ = θuθu+(`−`′) for u ≤ `′, otherwise bu,`′ = 0 (B is upper triangular). Note that∑`′−1
u=0 θuθu+(`−`′) is both the inner sum of the double sum β` and the sum of the

entries of column `′; thus the sum of all the entries of B is β`.
To obtain the right member of (31), we will sum the entries for each diagonal

of B. As B is upper triangular, each of the sums of the diagonals below the main
diagonal is zero; for the ` − 1 upper diagonals, let a be in [[1, `− 1]]; the sum of the
entries of the diagonal at distance ` − 1 − a from the main diagonal is θa

∑a−1
b=0 θb.

For example, for the main diagonal (a = `− 1 and the distance is 0), the sum of the
entries equals θ`−1(θ0+θ1+· · ·+θ`−2); for the diagonal just above the main diagonal
(a = ` − 2 and the distance is 1), the sum of entries is θ`−2(θ0 + θ1 + · · · + θ`−3);
the last diagonal is reduced to the only one element θ1θ0 (a = 1 and the distance is
`− 2). Then (31) is proved.

From (30) and (31), we deduce Formula (28) of Lemma 1:

p` = α` + β` =

`−1∑
u=0

θu

m∑
b=0

θb = a0(a0 − a`)

with a` =
∑m
b=` θb for ` ∈ [[1,m]] and a` = 0 for ` > m. In particular, for ` ∈

[[m+ 1, k −m]], the formula becomes p` = pm+1 = a20 = (1 − θ1 − · · · − θm)2.
Consequently, Lemma 1 is proved ut
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6.2 Proof of Proposition 3 on entries of the information matrix

As the design d is fixed in Ωv,b,k, it will be omitted in the indices. In Section 6.1,
we have already established Identity (23) on c. We still have to establish Identities
(21) and (22) about the entries σ2Cj,j and σ2Cj,j′ (j 6= j′) of the matrix σ2Cd. The
information matrix is given by Identity (15) rewritten below:

σ2Cd =
b∑
i=1

T ′i MTi − c−1
b∑
i=1

T ′i M 1k1′kMTi = A− c−1B (32)

where Ti = (t1(i), . . . , tv(i)), A =
∑b
i=1 T

′
i MTi and B =

∑b
i=1 T

′
i M 1k1′kMTi.

The entries γ`,`′ of the matrix M = σ2V −1 are described in Proposition 1. We will
find:

Cj,j = τ − ωj,j and Cj,j′ = µ− ωj,j′

where τ and µ come from A and ωj,j and ωj,j′ come from c−1B. In the following,
we will look for formulas on τ , µ, ωj,j and ωj,j′ by first considering the matrix A
and then the matrix c−1B. Before that, we introduce some necessary tools.

Preliminary notations and remarks
For r ∈ [[1, k]], er = (er,s)1≤s≤k denotes the r-th canonical vector of Rk, i.e.

er,s = δr,s (where δ is the Kronecker symbol). Note that each entry of a k×k-matrix
A is expressed in the form Ar,s = e′r A es.

For each treatment j ∈ [[1, v]], the jth column vector tj(i) of the matrix Ti defined
in (11) can be expressed as follows: for each i ∈ [[1, b]], we set

tj(i) =
{
e` if j is applied to i-th patient at period ` ∈ [[1, k]]
0k otherwise. (33)

Hence, following notations of Section 3.3, for each period ` ∈ [[1, k −m]], we find

φ`j =

#{i : tj(i) ∈ {e`, ek−`+1}} if ` ∈ [[1,m]]

#{i : tj(i) = e`} if ` ∈ [[m+ 1, k −m]] .
(34)

Remark 4 For each treatment j, exactly r vectors tj(i) are non-zero because exactly
r patients receive the treatment j.

Remark 5 As the designs we consider in this paper are binary, each patient i receives
at most one time the same treatment j; consequently, for each ` ∈ [[1,m]] and because
` 6= k − `+ 1 since k > 2m, we have:

{i : tj(i) = e`} ∩ {i : tj(i) = ek−`+1} = ∅ .

Now we fix two distinct treatments j, j′ in [[1, v]]. To establish Identities (21) and
(22) about σ2Cj,j and σ2Cj,j′ of the matrix σ2Cd, we will examine separately the
contributions of each of the two sums of the right member of (32), namely A (for τ
and µ) then B (for ωj,j and ωj,j′ ). Then we will achieve the proof.
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Matrix A =
∑b
i=1 T

′
i MTi of Identity (32):

Diagonal entry σ2Cj,j: determination of τ
The contribution of A to the diagonal entry σ2Cj,j is the value τ =

∑b
i=1 τi

where τi = t′j(i)M tj(i). From Definition (33) of vectors tj(i), we have for each
patient i:

τi =

k∑
`=1

∑
{i : tj(i)=e`}

e′`M e` =

m∑
`=1

φ`j e
′
`M e` +

k−m∑
`=m+1

φ`j e
′
`M e` . (35)

Combining the above identity (35) and Lemma 1 applied to the diagonal entries
γ`,` = e′`M e` of matrix M, we obtain (recall that θ0 = −1):

τ =

m∑
`=1

φ`j (θ
2
0 + θ21 · · ·+ θ2`−1) +

k−m∑
`=m+1

φ`j (θ
2
0 + θ21 · · ·+ θ2m)

= φ1j θ
2
0 + φ2j (θ

2
0 + θ21) + · · ·+ φmj (θ20 + θ21 + · · ·+ θ2m−1) (36)

+

k−m∑
`=m+1

φ`j(θ
2
0 + θ21 + · · ·+ θ2m)

= θ20

k−m∑
`=1

φ`j + θ21

k−m∑
`=2

φ`j + θ22

k−m∑
`=3

φ`j + · · ·+ θ2m

k−m∑
`=m+1

φ`j .

As
∑k−m
`=1 φ`j = r (see Identity (17)), we get:

τ = θ20r + θ21(r − φ1j ) + θ22(r − (φ1j + φ2j )) + · · ·+ θ2m(r − (φ1j + · · ·+ φmj ))

= r

m∑
u=0

θ2u − φ1j
m∑
u=1

θ2u − φ2j
m∑
u=2

θ2u − · · · − φ`j
m∑
u=`

θ2u − · · · − φmj θ2m .

Finally, the contribution τ of the term A to the diagonal entry σ2Cj,j is:

τ = rb0 − φ1jb1 − φ2jb2 − · · · − φmj bm (37)

with b` =
m∑
u=`

θ2u for ` ∈ [[1,m]], as defined in Proposition 3.

Extra-diagonal entry σ2Cj,j′ : determination of µ

Similarly, let us now focus on the contribution µ of the sum A =
∑b
i=1 T

′
i MTi

to the extra-diagonal entry σ2Cj,j′ , where µ =
∑b
i=1 µi with µi = t′j(i)Mtj′(i).

For this purpose, we need to introduce the following notation: for `, `′ ∈ [[1, k]], we
denote by φ`,`

′

j,j′ the number of patients who receive the distinct treatments j and j′ at
periods `, `′:

φ`,`
′

j,j′ = #{i ∈ [[1, b]] : tj(i) + tj′(i) = e` + e`′} . (38)
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Note that if `′ = ` then tj(i)+ tj′(i) 6= e`+e`′ for each patient i because the distinct
treatments j and j′ cannot be applied simultaneously to the same patient i at the same
period `. Hence, for any s ∈ [[1, k − 1]], we can write:

Ns
j,j′ =

∑
φ`,`

′

j,j′ (39)

where the sum involves all the distinct periods `, `′ in [[1, k]] and s = |`− `′| 6= 0.
From Definition of vectors tj(i), as j 6= j′, the only non-zero µi = t′j(i)Mtj′(i)

are such that tj(i)+ tj′(i) = e`+e`′ for some periods ` and `′ which are necessarily
distinct. Moreover, as the matrix M is symmetric, when the identity tj(i) + tj′(i) =
e` + e`′ holds, we can suppose that tj(i) = e` and tj′(i) = e`′ with ` < `′.

Hence, by putting ui,j = tj(i) + tj′(i), v`,`′ = e` + e`′ and considering the
element γ`,`′ = e′`M e`′ of the matrix M, we obtain:

µ =
∑

1≤`<`′≤k

∑
{i :ui,j=v`,`′}

e′`M e`′ =
∑

1≤`<`′≤k

γ`,`′φ
`,`′

j,j′ =

k∑
`′=2

`′−1∑
`=1

γ`,`′φ
`,`′

j,j′ .

For sake of clarity we let φ`,`
′
= φ`,`

′

j,j′ for the rest of this proof. We introduce in the
expression of µ the values of the entries γ`,`′ of the matrix M given in Proposition 1.
Collecting the factors of each θ` and θ`θ`′ , we obtain:

µ = − θ1

(
φ1,2 + · · ·+ φk−1,k

)
− · · · − θs

(
φ`,`+s + φ`+1,`+s+1 + · · ·+ φk−s,k

)
− · · · − θm

(
φ1,m+1 + · · ·+ φk−m,k

)
+

m−1∑
s=1

θ1θ1+s

(
φ2,2+s + · · ·+ φk−s−1,k−1

)
+

m−2∑
s=1

θ2θ2+s

(
φ3,3+s + · · ·+ φk−s−2,k−2

)
+ · · ·

+

m−u∑
s=1

θuθu+s

(
φu+1,u+1+s + φu+2,u+2+s + · · ·+ φk−s−u,k−u

)
(40)

+ · · ·+
2∑
s=1

θm−2θm−2+s

(
φm−1,m−1+s + · · ·+ φk−s−(m−2),k−(m−2)

)
+ θm−1θm

(
φm,m+1 + · · ·+ φk−m,k−m+1

)
.

Recall that Identity (39) says that Ns
j,j′ = φ1,1+s + φ2,2+s + · · · + φk−s−1,k−1 +

φk−s,k. Putting

Ut,s = φt,t+s + φk−t−s+1,k−t+1 ,

for s ∈ [[1,m− 1]] and t ∈ [[1,m− s]], the expression (40) of µ becomes:
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µ =

m∑
s=1

θ0θsN
s
j,j′ +

m−1∑
s=1

θ1θ1+s(N
s
j,j′ − U1,s)

+

m−2∑
s=1

θ2θ2+s(N
s
j,j′ − (U1,s + U2,s)) + · · ·

+

m−u∑
s=1

θuθu+s(N
s
j,j′ − (U1,s + U2,s + · · ·+ Uu,s)) + . . . (41)

+

2∑
s=1

θm−2θm−2+s(N
s
j,j′ − (U1,s + U2,s + · · ·+ Um−2,s))

+ θm−1θm(N1
j,j′ − (U1,1 + U2,1 + · · ·+ Um−1,1)) .

Collecting the factors of each Ns
j,j′ and each Ut,s, we obtain:

µ =

m∑
s=1

Ns
j,j′

m−s∑
u=0

θuθu+s −
m−1∑
s=1

m−s∑
t=1

Ut,s

m−s∑
u=t

θuθu+s .

Indeed, for each s ∈ [[1,m− 1]] and t ∈ [[1,m− s]], the component βt,s of µ which
collects the terms Ut,sθa,b is the following:

βt,s = −Ut,s(θtθt+s + θt+1θt+1+s + · · ·+ θm−sθm) .

In addition, the double sum
m−1∑
s=1

m−s∑
t=1

βt,s collects all the terms of the form Ut,sθa,b

of the right-hand side of Identity (41). In order to complete the determination of µ,
note that:

Remark 6 We have φ`j,i = δj,d(i,`) + δj,d(i,k−`+1) and Ns
j,j′,i ∈ {0, 1} because d is

binary (see Section 3.3); then, from Identity (38) about φ`,`
′

j,j′ , we find:

Ut,s = φt,t+sj,j′ + φk−t−s+1,k−t+1
j,j′

= #
{
i : tj(i) + tj′(i) ∈ {et + et+s, ek−t+1 + ek−(t+s)+1}

}
=

b∑
i=1

Ns
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ) .

Finally, the contribution µ of the term A =
∑b
i=1 T

′
i MTi to the entry σ2Cj,j′ is:

µ =

m∑
s=1

Ns
j,j′Θ0,s −

m−1∑
s=1

m−s∑
t=1

Θt,s

b∑
i=1

Ns
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ) (42)

where Θt,s = θtθt+s + θt+1θt+1+s + · · ·+ θm−sθm.
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Matrix c−1B = c−1
∑b
i=1 T

′
i M 1k1′kMTi of Identity (32):

Introduce the following notation κj1,i for some treatment j1 and some patient i:

κj1,i = t′j1(i)M 1k .

As κj1,i is a scalar and M = M′ (i.e. M is symmetric), we also have:

κj1,i = 1′kM t′j1(i) .

Then the contribution of c−1B to the entry σ2Cj1,j2 for two treatments j1, j2, not
necessarily distinct, is

ωj1,j2 = c−1
b∑
i=1

κj1,iκj2,i . (43)

In the following, we determine the quantities κj,i = t′j(i)M 1k to find ωj1,j2 .

When the treatment j is not applied to the ith patient, κj,i = 0 because tj(i) = 0k.
Otherwise, it is applied only once, at some period ` and we have

κj,i = t′j(i)M1k =

k∑
`′=1

γ`,`′ .

Recall that the sum of the entries of row ` in matrix M is given in Lemma 1: for

each ` ∈ [[1, k −m]], the value p` =
k∑

`′=1

γ`,`′ = a0(a0 − a`) (with a` =
m∑
u=`

θu for

` ∈ [[1,m]] and a` = 0 for ` > m) and p` = pk−`+1 for ` ∈ [[k −m, k]]. Remark that
p` = pm+1 = a20 for all ` > m. Thus ∀ ` ∈ [[1,m]] ∪ [[k −m+ 1, k]]:

p` − pm+1 = −a0a` . (44)

Now, let’s determine the values of nj,i, defined in Section 2.1, and φ`j,i for all ` ∈
[[1,m]]. Recall that tj(i) = e` if the treatment j is applied to the ith patient at period
` and tj(i) = 0k otherwise.

Case tj(i) = 0k: nj,i = φ1j,i = · · · = φmj,i = 0 because the ith patient does not
receive the treatment j.

Case tj(i) = e` where ` ∈ [[1,m]] ∪ [[k −m+ 1, k]]: nj,i = φ`j,i = 1 and
φ1j,i = · · · = φ`−1j,i = φ`+1

j,i = · · · = φmj,i = 0.
Case tj(i) = e` where ` ∈ [[m+ 1, k −m]]: nj,i = 1 and φ1j,i = · · · = φmj,i = 0.

If the treatment j is applied to the ith patient at some period ` for ` ∈ [[1, k]] then
κj,i = p`. Otherwise, if the treatment j is not applied to the ith patient then κj,i = 0.
Consequently, we can express the quantity κj,i in the following form

κj,i = pm+1nj,i + φ1j,i(p1 − pm+1) + φ2j,i(p2 − pm+1) + · · ·
· · ·+ φmj,i(pm − pm+1) . (45)
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From Formulas (28) and (44), we deduce that:

κj,i = a0(a0nj,i − a1φ1j,i − a2φ2j,i − · · · − amφmj,i)

= a0

(
a0nj,i −

m∑
`=1

a`φ
`
j,i

)
. (46)

Diagonal entry σ2Cj,j: determination of ωj,j

Recall that the contribution c−1B to the entry σ2Cj,j is the quantity ωj,j =
c−1

∑
i κ

2
j,i (see Identity (43)). From Identity (46), we have:

κ2j,i = a20

{
a20n

2
j,i +

m∑
`=1

a2`φ
`
j,i − 2a0

m∑
`=1

a`nj,iφ
`
j,i

}

because (φ`j,i)
2
= φ`j,i ∀ ` ∈ [[1,m]], and when ` 6= `′, φ`j,iφ

`′

j,i = 0. From

φ`j =

b∑
i=1

φ`j,i =

b∑
i=1

nj,iφ
`
j,i and r =

b∑
i=1

n2j,i,

we finally obtain:

cwj,j =

b∑
i=1

κ2j,i = a20

{
a20r +

m∑
`=1

a2`φ
`
j − 2a0

m∑
`=1

a`φ
`
j

}

= −a20

{
a0(a0 − 2a0)r −

m∑
`=1

φ`ja`(a` − 2a0)

}
. (47)

Extra-diagonal entry σ2Cj,j′ : determination of ωj,j′

Let us determine the contribution ωj,j′ = c−1
∑b
i=1 κj,iκj′,i, j 6= j′, to the entry

σ2Cj,j′ . From Identity (45), we have:

κj,iκj′,i = a20

(
a0nj,i −

m∑
`=1

a`φ
`
j,i

)(
a0nj′,i −

m∑
`′=1

a`′φ
`′

j′,i

)

= a20

{
a20nj,inj′,i − a0

(
m∑
`=1

a`nj,iφ
`
j′,i +

m∑
`=1

a`nj′,iφ
`
j,i

)

+

m∑
`=1

m∑
`′=1

a`a`′φ
`
j,iφ

`′

j′,i

}
.

From λj,j′ =
∑b
i=1 nj,inj′,i (see Identity (2)) and

φ`∗j,j′ =

b∑
i=1

(nj′,iφ
`
j,i + nj,iφ

`
j′,i) , for all ` ∈ [[1,m]] , (48)
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we finally obtain for c ωj,j′ =
∑b
i=1 κj,iκj′,i

c ωj,j′ = a40λj,j′ − a30
m∑
`=1

a`φ
`∗
j,j′ + a20

m∑
`=1

m∑
`′=1

(
a`a`′

b∑
i=1

φ`j,iφ
`′

j′,i

)
. (49)

End of the proof of Proposition 3. From C = A− c−1B (see Identity (32)), we find:

Cj,j = τ − ωj,j and Cj,j′ = µ− ωj,j′

where τ and µ come from the matrix A and ωj,j and ωj,j′ come from the matrix
c−1B. Using the formulas on τ , µ, ωj,i and ωj,j′ respectively establish in Identities
(37), (42), (47) and (49), we complete the proof of Proposition 3.

6.3 Proof of Theorem 1

Consider d ∈ Ωv,b,k a NNm-balanced BIBD(v, b, r, k, λ) for the AR(m) model with
k ≥ 3, m ≥ 1 and 2m < k < v (this proof also holds for CBD when k = v).

In Remark 1, we have deduced from Proposition 3 that all the competitor designs
have the same trace. Hence, from Proposition 4, the universal optimality of the design
d is satisfied when the information matrix Cd of γ̂ is completely symmetric; which
means that its extra-diagonal entries Cd,j,j′ are all independent from j, j′ (j 6= j′)
because the sum by row (and by column) of Cd is null (see Identities (25)). Accord-
ing to the hypothesis of Theorem 1, we will prove that none of the five summation
blocks of Cd,j,j′ appearing in Identity (22) of Proposition 3 depends on j, j′.

As the design d is a NNm-balanced BIBD(v, b, r, k, λ), Identities (3) and (4) im-
ply that two of the summation blocks of Cd,j,j′ are independent from j, j′: those
depending on λ = λj,j′ and Ns = Ns

j,j′ . Therefore, if Identities (i), (ii) and (iii)
of Theorem 1 hold then the three others summation blocks of Cd,j,j′ are independent
from j, j′ (see Remark 7 for the case of (iii)).

Remark 7 On the right side of Identity (22), let’s consider the summation block∑m−1
s=1

∑m−s
t=1 Θt,sαs,t of Cd,j,j′ where αs,t = Ns

j,j′,i(φ
t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ). Let

` 6= `′ in [[1,m]] and α`,`′ = N
|`−`′|
j,j′,i (φ

`
j,iφ

`′

j′,i + φ`j′,iφ
`′

j,i) be the left-hand side of
Identity (iii) in Theorem 1. We claim that:

{α`,`′ | ` 6= `′ in [[1,m]]} = {αs,t | s ∈ [[1,m− 1]] and t ∈ [[1,m− s]]} . (50)

For “ ⊂ “, by symmetry between `, `′ in α`,`′ , we can suppose that ` < `′ and express
α`,`′ as follows: α`,`′ = N

|`−`′|
j,j′,i (φ

`
j,iφ

`+|`−`′|
j′,i + φ`j′,iφ

`+|`−`′|
j,i ). Then α`,`′ = αs,t

with s = |`−`′| ∈ [[1,m− 1]] and ` = t ∈ [[1,m− s]] (as expected in the summation
in the expression of Cd,j,j′ ). Conversely, let s ∈ [[1,m− 1]] and t ∈ [[1,m− s]]. Then
we have αs,t = α`,`′ for the two distinct periods ` = t and `′ = t+ s in [[1,m]].
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In the following, we will prove Identities (i), (ii) and (iii) of Theorem 1. More
precisely, for each identity, we will suppose that the term in the left-hand side is a
constant and we prove that it equals to the right-hand side. Recall that ω = 2b

v(v−1) .

Proof of Identity (i). For each treatment j, we first need to establish the following
identity: ∑

j′ 6=j

φ`∗j,j′ = (k − 2)φ`j + 2r . (51)

Proof Develop
∑
j′ 6=j φ

`∗
j,j′ :

∑
j′ 6=j

φ`∗j,j′ =
∑
j′ 6=j

b∑
i=1

(nj′,iφ
`
j,i + nj,iφ

`
j′,i) =

b∑
i=1

φ`j,i
∑
j′ 6=j

nj′,i +

b∑
i=1

nj,i
∑
j′ 6=j

φ`j′,i .

The first term of the right-hand side of the previous identity is

α =

b∑
i=1

φ`j,i
∑
j′ 6=j

nj′,i =

b∑
i=1

φ`j,i

v∑
j′=1

nj′,i −
b∑
i=1

φ`j,inj,i = k φ`j − φ`j

by definition of φ`j and since each patient i receives k treatments. The second term is

β =

b∑
i=1

nj,i
∑
j′ 6=j

φ`j′,i =

b∑
i=1

nj,i

v∑
j′=1

φ`j′,i −
b∑
i=1

nj,iφ
`
j,i = 2 r − φ`j

because d is equireplicated (i.e. j appears r times in d) and only 2 treatments j′ can
be applied to a same patient i at periods ` and (k− `+1) (i.e. φ`j′,i = 1 for these two
treatments and 0 for the others). Summing α and β, we obtain Identity (51) ut

From Formulas (51) and (16), we obtain finally:

v∑
j=1

∑
j′ 6=j

φ`∗j,j′ = 2b(k − 2) + 2rv = 2b(k − 2) + 2bk = 4b(k − 1) (52)

because rv = bk. Suppose that each φ`∗j,j′ does not depend on j, j′. Then we have the

equality
∑v
j=1

∑
j′ 6=j

φ`∗j,j′ = v(v − 1)φ`∗j,j′ . Thus from (52), we obtain Identity

(i) φ`∗j,j′ =
4b(k−1)
v(v−1) = 2ω(k − 1) .

Proof of Identity (ii). Consider two distinct periods ` and `′ and fix a patient i. Four
distinct treatments j1, . . . , j4 are applied to this patient at the respective periods `, k−
`+1, `′, k− `′ +1. Then φ`j1,i = φ`j2,i = φ`

′

j3,i
= φ`

′

j4,i
= 1 and the other values φ`j,i

and φ`
′

j′,i are zero; consequently:

v∑
j=1

∑
j′ 6=j

φ`j,iφ
`′

j′,i = φ`j1,i(φ
`′

j3,i + φ`
′

j4,i) + φ`j2,i(φ
`′

j3,i + φ`
′

j4,i) = 4
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and
v∑
j=1

∑
j′ 6=j

φ`j,iφ
`
j′,i = φ`j1,iφ

`
j2,i + φ`j2,iφ

`
j1,i = 2 .

If the quantity
b∑
i=1

φ`j,iφ
`′

j′,i does not depend on j, j′ then, by the same reasoning as

for (i), we find (δ`,`′ is the Kronecker symbol):

(ii)

b∑
i=1

φ`j,iφ
`′

j′,i =
b(2 + 2(1− δ`,`′))

v(v − 1)
= ω(2− δ`,`′) for all `, `′ ∈ [[1,m]] .

Proof of Identity (iii). With reference to Remark 7, prove Identity (iii): α`,`′ = 2ω

for ` 6= `′ in [[1,m]] is equivalent to prove αs,t = 2ω for s ∈ [[1,m− 1]] and t ∈
[[1,m− s]]. Let’s fix s ∈ [[1,m− 1]] and t ∈ [[1,m− s]] and prove that αs,t = 2ω.
By the same reasoning as above, for a patient i, four distinct treatments j1, . . . , j4 are
applied at the respective distinct periods t, k − t+ 1, t+ s, k − (t+ s) + 1. Then

βt,s =

v∑
j=1

∑
j′ 6=j

(φtj,iφ
t+s
j′,i + φtj′,iφ

t+s
j,i )

=

v∑
j=1

φtj,i
∑
j′ 6=j

φt+sj′,i +

v∑
j=1

φt+sj,i

∑
j′ 6=j

φtj′,i

= 2(φtj1,i + φtj2,i)(φ
t+s
j3,i

+ φt+sj4,i
) = 8 .

But, in this sum, there are 4 cases in which two treatments among j1, . . . , j4 are
applied at distance s and there are 4 cases in which two treatments among j1, . . . , j4
are applied at distance δ where δ ≥ m > s because k > 2m. For the firsts 4 cases,
we have Ns

j,j′,i = 1 and for the 4 others cases we have Ns
j,j′,i = 0. Then

v∑
j=1

∑
j′ 6=j

Ns
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ) =

1

2
βt,s = 4 .

Hence, if each quantity αs,t =
∑b
i=1N

s
j,j′,i(φ

t
j,iφ

t+s
j′,i + φtj′,iφ

t+s
j,i ) does not depend

on j, j′ (j 6= j′), the following identity holds for ` 6= `′ in [[1,m]]:

(iii) α`,`′ = αs,t =
4b

v(v−1) = 2ω .

Then Theorem 1 is proved.

6.4 Proof of Theorem 2

Theorem 2 is a straightforward consequence of the proof of Theorem 1 which also
holds for k = v and of Identities (19) and (20) for the NNm-balanced square designs.
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6.5 Proof of Proposition 5

Recall that in case of the strength is t = 2, the index ω2 is ω = 2b
v(v−1) (see Remark

3). Since an SB(b, k, v, 2) can be interpreted as a BIBD(v, b, r, k, λ), Identity (27)
comes from the identities v(v − 1)ω = 2b and rv = bk (see Identity (1)).

Now consider an unordered pair (j, j′) of two distinct treatments. For all m ∈
[[1, k − 1]], the design d is NNm-balanced because Ns

d,j,j′ , the number of times that
(j, j′) are applied to a same patient at distance s ∈ [[1,m]], is a constant Ns

d . More
precisely, consider the k − s possible pairs of periods ` and ` + s where ` runs in
[[1, k − s]]. Since the strength of d is two, we obtain Identity (4): Ns

d = Ns
d,j,j′ =

ω(k − s). To prove the rest of Proposition 5, we use item (a) of Theorem 2 in Martin
and Eccleston (1991) which implies that d is universally optimal.

6.6 Proofs of Identities (3), (4), (19) and (20)

Proof of Identity (3)

Let β =
∑v
j=1

∑
j′ 6=j λd,j,j′ . As d is a BIBD, we have β =

∑v
j=1

∑
j′ 6=j λ =

v(v − 1)λ. But we can express β differently: β = bk(k − 1) because there are b
patients and exactly k(k − 1) distinct pairs of treatments for each of them (recall
that k ≤ v). The identification of the two expressions of β prove the wanted identity
satisfied by λ:

λ = λd,j,j′ =
bk(k − 1)

v(v − 1)
= ω

k(k − 1)

2
∀j, j′ ∈ [[1, v]], j 6= j′ .

Proof of Identity (4)

Assume that design d is NNm-balanced. Let us fix s ∈ [[1,m]] and compute by
two ways the sum

α =

v∑
j=1

∑
j′ 6=j

Ns
d,j,j′ .

Firstly, as the design is NNm-balanced, eachNs
d,j,j′ equals a constantNs

d which does
not depend on the choice j, j′. So we have:

α =

v∑
j=1

∑
j′ 6=j

Ns
d = v(v − 1)Ns

d .

Secondly, suppose that some patient i receives a given treatment j. Recall that j is
administered at most once to a same patient. For the ith patient, if j is not applied
in the first s or in the last s periods (i.e.when

∑s
`=1 φ

`
d,j,i = 0) then there exist

2 =
∑
j′ 6=j N

s
d,j,j′,i treatments at distance s from j. Otherwise, if j is applied in the

first s or in the last s periods then φ`d,j,i = 1 for (only) one period ` ∈ [[1, s]] (i.e. when
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`=1 φ

`
d,j,i = 1) and there exists only 1 =

∑
j′ 6=j N

s
d,j,j′,i treatment at distance s

from j. Therefore, in both cases, we obtain∑
j′ 6=j

Ns
d,j,j′,i = 2−

s∑
`=1

φ`d,j,i . (53)

Moreover, as j appears exactly r times in the design d, by considering all patients i,∑
j′ 6=j

Ns
d,j,j′ = 2r −

s∑
`=1

φ`d,j . (54)

Let us sum the above equality for all j and from Identity (16), we obtain this second
expression of α:

α =

v∑
j=1

∑
j′ 6=j

Ns
d,j,j′ =

v∑
j=1

(2r −
s∑
`=1

φ`d,j) = 2rv − 2bs .

As rv = kb (see Identity (1)), the identification of the two expressions of α implies
the wanted identity (4) satisfied by Ns

d :

Ns
d = Ns

d,j,j′ =
2b(k − s)
v(v − 1)

= ω (k − s) ∀j, j′ ∈ [[1, v]], j 6= j′ .

Proof of Identities (19) and (20)

Let d be a NNm-balanced design with k = v (i.e. the number of periods equals
the number of treatments). We have also r = b because rv = kb. We will prove that
for each ` ∈ [[1,m]] the quantities φ`d,j and φ`∗d,j,j′ do not depend on treatments j, j′

(j 6= j′); we will express these quantities without j and j′.
Let s ∈ [[1,m]]. Applying Identity (4), as d is a NNm-balanced design, Ns

d,j,j′ =
Ns
d = 2b(k − s)/v(v − 1) = 2b(v − s)/v(v − 1) since k = v. Then from (54), we

have:
s∑
`=1

φ`d,j = 2r − (v − 1)Ns
d .

As r = b, the previous equality becomes
∑s
`=1 φ

`
d,j = 2bs

v . Then, for each s ∈
[[1,m]], we find:

φsd,j =

s∑
`=1

φ`d,j −
s−1∑
`=1

φ`d,j =
2b

v

which is Identity (19). We now prove the second identity. We know that each treat-
ment is administered at most once for each patient; but, as moreover k = v, every pa-
tient will receive the v distinct treatments once and only once. That means nd,j,i = 1
for all j ∈ [[1, v]]. Therefore Identity (48) becomes Identity (20):

φ`∗d,j,j′ = φ`d,j + φ`d,j′ =
4b

v
∀ ` ∈ [[1,m]]

and the two identities on NNm-balanced square designs are proved.
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